
big data and 
cognitive computing

Article

AGR4BS: A Generic Multi-Agent Organizational Model for
Blockchain Systems

Hector Roussille 1,2 , Önder Gürcan 1,* and Fabien Michel 2

����������
�������

Citation: Roussille, H.; Gürcan, Ö.;

Michel, F. AGR4BS: A Generic

Multi-Agent Organizational Model

for Blockchain Systems. Big Data

Cogn. Comput. 2022, 6, 1. https://

doi.org/10.3390/bdcc6010001

Academic Editor: Carson K. Leung

Received: 17 November 2021

Accepted: 15 December 2021

Published: 21 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LIST, CEA, Université Paris-Saclay, F-91120 Palaiseau, France; hector.roussille@cea.fr
2 LIRMM, University of Montpellier, CNRS, 34095 Montpellier, France; fmichel@lirmm.fr
* Correspondence: onder.gurcan@cea.fr

Abstract: Blockchain is a very attractive technology since it maintains a public, append-only, im-
mutable and ordered log of transactions which guarantees an auditable ledger accessible by anyone.
Blockchain systems are inherently interdisciplinary since they combine various fields such as cryptog-
raphy, multi-agent systems, distributed systems, social systems, economy, and finance. Furthermore,
they have a very active and dynamic ecosystem where new blockchain platforms and algorithms are
developed continuously due to the interest of the public and the industries to the technology. Conse-
quently, we anticipate a challenging and interdisciplinary research agenda in blockchain systems,
built upon a methodology that strives to capture the rich process resulting from the interplay between
the behavior of agents and the dynamic interactions among them. To be effective, however, modeling
studies providing insights into blockchain systems, and appropriate description of agents paired
with a generic understanding of their components are needed. Such studies will create a more unified
field of blockchain systems that advances our understanding and leads to further insight. According
to this perspective, in this study, we propose using a generic multi-agent organizational modeling for
studying blockchain systems, namely AGR4BS. Concretely, we use the Agent/Group/Role (AGR)
organizational modeling approach to identify and represent the generic entities which are common
to blockchain systems. We show through four real case studies how this generic model can be used
to model different blockchain systems. We also show briefly how it can be used for modeling three
well-known attacks on blockchain systems.

Keywords: blockchain; multi-agent; organizational-modeling

1. Introduction

Blockchain is a very attractive technology since it maintains a public, append-only,
immutable and ordered log of transactions which guarantees an auditable ledger accessible
by anyone. Blockchain was originally created under the Bitcoin [1] cryptocurrency in 2008,
and since then the blockchain ecosystem has grown to be very large. Today, many variants
of blockchains based on different algorithms and permissions exist.

Typically, a blockchain system allows its participants to collectively build a distributed
economic, social and technological system where participants perform verified transactions
without needing to fully trust each other, neither relying on a trusted third party, nor having
a global view of the system [2]. They do so by looking for peers and connecting to them
based on an implementation dependent selection strategy; the information propagation
through that network shares some similarities with co-evolving knowledge networks [3]
as both the agent’s view of the blockchain and the network topology is subject to change
over time. More precisely, while some participants use the blockchain as a transactional
service, other participants are incentivized for contributing to and providing this service.
This difference in the nature of participants and the way they use the system, coupled
with fundamentally different but interdependent objectives inside the same system, leads
to their symbiosis. However, in the presence of strong economical incentives, divergent

Big Data Cogn. Comput. 2022, 6, 1. https://doi.org/10.3390/bdcc6010001 https://www.mdpi.com/journal/bdcc

https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-1419-0346
https://orcid.org/0000-0001-6982-5658
https://orcid.org/0000-0003-1814-980X
https://doi.org/10.3390/bdcc6010001
https://doi.org/10.3390/bdcc6010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bdcc6010001
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6010001?type=check_update&version=3


Big Data Cogn. Comput. 2022, 6, 1 2 of 41

behavior may arise and possibly threaten the system as a whole in the pursuit of individual
wealth. Therefore, carefully designing the objectives and the behaviors of participants
is paramount.

Blockchain systems are environments that are too complex for humans to predeter-
mine the correct behaviors using hand-designed solutions to problems such as incentives
compatibility, behavioral deviations or general blockchain regulation. Furthermore, little
to no consensus exists on the modelization used to build/analyze blockchain systems, and
most approaches are only expressive enough for one subset of the existing blockchains.

Existing studies tend to focus on a relatively small set of problems of specific blockchain
systems and thus abstract away several inherent properties of such systems. Those ab-
stractions can be related either to network delay, non-stationarity, or even disregard the
long-term stability of the system. Those approaches, while providing interesting results, do
have serious bias in the way they model the blockchain and oversimplify many interactions
taking place in them.

Consequently, there is a need for a realistic and highly flexible model able to represent
a wide range of existing and future blockchain systems that may have widely different
architectures and objectives. Based on this observation, in this paper, we propose a generic
organizational model for blockchain systems named AGR4BS. Concretely, the contributions
of this study are as follows:

• We provide a review of the existing literature about the paradigms used for modeling
the dynamics of blockchain systems. We show that existing blockchain modeling
approaches are strongly domain and problem specific, and as such, they cannot be
easily applied to other domains and problems.

• We show that, for modeling blockchain systems, an organization-centric agent-oriented
approach is a better fit since it allows maintaining the independence of agents while
modeling the system as a whole through the different organizations that are compos-
ing it.

• We propose AGR4BS, a generic organization-centric multi-agent model for blockchain
systems relying on high-level abstractions (i.e., agents, groups, roles, and interaction
types). This allows for a clear division of the different building blocks of blockchain
systems, while leaving the possibility to explore behavioral divergence in a well-
defined framework.

• We demonstrate the effectiveness of this model by showing how it can be used for
modeling the structure and dynamics of four different real blockchain systems.

• We show the feasibility of using this model for modeling the organizational impacts
of three different attacks on blockchain systems.

The organization of this paper is as follows. The next section gives an overview
of blockchain systems. Section 3 gives a review of the existing approaches in modeling
blockchain systems. In Section 4, we provide our motivation for using organizational-
centric multi-agent modeling. Then, in Section 5, we propose a generic organizational
model for blockchain systems. We show the applicability and effectiveness of this model
on four real case studies in Section 6. In Section 7 we show briefly how the generic model
can also be used for modeling attacks on blockchain systems. Section 8 further discusses
the strengths and limitations of the proposed approach, and Section 9 concludes the paper.

2. Blockchain Systems Preliminaries

This section follows a bottom-up approach: first, a formal model of the blockchain
data structure is given (Section 2.1), then the fundamentals of blockchain systems are
presented (Section 2.2) and the decentralized applications and organizations are described
(Section 2.3) followed by the concept of Oracle (Section 2.4). Finally, we discuss common
characteristics of blockchain systems (Section 2.5).



Big Data Cogn. Comput. 2022, 6, 1 3 of 41

2.1. Blockchain Data Structure

The data structure of a blockchain maintained by a participant can be modeled as a
dynamic append-only tree, where each block bi contains a cryptographic reference to its
previous block bi−1 (Figure 1). b0 is the root block known as the genesis block and bh is the
furthest block from the genesis block which is referred to as the blockchain head.

…

… …

…

…

…

…

…

…

…

…

…

…

Blockchain Head

Stale Block…

bh

b0

HhHh−1

Hh−1

F+ Σfx
h−1

F+ Σf⋆
h−1 F+ Σf⋆

h

F+ Σf⋆
h−2F+ Σf⋆

h−3

b⋆h−3 b⋆h−2

b⋆h−1

bxh−1

Hh−2Hh−3H0

{C → F, ck}
{B → E, cl}
{C → D, cj}

{A → C, cs}

{A → C, cs}
{E → B, cu}

{E → B, cu}

height

Fork

Figure 1. The blockchain data structure starts with a genesis block b0 and cryptographically links
successive blocks in reverse order of their block numbers.

A block bi−1 can have multiple children blocks, which causes a situation called a f ork.
One of the chains is then selected as the main chain according to the blockchain protocol
used. All chains other than the main chain are called side chains. If, at any time, there
exists more than one main chain candidate (i.e., there are multiple heads), the blockchain is
said to be inconsistent. This situation disappears when a new block extends one of these
side chains. The blocks on the other branches are discarded and referred to as stale blocks.

2.2. Fundamentals of Blockchain Systems

Technically speaking, all participants store unconfirmed transactions in their own
memory pools and confirmed transactions in their local blockchains (Figure 2).

Figure 2. Representation of a blockchain system.

Basically, there are two main types of participants for all types of blockchain systems:
users and block proposers. Users create transactions with a fee and then propose them
by diffusing across the blockchain network to be confirmed (i.e., totally ordered and
cryptographically linked to the blockchain). Each participant, receiving the proposed
transaction, validates and diffuses it to its own neighbors. After receiving a certain number



Big Data Cogn. Comput. 2022, 6, 1 4 of 41

of transactions, block proposers select transactions to confirm and order them by creating
a dedicated block through a blockchain consensus mechanism, e.g., Proof-of-Work (PoW),
Proof-of-Stake (PoS), Delegated Proof-of-Stake (DPoS), Byzantine Fault-Tolerance (BFT); for
a review see [4,5]. Depending on the mechanism used and the blockchain technology, block
proposers are referred to as miners [1], validators [6], bakers [7], orderers [8], committee
members [9] etc. respectively. The successful block proposer proposes its block by diffusing
it to the network to be appended to the local blockchains. Each participant receiving the
proposed block validates it against its local blockchain and diffuses it to its own neighbors.
Upon inclusion of its block by all participants, the corresponding successful Block Proposer
is rewarded by R + Fi where R is a static block reward and Fi is the total amount of fees
of transactions included in the block i. This way, user and block proposer participants
altogether maintain a shared data structure referred to as the blockchain.

To improve their block creation capabilities, block proposers may invest either in hard-
ware, capital or other agents depending on the consensus mechanism used. For example,
in a PoW blockchain they can invest in new hardware since the more computational power
they have, the easier they can create blocks. In a PoS blockchain, they can invest in the
stakes, since the more locked stakes they have, the more chance to enter the committee.
In addition to PoS, in DPoS blockchains, they can also invest in other block proposers by
delegating their stakes.

Although blockchains initially only provided cryptocurrency related operations, the
support of Turing-complete Smart Contracts (SC) that encode arbitrary data processing
logic has been introduced in 2014 [6]. With this advancement, blockchains evolved from
merely cryptocurrency platforms to distributed transactional and logical systems. In
smart contract enabled blockchains, transactions consisting of smart contract invocations
are executed by all participants willing to continuously maintain the blockchain state.
Today, such blockchain systems can be considered as world-scale decentralized computers,
Ethereum [10] being the most well-known example.

2.3. Decentralized Applications and Organizations

Smart contracts allow anyone to create user defined secure applications, called De-
centralized Applications (DApp), that exist and run on an underlying blockchain system.
Many DApps such as exchanges, money loans, games, or payment terminals are already
being used today [11].

Recently, DApps are being increasingly utilized in performing financial functions
(e.g., lending or borrowing funds, going long or short on a range of assets, trading coins)
on blockchain systems, called Decentralized Finance (DeFi) applications [12]. A popular
application area of DeFi is Decentralized Exchange, (DEX) [13] where participants trade
assets. A DEX application relies on a smart contract called a Liquidity Pool, which is
responsible for locking funds and providing currency availability (aka: liquidity) to its
participants. This way, the participants can invest their money and contribute to the DEX
(or any other system relying on that pool) in exchange for interests over time. Another
example of DeFi is the Borrow/Lend application which uses also Liquidity Pools to allow
participants to borrow in the currency of their choice if available, without requiring a
central institution such as a bank.

Besides individual usage, real entities like companies can use DApps to represent
and regulate themselves securely and autonomously. The collection of such decentralized
applications is called a Decentralized Autonomous Organization (DAO) [14]. Thanks to
the smart contracts, a company represented as a DAO can work with external partners
and execute commands based on them without any human intervention. An example of a
DAO is Pie DAO (PieDAO, https://www.piedao.org/, accessed on 23 June 2021) which is
a decentralized asset allocation system aimed at automating wealth creation. Users can
create, join or leave allocations (i.e., investment diversification plans). Participants will
vote for or against the allocations of their choice. Pie DAO is effectively bringing crowd
wisdom to the investment world.

https://www.piedao.org/


Big Data Cogn. Comput. 2022, 6, 1 5 of 41

2.4. Oracles in Blockchain Systems

In a blockchain system, by design, there is no proper way to add external information
in a trusted manner. Either the provider or the data itself is trusted. Therefore, any
interaction between the blockchain and the outside world contradicts the blockchain
trustless philosophy. However, to leverage the power of the blockchain technology and,
more specifically, smart contracts, such interactions are often necessary and desired.

The current solution is to use oracles (Blockchain Oracles, https://blockchainhub.
net/blockchain-oracles/, accessed on 2 July 2021): participants bridging the blockchain
system with the outside world (i.e., Web Services, sensor data stream, etc.). The issue of
having such trusted entities and the related vulnerabilities in public blockchain systems
have already been discussed as the Oracle problem [15,16].

2.5. Common Characteristics of Blockchain Systems

Blockchain technology benefits from a widespread interest because of its huge poten-
tial. In practice, it refers to an important range of implementations (Bitcoin [1], Ethereum [6],
Tendermint [9], Hyperledger [8], Tezos [17] and so on) sharing common mechanisms and
characteristics. Besides, new implementations and solutions are also coming out rapidly.
Consequently, there is a necessity both for studying various blockchain systems in a unified
fashion, and for developing new solutions in a faster and less costly way. To be able to
have such a high-level (i.e., generic) understanding of blockchain systems, the following
common characteristics were identified in [18].

2.5.1. Blockchain Systems Are Distributed Systems

As Lamport described (Leslie Lamport, Distribution, https://www.microsoft.com/en-
us/research/publication/distribution/, accessed on 14 December 2021 in an email message
sent to a DEC SRC bulletin board at 12:23:29 PDT on 28 May 1987), a distributed system
is one in which the failure of a computer you did not even know existed can render your
own computer unusable. Most distributed systems (including blockchain systems) are
designed with fault tolerance as one of the main objectives, thus ensuring high availability
of services and distributed data coherency.

2.5.2. Blockchain Systems Are Social Organizations

A social organization can be defined as formal or informal groups of interrelated
individuals (agents) who pursue a collective goal and are embedded into an environment [19].
Moreover, the blockchain (data structure) is a physical manifestation of the users inter-
actions. Blockchain systems facilitate cooperation by getting self-interested, distrustful
people to work together, even when narrow self-interest would seem to dictate that no
individual should take part. Blockchain systems have highly volatile dynamics, conflict of
individual/collective goals (e.g., users want lower fees while Block Proposers want higher
fees) and continuous enter/exit dynamics [2].

2.5.3. Blockchain Systems Are Economic Systems

An economic system, as any other complex system, reflects a dynamic interaction of a
large number of different agents, not just a few key agents. The resulting systemic behavior,
observable at the macro-level, often shows consequences that are hard to predict (e.g., the
transaction fees) which cannot be simply explained by the behaviors of a few major agents.

2.5.4. Blockchain Systems Have a Very Active and Dynamic Ecosystem

New blockchain platforms and algorithms are developed continuously due to the
interest to the technology and the need for supporting the ever-growing demand. However,
some of the main problems in the blockchain community are reusability, maintainability
and extensibility. Moreover, we face highly competitive and complex industrial cases that
have technical problems (like data reliability, confidentiality, archiving) which are being
constantly reshaped by client demands (e.g., performance (# of transactions/minute), fees),

https://blockchainhub.net/blockchain-oracles/
https://blockchainhub.net/blockchain-oracles/
https://www.microsoft.com/en-us/research/publication/distribution/
https://www.microsoft.com/en-us/research/publication/distribution/


Big Data Cogn. Comput. 2022, 6, 1 6 of 41

technology (e.g., protocol, parameters, cost), and regulations (e.g., standards, laws, GDPR
(General Data Protection Regulation, https://gdpr-info.eu, accessed on 31 August 2021)).

3. Existing Blockchain Modeling Approaches

A model is an abstraction of some aspects of an existing or planned system. Mod-
els serve particular purposes, that is, for example, to present a human-understandable
description of some aspect of a system or information in a form that can be efficiently
analyzed. In the blockchain context, there are very few studies that are directly targeted at
modeling [18,20].

This does not mean that there is no model for blockchain systems. Based on the exist-
ing studies in the blockchain literature, we identified the following modeling paradigms:
process-oriented, object-oriented, graph-theoretic and agent-oriented paradigms. In the fol-
lowing, we describe each paradigm by showing how they model participants (i.e., users
and Block Proposers), interactions, behaviors, and data structures (e.g., blockchains, trans-
actions) using the abstractions they provide.

3.1. Process-Oriented Paradigm

In a process-oriented paradigm (aka distributed programming paradigm), a system
encompasses multiple distributed processes (a process abstraction may represent a physical
or virtual computer, a processor within a computer, or a specific thread of execution in a
concurrent system.) connected with communication links (aka channels) that cooperate on
some common task (e.g., shared memory or consensus) [21].

Processes execute the distributed algorithm assigned to them through a set of com-
ponents implementing the algorithm within these processes. Channels allow processes to
broadcast messages by triggering events. A shared memory allows local direct access to a
resource from possibly many processes. Consensus mechanisms aim at providing a way
for processes to agree on a common decision/outcome under a decentralized framework.
This paradigm aims at building and/or analyzing systems which are dependable (offering
reliability and security) and have predictable behavior even under negative influence from
the environment (offering tolerance to faults).

Many studies use this paradigm to analyze [22–27] and/or build blockchains [1,6,8,28–30]
using the following related abstractions: participants (e.g., users and Block Proposers) are
modeled as processes, interactions as channels, the blockchain as a shared memory and
deciding on a common block is represented by using consensus abstractions.

For instance, [22] shows that some Block Proposers in a Bitcoin blockchain (aka miners)
can deviate from their nominal behaviors, thus acquiring an unfair advantage which
consequently decreases the dependability of the system. Later, [27] builds and improves
on both [22,25] by providing a hybrid strategy deviating at both the block creation and
the networking levels, effectively achieving the unfair advantage for miners while leading
other agents to work for the deviating miners.

3.2. Graph-Theoretic Paradigm

The Graph-Theoretic Paradigm focuses on topology and therefore on connective
properties of algebraic/mathematical objects. In the context of distributed computing,
these objects are generalizations of graphs, and their connectivity properties are related to
the computability of distributed algorithms. Exploiting certain topological properties of
higher dimensional geometric objects to prove results of distributed algorithms is referred
to as the topological approach to distributed computing. Techniques from combinatorial
and algebraic topology have advanced characterization of synchronous and asynchronous
distributed algorithms, as well as their solvability [31–34]. In graph theory, a vertex is a
point in a graph. Vertices are linked together by edges that represent a relation between
two vertices.

https://gdpr-info.eu


Big Data Cogn. Comput. 2022, 6, 1 7 of 41

In this paradigm, the participants are modeled by using vertices abstractions, the
transactions are modeled using edge abstractions, the interactions are modeled using simplex
and/or face abstractions, and frauds are modeled as spatio-temporal pattern abstractions.

The ability of sheaf-theoretic frameworks to decipher global information from local
information has led to a diversity of applications such as those that have been further
proposed to model concurrent processes in distributed systems [35], semantics for object-
oriented programming languages [36] and representations of information systems [37].
In [38], the author explores topological models of distributed computing for scalability-
focused Blockchain technologies. To do so, the author models a block as a sheaf and
develops a theory for distributed consensus protocols.

3.3. Object-Oriented Paradigm

In an object-oriented paradigm, a system is composed of multiple objects (aka instances
of classes) interacting with local or remote method invocations (aka message passing) [39].
Classes have specific responsibilities and they encapsulate data (in the form of attribute
abstractions) and code (in the form of method abstractions) that manipulates these data, and
are related to each other using association abstractions. This paradigm aims at building
and/or analyzing systems which are evolvable (i.e., easy to extend) and maintainable (i.e.,
easy to fix).

Few studies explicitly use this paradigm in the blockchain literature [40–42] (In fact,
Ref [42] uses the Entity Relationship (ER) model, but since ER is a mental model which is
similar to object-orientation, we grouped them in the same category). In these studies, the
participants are modeled as class, interactions as associations, the blockchain as a class and
deciding on a common block as method abstractions.

For instance, ref. [40] proposes a generic PoW blockchain model with the aim of
building an extensible blockchain simulator. Currently, they are able to model and simulate
both Bitcoin and Ethereum 1.0 and validate their results against historical data. They are
compatible with PoS blockchains, given a few modifications. As another example, Ref [41]
proposes a notation based on UML [43] for supporting smart contract design. Concretely,
they add stereotypes for UML Class and Sequence diagrams to better express the entities
and the interactions between them.

3.4. Agent-Oriented Paradigm

In an agent-oriented perspective, a system is composed of multiple autonomous agents
that are able to perceive their environment, reason independently (either reactively or
proactively) and act upon their environments [44,45], thus forming a so-called Multi-Agent
System (MAS). This paradigm especially aims at building and/or analyzing systems which
have some degree of openness, autonomy, intelligence and complexity. MAS modeling has
been considered according to two main perspectives: agent-centric and organization-centric.
While the former focuses on the agent’s internal architecture, the latter points on the
structure of the system, and firstly considers agents as empty shell in order to focus on the
MAS organizational aspects. An agent is an entity of the system that is relying on some
degree of autonomy in order to pursue its goal or fulfill its functionality either passively or
actively. Coordination is the mean by which agents exchange information or resources in
the pursuit of an objective.

Many studies use this paradigm in an agent-centric sense to analyze blockchains [46–53].
In these studies, the participants are modeled as agents, interactions as coordination abstrac-
tions, the blockchain is modeled as a shared knowledge and deciding on a common block is
modeled by using goal, strategy or game abstractions.

As an example, Ref. [46] takes a generic Reinforcement Learning (RL) approach to
detect attacks on different blockchain systems through RL based simulations and strategy
search while being fairly constrained to the block creation processes in PoW blockchains
as well. The aim is similar to [22], that is, discovering attack vectors and weaknesses
in the blockchain. While this search is experimental in contrast to analytical, it is able



Big Data Cogn. Comput. 2022, 6, 1 8 of 41

to grasp some of the multi-agent interactions and limitations arising from many hetero-
geneous agents each pursuing a specific goal. As another example, Ref. [48] focuses on
meta-agents, that is, agents acting on several blockchain hyper parameters to balance a
security/throughput trade-off as a way to optimize the blockchain performance while
preserving the security and dependability of the system through RL.

3.5. Discussion

Models provide abstractions used to represent and communicate what is important,
without unnecessary detail, and help to cope with the complexity of the problem stud-
ied or the solution developed. Consequently, it is crucial to use an adequate modeling
approach. Considering the previous literature, one can see that all existing blockchain mod-
eling approaches are elaborated having in mind some specific aspects and/or problems
of blockchain systems (e.g., network topology targeted studies tend to use the graph-
theoretic paradigm), which in turn makes them specific so that they cannot be applied to
others easily.

In this paper, we aim at proposing a modeling approach with a high level of genericity,
so that it can be used to represent blockchain systems considering various scenarios
and problems. Hence, in the next section we propose to follow an organization-centric
agent-oriented approach, as suggested in [18]. To the best of our knowledge, there is no
organization-centric multi-agent modeling study for blockchains and their dynamics so far.

Here it should be noted that we do not exclude other paradigms, but we say that
the organization-centric paradigm is complementary to them. The organization-centric
approach gives a generic view, and the internal details can always be studied using one of
the aforementioned paradigms.

4. Organization-Centric Modeling for Blockchain Systems

In this section, we first describe the motivations behind using an organization-centric
modeling for blockchain systems (Section 4.1), then present the chosen organizational
model, namely Agent/Group/Role (AGR) for defining our generic organizational model
for blockchain systems (Section 4.2), and finally describe the methodology we used for
applying AGR (Section 4.3).

4.1. Motivations behind Organization-Centric Modeling

Since blockchain systems are social systems (as shown in Section 2.5), organizational
modeling provides more relevant abstractions with respect to what blockchain systems
actually are (i.e., social organizations are better represented through the organization-
centric approach).

Organization-centric modeling abstracts away the internal details (i.e., the cognitive
capabilities) of agents, and thus allows for focusing on the structural, organizational and so-
cial dimensions of blockchain systems, i.e., on what relates the structure of an organization
to the externally observable behaviors of agents.

Representing blockchain systems using the organization abstraction allows agents to
cooperate with each other by defining common cooperation schemes like responsibili-
ties, groups, protocol and global tasks. For example, deciding on a common block on a
blockchain system is an institutional action only possible because the blockchain system
defines the rules that must be followed to do so.

Additionally, norms can be used to constrain the behaviors of independent agents
towards the global goal of the organization. In other words, when an agent adopts a role,
it adopts a set of behavioral constraints that are supporting the global purpose of the
organization. It is then up to the agent to obey or disobey these constraints. For instance, in
a blockchain system, when an agent adopts the user role, it adopts the behavioral constraints
of preparing proper transactions and validating all the data before relaying.

Having a specification of the organization allows agents to reason about it. That is to
say, the agents can decide whether to join or leave organizations during their lifetime, can



Big Data Cogn. Comput. 2022, 6, 1 9 of 41

change/adapt their current organizations, and can decide to obey/disobey the norms of
the organization.

Moreover, such an organizational specification may also enable the organization to
reason about itself and about the agents in order to ensure the achievement of its global
purpose. That is to say, the organizations can decide to let agents join/leave during
execution, they can let agents change/adapt their current organizations, and they can
govern the agents’ behaviors (i.e., monitor, enforce, regiment).

4.2. The Agent/Group/Role (AGR) Approach

Among several organization-centric multi-agent-oriented approaches [54–59] pro-
posed in the literature, the Agent/Group/Role (AGR) approach proposed in [55] is a good
fit for our motivations and purpose. Especially, AGR describes what is a MAS organization
at a high level of abstraction and is thus very flexible and open to various interaction
schemes and organizational designs. The AGR model (Figure 3) is based on three first-class
abstractions: agent, group and role (Figure 3a). Those abstractions are composable and
interact with each other (Figure 3b).

(a) organizational model (b) Cheeseboard organizational diagram

Figure 3. Agent/Group/Role representations as a conceptual model (a) and as a cheeseboard
diagram (b).

Roles are abstract representations of functional positions of agents in a group. A role
describes the responsibilities associated to it, the constraints that agents need to satisfy in
order to obtain that role, and the benefits that agents would obtain by playing that role.

Groups identify contexts for patterns of activities (i.e., roles) that can be shared by sets
of agents (i.e., they group together agents working together). Agents may communicate, if
and only if, they belong to the same group. Groups are organizational structures [60] where
the interactions make an aggregate of agents a functionally coherent whole. Moreover,
groups may establish boundaries as well. Agents that do not belong to a group may not
know its structure.

Agents are active, communicating entities playing roles within groups. Agents play at
least one role in a group, but may hold multiple roles and be a member of multiple groups
as well. However, no constraints are placed upon the architectures, the cognitive abilities
and/or the mental issues of agents.

4.3. The Methodology for AGR

In this subsection, we briefly describe the process we use in Section 5 to design the
generic organization model based on the AGR approach.

Figure 4 shows the workflow we use to define our organizational model of blockchain
systems. Our approach is similar to what is presented in [61], with a system point of view
on functionalities through System Stories. However, unlike [61], we do not restrict ourselves
to a particular role or agent.



Big Data Cogn. Comput. 2022, 6, 1 10 of 41

Figure 4. Proposed methodology for defining our generic organizational model.

We first define the roles which are part of the system, i.e., what high-level functionality
must be present in the system. From those role definitions, we infer the different groups
and how the roles are grouping together to achieve their goals. When those two steps are
done, we elaborate on the roles and define their behaviors, i.e., what low-level functionality
must be present to fulfill the high-level ones. Next, we define how the roles interact with
one another inside a group, i.e., what needs to be communicated and how it is done. Finally,
we define the agent types, which interaction types they can have and the roles they can
play in the system.

5. AGR4BS: A Generic Organizational Model for Blockchain Systems

Using the AGR approach, we hereby propose a generic organizational model for
blockchain systems that acts as a basis for the definition of several concrete blockchain sys-
tems, namely AGR4BS. This way, it is possible to build and/or analyze concrete blockchain
systems which reside at the agent level, i.e., where agents with different cognitive abil-
ities may interact. This allows for a clear division of the different building blocks of
blockchain systems, while leaving the possibility to explore behavioral divergence in a
well-defined framework.

To this end, we identify all possible roles and their corresponding nominal (hon-
est) behaviors applicable to all types of blockchain systems. The agents participating in
blockchain systems may play one or several generic roles listed below, in possibly more
than one blockchain system at the same time.

5.1. Role Types

With respect to existing blockchain systems, we identified nine generic role types
(Figure 5). In the following, we carefully assign responsibilities to these role types.

<<Role>>
Block Proposer

<<Role>>
Transaction Proposer

<<Role>>
Blockchain Maintainer

<<Role>>
Transaction Endorser

<<Role>>
Block Endorser

<<Role>>
Investee

<<Role>>
Investor

<<Role>>
Contractor

<<Role>>
Oracle

Figure 5. The initial generic blockchain role type model.

Transaction Proposer is responsible for proposing transactions. Transaction Endorser
is responsible for endorsing the proposed transactions. Block Proposer is responsible for
creating and proposing blocks to the blockchain network. Block Endorser is responsible for
endorsing the proposed blocks. Blockchain Maintainer is responsible for maintaining and
replicating the blockchain data structure. Investor is responsible for making investments on
the blockchain network. Investee is responsible for accomplishing a task on behalf of their
investors and redistributing the corresponding gains proportionally to them. Contractor
is responsible for providing internal services to other participants on a contractual basis.
Oracle is responsible for providing external services and/or data to other participants.



Big Data Cogn. Comput. 2022, 6, 1 11 of 41

5.2. Group Types

In the blockchain systems context, we identified two categories of generic types of
blockchain groups applicable to any kind of blockchain system: Structural Groups and
Interest Groups. Structural Groups fulfill essential functions of the blockchain system,
and all agents are aware of the existence of these groups. We identified two types of
structural groups: Transaction Management and Block Management. Interest groups are
composed of agents increasing the quality of one or several properties of the blockchain
such as scalability, throughput, security, or reward variance. Interest groups are therefore
not structural (i.e., non-essential) for the overall blockchain, and their existence is not
necessarily known by all participants. In the following, we give the specification of each
group in terms of roles and their related behavioral primitives.

5.2.1. Structural Group: Transaction Management

This group is responsible for the way transactions in a blockchain network are pro-
cessed. It is composed of four roles: Transaction Proposer, Transaction Endorser, Blockchain
Maintainer and Contractor. Figure 6 represents the organizational structure and behaviors
of this group by visualizing and relating roles and behaviors (Note that, the interaction
protocols can be represented by any sort of interaction diagram (such as UML sequence,
Petri nets, finite state automaton and so on) in a concrete organization (i.e., blockchain
system) level). There are three high-level meaningful behaviors: Propose transaction, Validate
transaction and Execute transaction.

<<Group>>
Transaction Management

Create 
transaction

Endorse 
transaction

Propose 
transaction

Execute 
transaction

Validate 
transaction

<<Role>>
Transaction

Proposer

<<Role>>
Blockchain
Maintainer

<<Role>>
Transaction

Endorser

«includes»

«includes»

«includes»
«includes»

Store 
transaction

«includes»

Diffuse 
transaction

<<Role>>
Contractor

Figure 6. The organizational structure and behavior of the Transaction Management group.

The high-level nominal scenario of a Propose transaction is as follows:

1. Transaction Proposer aims to transfer a value and thus creates a transaction by
carefully choosing inputs, outputs, and a fee.

2. Transaction Proposer asks Transaction Endorser(s) to validate the transaction.
3. Transaction Endorser(s) decide(s) to endorse the transaction using a transac-

tion endorsement policy and send(s) the endorsement result(s) to the Transac-
tion Proposer.

4. Transaction Proposer proposes the transaction by diffusing it to Blockchain Main-
tainers.

The high-level nominal scenario of Validate transaction is as follows:



Big Data Cogn. Comput. 2022, 6, 1 12 of 41

1. Blockchain maintainer validates the transaction against the local copy of
the blockchain.

2. Blockchain maintainer stores the transaction in its memory pool if it is valid.
3. Blockchain maintainer diffuses the transaction by sending it to the neighbor-

ing Blockchain maintainers.

Execute transaction executes a transaction to invoke a Contractor behavior.

5.2.2. Structural Group: Block Management

This group is responsible for the way blocks in a blockchain network are processed.
Figure 7 represents the organization structure of this group by visualizing and relating roles
and behaviors. It is composed of three roles: Block Proposer, Block Endorser and Blockchain
Maintainer. The interactions shown in this figure covers the principal aspects such as
transaction selection, block creation, block endorsement, block proposal, block diffusion,
block validation and block appending that relate agents through their roles.

<<Group>>
Block Management

Propose 
block

Append 
block

Select 
transactions

Validate
block

<<Role>>
Block

Proposer

<<Role>>
Block

Endorser

<<Role>>
Blockchain
Maintainer

Create block

«includes»

«includes» «includes»

«includes»

«includes»

Endorse 
block

«includes»

Diffuse
block

Figure 7. The organizational structure and behaviors of the Block Management group.

The high-level nominal scenario of the Propose block is as follows:

1. Block Proposer selects transactions from Blockchain Maintainer using a selec-
tion strategy.

2. Block Proposer tries to create a block using the selection transactions.
3. Block endorser(s) decide(s) to endorse a confirmed block (i.e., a block that is

already in the blockchain) as the parent block of the new block using a block
endorsement policy.

4. Block Proposer proposes the block by diffusing it to Blockchain maintainers.

The high-level nominal scenario of the Validate block is as follows:

1. Blockchain maintainer validates the block against its local copy of the blockchain.
2. If the block is valid, Blockchain maintainer either

(a) appends the block to its blockchain if its parent is also in the blockchain
(b) or (if it is an orphan) stores the block in its memory pool.

3. Blockchain maintainer diffuses the block by sending it to the neighboring
Blockchain maintainers.



Big Data Cogn. Comput. 2022, 6, 1 13 of 41

5.2.3. Interest Group: Pool

This group is responsible for bringing together investors and investees on a blockchain
system. It is composed of two roles: Investor and Investee. Figure 8 represents the organiza-
tional structure of this group by visualizing and relating roles and behaviors. There are
three high-level meaningful behaviors: Invest, Withdraw and Redistribute.

<<Group>>
Pool

Invest

Withdraw 
investment

<<Role>>
Investor

<<Role>>
Investee

Specify an 
investment

«includes»

Redistribute 
reward

Figure 8. The organizational structure and behavior of the Pool group.

The high-level main success scenario of Invest is as follows:

1. Investor specifies an investment (i.e., an investee and an amount of invest-
ment) based on its incentives.

2. Investor makes its investment.
3. Investor regularly receives the redistributed rewards.
4. At any time, Investor can decide to withdraw either a part of or all of

its investment.

Withdraw sends the withdrawal request to the Investee; this request might be a transac-
tion or an asynchronous message.

The Redistribute behavior sends transactions to the relevant investors rewarding them
proportionally to their contribution.

5.2.4. Interest Group: Decentralized Application (DApp)

This group is responsible for any kind of user-defined transactional decentralized
application (DApp) realized on the blockchain system (see Section 2.3). It is composed
of user-defined roles, where at least one role should be Contractor. Figure 9 represents the
organizational structure of a DApp by visualizing relating roles and behaviors.

<<Group>>
A Decentralised Application

DApp 
Behavior 4

<<Role>>
User-defined

Role

<<Role>>
Contractor

DApp 
Behavior 1

«includes»

DApp
Behavior 3

«includes»

<<Role>>
Oracle

DApp 
Behavoir 2

Figure 9. The organizational structure and behavior of a user-defined Decentralized Application
(DApp) group.



Big Data Cogn. Comput. 2022, 6, 1 14 of 41

In a Decentralized Application group, at least one role should be Contractor. A DApp
may or may not interact with one or more Oracle.

5.3. Management of the Groups

As we will see in the Section 6, depending on the considered blockchain system, the
membership of the different groups can be managed in two main ways:

• (1) explicit groups where the agents need to satisfy some explicitly well-defined criteria
to enter, and

• (2) implicit groups where agents can enter without any check.

Explicit groups may be in two forms: either they have (1) an agent playing the Group
Manager role (see Figure 10) who is responsible for checking the conformity of agents to
the specification of the structure and roles of the group and, authorizes or denies their
entry into the group [55], or (2) the specification of the structure and roles of the group are
immutably defined on the blockchain (i.e., shared securely with everyone) and the agents
can infer whether they can enter into the group or not. Implicit groups’ specifications are
not explicitly defined, and consequently agents form such groups in an emergent manner.
In other words, the specifications of those groups are implicitly implemented inside each
agent, and consequently anyone can join or leave in the way they see fit.

<<Role>>
Group Manager

Figure 10. The Group Manager role.

The agents are aware of the explicit groups (see Section 5.2). This means that the
agents are aware of the other members in these groups and thus can cooperate directly with
each other. This also means that there are clear specifications about how to behave, join
and/or leave these groups (i.e., the agents can reason about these groups). However, it is
not the case for implicit groups. In these groups, the agents are not necessarily aware of
the other members and thus by default can only cooperate indirectly with each other.

5.4. Roles in Detail

Using the linguistic analysis technique (In this technique, the nouns, and noun phrases
in textual descriptions of a domain are identified and considered as candidate conceptual
classes and/or attributes) [62] on the group descriptions, in this section we elaborate the
role types by identifying their attributes and behavioral primitives for blockchain systems
(Figure 11). Here, it should be noted that there can be several underlying possible strategies
associated with each behavioral primitive.

△ selectTransactions() : Transaction[]△ selectTransactions() : Transaction[]
△ createBlock(Block, Transaction[]) : Block△ createBlock(Block, Transaction[]) : Block
← propose(Block)← propose(Block)

<<Role>>
Block Proposer

△ createTransaction(Payload,Receiver) : Transaction△ createTransaction(Payload,Receiver) : Transaction
← propose(Transaction)← propose(Transaction)

- wallet

<<Role>>
Transaction Proposer

△ validate(Transaction)△ validate(Transaction)
△ store(Transaction)△ store(Transaction)
△ validate(Block)△ validate(Block)
△ append(Block)△ append(Block)
△ execute(Transaction)△ execute(Transaction)

- blockchain
- memory pool

<<Role>>
Blockchain Maintainer

△ endorse(Transaction)△ endorse(Transaction)

- transactionEndorsementPolicy

<<Role>>
Transaction Endorser

△ endorse(Block)△ endorse(Block)

- blockEndorsementPolicy

<<Role>>
Block Endorser

△ redistribute(Amount, Investor)△ redistribute(Amount, Investor)

- investors

<<Role>>
Investee

△ specifyInvestment() : Amount, Investee△ specifyInvestment() : Amount, Investee
△ invest(Amount, Investee)△ invest(Amount, Investee)
△ withdraw(Amount, Investee)△ withdraw(Amount, Investee)

- incentives

<<Role>>
Investor △ contractBehavior1()△ contractBehavior1()

…
△ contractBehaviorN()△ contractBehaviorN()

- properties

<<Role>>
Contractor

△ authorize()△ authorize()

- groupSpecification

<<Role>>
Group Manager

△ oracleBehavior1()△ oracleBehavior1()
…
△ oracleBehaviorN()△ oracleBehaviorN()

<<Role>>
Oracle

Figure 11. The roles and their corresponding attributes and behaviors for blockchain systems.



Big Data Cogn. Comput. 2022, 6, 1 15 of 41

Transaction Proposer. When an agent aims to transfer a message, whether it is a
financial amount, a new smart contract or simply data, it uses createTransaction(Payload,
Receiver) to create a transaction by carefully choosing the payload, output, and a fee,
and then broadcast it using propose(Transaction). Typically, a simple transaction references
previous transaction outputs as new transaction inputs and dedicates all input values to
new outputs. Validating the correctness of these inputs and outputs against the blockchain
falls into the responsibilities of the agent before diffusing its transaction.

Transaction Endorser. When an agent receives a transaction proposal, that is a transac-
tion not already validated, it uses endorse(Transaction) in order to vouch for the transaction.

Blockchain Maintainer. When an agent aims to maintain a blockchain, upon receiv-
ing a block, it is responsible for carefully validating it, as well as the embedded transactions,
using validate(Block) and validate(Transaction) respectively. Valid transactions are stored
in the memory pool of the agent using store(Transaction). Here, there is no uncertainty
since everything is crystal clear in both the blockchain and the memory pool. If there
is some information missing, the agent simply waits for their arrival. Upon validation,
blocks are appended to the local blockchain using append(Block). Valid blocks and trans-
actions are diffused to the network to propagate the information using diffuse(Block) and
diffuse(Transaction) respectively (note that the diffuse behaviors are available to every role
and are therefore not explicitly shown in our model). When an agent receives a transaction
concerning a smart contract execution, it uses its execute(Transaction) behavior. Through the
getUnconfirmedTransactions() other roles can request the pending transactions that are store
in the Blockchain Maintainer’s memory pool.

Block Proposer. When an agent aims to create blocks, it has three consecutive behav-
iors. The agent first uses selectTransactions() to carefully choose, from its memory pool, a
set of unconfirmed transactions which is sufficient to fill a block while maximizing the
total transaction fee. The agent then starts createBlock(Block, Transaction[]) for creating a
new block h + 1 which is linked to the last known head block h in the main chain using a
dedicated consensus algorithm. Upon successful creation, the agent uses propose(Block) to
immediately broadcast it to the blockchain network.

Block Endorser. When an agent receives one or several block proposals for the same
blockchain height (see Section 2.1), it uses endorse(Block) to choose one of them.

Investor. When an agent aims to increase its reward from the creation of blocks or
invest in any entity/service of its choice, it uses specifyInvestment() to define the amount
and target of the investment. The actual investment is done through the invest(Amount,
Investee) behavior to carefully make an investment by taking into account its budget and the
estimated return of its investment. If an investor wants to get part or all of its investment
back, it can do so by using withdraw(Amount, Investee).

Investee. An agent who is invested in by others uses redistribute(Amount, Investor) for
carefully redistributing the obtained rewards to its investors on time.

Contractor. An agent implementing contractual behaviors will make use of its
potentially many contractBehavior() to implement and provide a given functionality on
the blockchain.

Oracle. An agent bridging the blockchain system with external systems (i.e., Web
services, other blockchain, etc. . . ) will expose possibly many oracleBehavior() to provide the
necessary communication medium so that other agents may exchange information with
outside sources.

5.5. Interactions

Interactions are the means by which different roles exchange information or resources.
The way roles interact in a system (i.e., the way the interactions are realized) may have
significant consequences on their behaviors. In the following, we identify and describe
the possible interaction types found in blockchain systems in terms of messaging where a
sending actor/object sends a message to a receiver actor/object and relies on that actor and
its supporting infrastructure to then select and run some appropriate behavior.



Big Data Cogn. Comput. 2022, 6, 1 16 of 41

• Synchronous messaging occurs between roles that are communicating through the same
blockchain network (Figure 12a). Messages are delivered to the receiver and the sender’s
process is blocked till the receiver’s process completes.

• Asynchronous messaging occurs between roles that communicate through the same
blockchain network (Figure 12b). The message is sent to a queue where it is stored
until the receiving role requests and then processes it. Meanwhile, the sender’s process
is not blocked.

• Tamper-resistant messaging relies on a blackboard communication scheme, using
the replicated blockchain as a persistent medium (Figure 12c). It is a kind of asyn-
chronous messaging in which the sender publishes its message in the tamper-resistant
replicated blockchain.

Figure 12. The interactions type for blockchain systems.

The generic interaction protocols given in Section 5.2 can be implemented in a concrete
blockchain system by using the interaction formats given in this section. Different concrete
realizations can use different interaction types depending on which agent plays which role.

5.6. Agent Types

We identified the following different types of agents that may exist in blockchain
systems based on the agent definition given in Section 4.2: Node and Smart Contract
(Figure 13).

Node agents are peers in the blockchain network that are deployed on a computer
as a stand-alone software. They can communicate with node agents using synchronous,
asynchronous and/or tamper-resistant messaging. However, they can only communicate with
smart contract agents using synchronous or tamper-resistant messaging (Figure 13). Node
agents take on responsibility such as maintenance, security, and dynamics of the blockchain
system through the main generic roles : Transaction Proposer, Transaction Endorser, Block
Proposer, Block Endorser, Blockchain Maintainer, Investee, Investor and Oracle. They
ensure that the system is up and running and actively contribute to its main functions.

<<Agent>>
Node

<<Agent>>
Smart Contract

synchronous / tamper-resistant

synchronoussynchronous / asynchronous / tamper-resistant

Figure 13. The agents for blockchain systems and their interaction models.

Smart Contract agents are immutable programs that are deployed on a blockchain
data structure. Smart contract agents are not aware of their environment and are not
able to observe it directly. Their communication scheme is more restricted as they can
only communicate reactively through Synchronous or Tamper-resistant messaging with other
agents. They can only have reactive behaviors that are triggered by other agents. Smart
Contract agents only play Contractor, Group Manager and Investee roles. Through the
Contractor role, they can add functionalities to the blockchain system.



Big Data Cogn. Comput. 2022, 6, 1 17 of 41

6. Case Studies

In this section, based on the roles and their corresponding nominal behaviors given
in Section 5, we present how our generic model is able to represent the four differ-
ent key blockchain technologies to date (i.e., Bitcoin, Ethereum, Tendermint and Hy-
perledger Fabric). For each case study, we first give a specification of the system and
then its organizational model. An example simulation implementation for the Bitcoin
and Tendermint case studies is done using the MaDKit multi-agent platform (MaDKit,
https://www.madkit.net, accessed on 13 September 2021) [55] and is also available pub-
licly (AGR4BS, https://gite.lirmm.fr/fmichel/agr4bs, accessed on 1 September 2021).

6.1. Bitcoin

Bitcoin was created in 2008 as a peer to peer electronic cash system [1]. In other words,
it is a store of value or “digital gold”. Bitcoin is an open and permissionless Proof-of-Work
(PoW) based blockchain system. Bitcoin is revolutionary since it is the first blockchain
system used globally. It provides a scripting language that allows its user to define scripts
that are executing when some pre-defined conditions are met [63]. However, this language
lacks expressively for hosting decentralized applications or complex services.

6.1.1. System Overview

There are mainly four types of entities in a Bitcoin blockchain system: users, miners,
mining hardware and mining pools.

A user creates transactions with a set of inputs and outputs, as well as a fee to
incentivize miners to process it. Then, it signs the transaction by itself (to endorse that the
transaction is well-formed) and proposes the signed transaction to the blockchain system
by relaying it to its neighbors. When a user receives a proposed transaction from a neighbor,
it first validates it against its local blockchain replica. If that transaction is valid, the user
then adds it to the transactions memory pool and relays it to its own neighbors.

Miners are in charge of confirming the transactions proposed by users by organizing
them as blocks. In return, they collect a static block reward and the totality of the fees of the
selected transactions. For creating a new block, a miner first needs to select a head block as
the valid head block to append its new one (i.e., adding its hash inside its new block). This
means choosing the head block of the longest chain or randomly among those of equal
length (i.e., the longest chain rule). Then it selects a set of unconfirmed transactions from
its memory pool. Then the miner tries to solve a very hard cryptographic puzzle (only in a
brute force manner) with a given difficulty using a dedicated mining hardware. The PoW
serves several purposes: (1) it protects the network against sybil attackswhere a malicious
participant creates many identities in order to influence the consensus mechanism. (2) it
provides an election mechanism where the first miner solving the PoW is the de facto
leader for the current height, and (3) it controls the growth rate of the blockchain by
carefully setting the puzzle complexity to minimize the frequency of forks that are harmful
for the blockchain. Every 2016 blocks, the difficulty is recomputed to match a target of
approximately 10 minutes of mining required per block), requires spending a significant
amount of energy and computational power to generate a desired hash value for the block.
Upon success, the miner signs its block and finally proposes it to the whole blockchain
system. Each participant receiving the proposed block validates it, appends it to the local
blockchain, and relays it to its neighbors.

Mining hardware are dedicated hardware for hashing, mostly Application-Specific
Integrated Circuits (ASICs) as of today. Miners must carefully weigh the costs of investing
in mining hardware. A simple solution is comparing the purchase price and operating
expenses (power, maintenance, rent, and so on), converted into BTCs, to the net mining
returns in BTCs at the end of the machine’s life [64].

Another investment a miner can do to increase its chance of earning rewards is to
join a mining pool. In a mining pool, miners mutualize their computing power to reduce
the reward variance at a very small cost called the mining pool fee. There are basically

https://www.madkit.net
https://www.madkit.net
https://gite.lirmm.fr/fmichel/agr4bs


Big Data Cogn. Comput. 2022, 6, 1 18 of 41

two types of mining pools: centralized and decentralized. In the centralized setting, a
mining pool leader distributes cryptographic workload among the pool members and
collects the resulting block. The leader then shares the reward according to the distribution
protocol of the pool [65]. In the decentralized setting, a smart contract of another blockchain
system is used to regulate the redistribution of block rewards (due to the fact that Bitcoin
currently does not support smart contracts). For example, in the P2POOL (P2POOL,
http://p2pool.in/, accessed on 5 March 2021) mining pool, a side blockchain system is
used for every contribution of its participants, and in SmartPool [66] an Ethereum smart
contract is used to regulate the pool rewarding mechanism.

6.1.2. Organizational Model

Using the aforementioned generic model (Section 5), Bitcoin-like systems can be
modeled as follows (Figure 14). We model users as Node agents (i.e., BTC User) that are
playing the roles Transaction Proposer, Blockchain Maintainer and Transaction Endorser, the
latter one being a dummy transaction endorsement always returning true since the agent is
signing its own transaction. Lightweight users (i.e., BTC Light User), on the other hand,
do not need to maintain a local blockchain and thus are modeled as Node agents that are
playing the roles Transaction Proposer and Transaction Endorser. Miners are modeled as
agents (i.e., BTC Miner) that are playing the roles Blockchain Maintainer, Block Proposer and
Block Endorser where Block Endorser uses the longest chain rule as a block endorsement
policy. However, there is no explicitly defined Block Management group that miners belong
to. Additionally, miners can also play both Investor and Investee roles to invest in themselves
to increase their chances of succeeding in creating and proposing blocks. Finally, we model
mining pools as Block Management groups where miners collaboratively try to propose
blocks and also as Pool groups where miners are Investors and leaders are Investees.

Bitcoin
BTC

Centralized Mining Pool

<<Role>>

Transaction Proposer

<<Role>>

Blockchain Maintainer

<<Role>>

Transaction Endorser

<<Role>>

Block Proposer

<<Role>>

Investor

<<Role>>

Investee

<<Role>>

Block Endorser

BTC

Mining Pool Leader

<<Agent>>

Node

<<Group>>

Block Management

<<Organization>>

Blockchain Organization

plays plays plays plays

has

is a

is a

is a
is a

BTC

Miner

has

is a

<<Role>>

Group Manager

<<Group>>

Pool

is a

BTC

Decentralized Mining Pool
<<Agent>>

Smart Contract

BTC

Mining Pool Contract

is a is a

is aBTC

Light User

BTC

User

Figure 14. An organizational model of Bitcoin-like systems.

Figure 15a,b illustrate concrete realizations of the propose transaction and the propose
block behaviors respectively by showing the interactions between roles as sequence dia-
grams. The propose transaction behavior involves playing Transaction Proposer, Transaction
Endorser and Blockchain Maintainer as defined in Section 5.2.1. In Bitcoin, these roles are
played by the BTC User and BTC Light User agents, so that all interactions for proposing a
transaction take place inside the proposing agent. The propose block behavior involves play-
ing Block Proposer, Blockchain Maintainer and Block Endorser as defined in Section 5.2.2. In
Bitcoin, all these roles are played by the BTC Miner agents, and consequently all interactions
for proposing a block take place inside the proposing agent.

A global representation of our Bitcoin model using the cheeseboard representation
is shown on Figure 16, additionally, Appendix A shows a full page view of the same
cheeseboard representation on Figure A1.

http://p2pool.in/
http://p2pool.in/


Big Data Cogn. Comput. 2022, 6, 1 19 of 41

(a) (b)

Figure 15. (a) Sequence diagram of a Bitcoin transaction proposal. (b) Sequence diagram of a Bitcoin
block proposal.

Figure 16. Cheeseboard diagram for an organizational view of a Bitcoin system.

6.2. Ethereum 2.0

Ethereum [6,10], created in 2015, pioneered the use of smart contracts [67] and decen-
tralized applications powered by a turing complete smart contract programming language
called Solidity. Ethereum is originally designed as a PoW based blockchain similar to
Bitcoin. However, since this initial design suffers from severe scaling issues shared by most
PoW blockchains, currently there is a transition to a new version (i.e., Ethereum 2.0 (Eth2,
https://ethereum.org/en/eth2/, accessed on 4 June 2021)) where Proof-of-Stake (PoS) and
sharding is used. In this study, we focus on Ethereum 2.0, which is simply referred to as

https://ethereum.org/en/eth2/
https://ethereum.org/en/eth2/


Big Data Cogn. Comput. 2022, 6, 1 20 of 41

Ethereum hereafter (However, it should be noted that the actual Ethereum 2.0 is still partly
undefined. Therefore, our view of the specifications might be subject to change).

6.2.1. System Overview

There are mainly five types of entities in an Ethereum blockchain system: shards,
users, validators, staking pools and delegators.

Sharding is essentially horizontally dividing the blockchain network into smaller
side chains, called shards [68], connected to a backbone chain, each capable of processing
transactions in parallel for achieving high throughput. For each shard, there is a dedicated
set of validators (i.e., shard committee) that are responsible for proposing blocks. The
assignments of validators to shards are handled by a specific smart contract, called the
deposit contract, that assigns validators to shards to minimize the risk of corruption. Each
validator can only be part of one shard committee (https://blog.ethereum.org/2020/03/27
/sharding-consensus/, accessed on 8 March 2021) at a time. In Ethereum, sharding is done
as follows. There is a backbone chain, called the Beacon chain, that holds all the staking
information and certificates, and there are 64 shards created from the beacon chain that are
handling independent set of transactions in parallel.

Ethereum users are very similar to those of Bitcoin (see Section 6.1). They create, sign
and propose transactions, validate the diffused data, and maintain their local blockchains.
The key difference is that Ethereum users can invoke smart contracts.

Validators are active participants of the consensus mechanism who have staked or
locked enough amount of coins (by the time of writing this article, it is 32 ETH) in a
deposit smart contract. Periodically (roughly every 12 s), a set of validators is chosen
to be part of a shard committee and a leader among them is elected with an election
frequency proportional to their staked coins (i.e., Proof-of-Stake). The leader selects a
set of unconfirmed transactions, gathers them in a block, and proposes that block to
the committee through a Byzantine Fault Tolerance (BFT) consensus protocol. The other
members of the committee vote in favor or against the block proposal of the leader. If a
consensus is reached, that block is diffused to the blockchain system to be appended to
the local blockchains. The proposer of the accepted block is rewarded through the block
reward as well as the transaction fees.

Participants who do not have enough coins to be validators can mutualize their stakes
by delegating them in staking pools. If the delegated stakes cross the required threshold,
the manager of the staking pool can act as a validator and thus can participate in the
block creation process. Like in Bitcoin (see Section 6.1.1), there are basically two types of
staking pools: centralized and decentralized. In a centralized staking pool, the participants
send their investments to a participant (i.e., an exchange) that will stake it on the main
blockchain (i.e., beacon chain) to become a validator. In contrast, in a decentralized staking
pool, the participants send their investments to the staking pool smart contract. This smart
contract will then make those stakes available to node agents that are willing to contribute.

6.2.2. Organizational Model

Figure 17 presents the organizational structure of Ethereum.We model users similarly
to Bitcoin users as node agents (i.e., ETH User) playing the roles Transaction Proposer,
Blockchain Maintainer and Transaction Endorser. Lightweight users (i.e., ETH Light User),
on the other hand, do not need to maintain a local blockchain and thus are modeled as
Node agents playing the roles Transaction Proposer and Transaction Endorser. Validators
are modeled as Node agents (i.e., ETH Validator) playing the roles Blockchain Maintainer,
Block Proposer and Block Endorser where Block Endorser uses the 2 f

3 rule (A 2 f
3 majority of

committee members must endorse (i.e., vote for) the proposed block so that it is considered
endorsed and may be broadcast to the rest of the network) as a block endorsement policy.
Additionally, validators can also play both Investor and Investee roles to increase their
chance to enter into the committee. We model committees as Block Management groups
(i.e., ETH Committee). Besides, we model delegators as Node agents (i.e., ETH Delegator)

https://blog.ethereum.org/2020/03/27/sharding-consensus/
https://blog.ethereum.org/2020/03/27/sharding-consensus/


Big Data Cogn. Comput. 2022, 6, 1 21 of 41

playing Blockchain Maintainer and Investor, and that belongs to a staking pool (i.e., ETH
Staking Pool) modeled as a Pool group.

<<Role>>

Transaction Proposer

<<Role>>

Blockchain Maintainer

<<Role>>

Transaction Endorser

<<Group>>

Pool

<<Role>>

Block Proposer

<<Role>>

Investor

<<Role>>

Investee

<<Role>>

Block Endorser

<<Organization>>

Blockchain Organization

<<Agent>>

Node

plays plays plays
plays

<<Agent>>

Smart Contract

plays

has

is a

64

is a is a

is a

<<Group>>

Block Management

is ais ais a is a

has

<<Role>>

Group Manager

has

ETH

Light User
ETH

User
ETH

Delegator

plays

ETH

Deposit Contract

<<Role>>

Contractor

ETH

Validator

ETH

Staking Pool 

Contract

ETH

Staking Pool
ETH

Committee

ETH

Shard

Ethereum
2.0

Figure 17. An organizational model of the Ethereum 2.0 blockchain system.

Figure 18 illustrates the concrete realization of invest, redistribute and withdraw behav-
iors by showing the interactions between roles as a sequence diagram. These behaviors
involve playing Investor, Investee and User defined roles as defined in Section 5.2.3. In
Ethereum, these roles are played by ETH Delegator and ETH Staking Pool Contract agents.

Figure 18. Sequence diagram of invest, redistribute and withdraw behaviors (Figure 8) for an Ethereum
staking pool.

A global representation of our Ethereum model using the cheeseboard representation
is shown in Figure 19. additionally, Appendix B shows a full page view of the same
cheeseboard representation on Figure A2.



Big Data Cogn. Comput. 2022, 6, 1 22 of 41

Figure 19. Cheeseboard diagram for an organizational view of an Ethereum 2.0 system.

6.3. Tendermint/Cosmos

Tendermint [28] is an open Delegated Proof-of-Stake (DPoS) based blockchain protocol
on which the Cosmos-like blockchain systems [69] are based. Tendermint currently is a
general purpose blockchain able to host any type of application through smart contracts
written in a variety of supported programming languages; the main example of such an
application is the Cosmos Network (https://cosmos.network/ accessed on 13 September
2021) connecting services from many different blockchains in order to create what is refered
to as “the internet of blockchains”.

6.3.1. System Overview

In Tendermint, the consensus mechanism is based on a BFT algorithm where the
committee leader is elected determistically through a round-robin fashion proportionally
to its voting power. In fact, the whole Tendermint protocol is entirely deterministic and
allows for extensive research. A particularity of Tendermint is the clear separation of the
application layer and the core layer, allowing any programming language to be used to
build decentralized applications.

There are mainly three types of entity in a Tendermint Blockchain System: Users,
Delegators and Validators.

Validators are active participants, purposely staking currency to be part of the con-
sensus mechanism of Tendermint (i.e., BFT). This consensus algorithm evolves in epochs,
rounds and phases. At each epoch there are several rounds for block creation where a set
of validators is selected as a committee to produce blocks. At each round, a committee
member is selected as the proposer to propose a block and then the round evolves in
three phases: propose, prevote and precommit. In the propose phase, the proposer selects
a set of unconfirmed transactions, bundles them into a block and proposes it to the other
committee members. In the prevote phase, the committee members check the proposal and
decide whether to endorse such proposal or not. In the last phase (i.e., precommit), if a
committee member receives a sufficient number of proposals for the same block, then it
can commit to it. Finally, if a committee member receives a sufficient number of votes for
the same block, it can decide for it (append it to its local chain) and be sure that no other
participant will decide on a different block, and that all the other committee members will
decide on the same block as his. Once a committee member decides on a block, it also
diffuses the decided block outside of the committee.

Delegators are passive participants willing to be part of the consensus mechanism,
but unable to do so reliably. Therefore, they delegate their stakes to existing Validators in
exchange for a reward proportional to their contribution.

Users in Tendermint follow the same principle as for Ethereum (see Section 6.2).
They are not involved in the consensus mechanism in any other way than by proposing
transactions. Users create a transaction, sign and propose them to the network. When a
new unconfirmed transaction is received by a User it first needs to validate it, if it is valid
the User will proceed in storing the valid unconfirmed transaction in its memory pool

https://cosmos.network/


Big Data Cogn. Comput. 2022, 6, 1 23 of 41

before broadcasting it to its peers. When a new block is received, Users also validate it with
respect to their current local blockchain. If the new block is considered valid, they will
append it to their local replica before broadcasting the new block to their peers. Similarly
to Ethereum, Tendermint Users can invoke smart contracts.

6.3.2. Organizational Model

Figure 20 presents the organizational structure of Tendermint. We model users sim-
ilarly to Ethereum users as node agents (i.e., TDM User) playing the roles Transaction
Proposer, Blockchain Maintainer and Transaction Endorser. A User is part of the Transaction
Management group and makes use of the following roles: Transaction Proposer, Blockchain
Maintainer and Transaction Endorser. Delegators (i.e., TDM Validator) play both Blockchain
Maintainer and Blockchain Investor. Finally, Validators (i.e., TDM Validator) play the roles
Blockchain Maintainer, Block Proposer and Investee. Committees are also modeled as Block
Management groups (i.e., TDM Committee).

<<Role>>

Transaction Proposer

<<Role>>

Blockchain Maintainer

<<Role>>

Transaction Endorser

<<Role>>

Block Proposer

<<Role>>

Investor

<<Role>>

Investee

<<Role>>

Block Endorser

<<Agent>>

Node

<<Organization>>

Blockchain Organization

<<Group>>

Block Management

has

has

is a is a

is a is a is a

plays plays plays

TDM

User

TDM

Validator

TDM

Delegator

TDM

Committee
Tendermint

Figure 20. The organizational model of Tendermint-like systems.

Figure 21 illustrates the block proposition process in Tendermint. When a validator
playing Block Proposer is elected committee leader, it may construct a block proposal by
fetching and selecting the pending unconfirmed transactions through the selectTransac-
tions() behavior. The selected transactions are then bundled into a block by using the
createBlock(Block, Transaction[]) behavior. The BFT Consensus can now take place between
the leader and other committee members. First, the leader sends its proposal to the com-
mittee. Second, each committee member as Block Endorser votes or not for the proposal and
forwards its decision to every other member using endorse(Block). Finally, the commit step
takes place where each committee member as a Blockchain Maintainer applies the consensus
result to its local blockchain using the append(Block) behavior and then diffuses it.

A global representation of our Tendermint model using the cheeseboard representation
is shown in Figure 22. additionally, Appendix C shows a full page view of the same
cheeseboard representation on Figure A3.



Big Data Cogn. Comput. 2022, 6, 1 24 of 41

Figure 21. Sequence diagram of the propose block behavior (Figure 7) in Tendermint.

Figure 22. Cheeseboard diagram for an organizational view of a Tendermint system.

6.4. Hyperledger Fabric

Hyperledger Fabric [8] is a permissioned blockchain system intended to hold appli-
cations for the industrial ecosystem where the participants trust and know each other.
Given the trusted nature of the participants’ interactions, Hyperledger Fabric uses a
PBFT consensus realized by a trusted set of entities, therefore sacrificing decentraliza-
tion for performance.

6.4.1. System Overview

A Hyperledger Fabric system is basically composed of channels, organizations and
ordering services.

Channels are the main communication mechanisms by which participants of Hyper-
ledger Fabric system can communicate. Each channel is dedicated to maintaining a single
independent ledger (i.e., blockchain). Every transaction and block are diffused through
the channel, given that the issuer is identified and authorized by one of the organizations
operating on that channel.



Big Data Cogn. Comput. 2022, 6, 1 25 of 41

A Hyperledger Fabric organization is an abstract entity, usually representing a real-
world organization such as a company. An organization is composed of a Membership
Service Provider (MSP), applications, peers and orderers.

An MSP defines the rights of members to act on a given channel and perform specific
actions through a set of cryptographic signatures and certificates, therefore possibly aliasing
the notion of identity with roles.

Peers store and maintain copies of blockchain(s) and chaincodes (i.e., smart contracts).
Peers also endorse newly created transactions according to an endorsement policy to allow
them to move toward an inclusion in the blockchain. To do so, peers simulate the execution
of proposed transactions, sign them and return them back to the applications.

Applications (In Hyperledger Fabric documentation, application, client and user are
used interchangeably, but since in the architectural model the concept is called "application"
and we use it as they defined it) are entities that interact with peers to access a blockchain
and smart contracts (i.e., chaincode). Applications and smart contracts together form a
decentralized application. When an application wants to interact with a smart contract, it
creates a dedicated transaction and then asks the peers to endorse this transaction. Upon
endorsement, the applications diffuses its transaction to the ordering service (i.e., orderers
of the corresponding channel).

Orderers are responsible for ordering the endorsed unconfirmed transactions and
putting them into a block. All orderers operating on the same channel, regardless of being
member of different organizations, form the ordering service for that channel. The orderers
(i.e., ordering service) rely on deterministic consensus algorithms where the proposed
block is guaranteed to be final and correct (e.g., BFT or single trusted authority). However,
they do not use a predefined consensus algorithm and thus the block creation process can
be different from one system to another.

6.4.2. Organizational Model

Figure 23 presents the organizational structure of Hyperledger Fabric.We model
Hyperledger Fabric (HF) Organizations as Transaction Management groups and HF Ordering
Services as Block Management ones. We model Membership Service Providers (MSP) as
Node agents playing the Group Manager role. We model applications as Node agents playing
only the Transaction Proposer role. Peers, on the other hand, are modeled as Node agents
playing both Blockchain Maintainer and Transaction Endorser. We model orderers as Node
agents that play Block Proposer and Block Endorser roles. Chaincodes, however, are modeled
as Smart Contract agents that can play Contractor role. Even though it is not modeled
explicitly in Hyperledger Fabric, applications and chaincodes together belong to user
defined DApp groups.

<<Role>>
Transaction Proposer

<<Role>>
Blockchain Maintainer

<<Role>>
Transaction Endorser

<<Organization>>
Blockchain Organization

<<Role>>
Block Proposer

<<Role>>
Block Endorser

<<Group>>
Block Management

<<Agent>>
Node

<<Group>>
Transaction Management

plays plays

1

1..n1..n

plays

is a is a is a is a

is a

is a

hashashas

hashas

<<Agent>>
Smart Contract

is a

<<Role>>
Group Manager

plays

<<Role>>
Contractor

plays

HF
Orderer

HF
Channel

HF Ordering 
Service

Hyperledger
Fabric

HF
Organization

HF
Peer

HF
Chaincode

HF
MSP

<<Group>>
DApp

HF
Application

Figure 23. An organizational model of Hyperledger-like systems.



Big Data Cogn. Comput. 2022, 6, 1 26 of 41

Figure 24 illustrates the concrete realization of the propose transaction by showing the
interactions between roles as a sequence diagram. The propose transaction behavior involves
playing Transaction Proposer, Transaction Endorser, Blockchain Maintainer and Contractor as
defined in Section 5.2.1. In Hyperledger Fabric, these roles are played by HF Application,
HF Peer, HF Orderer and HF Chaincode agents, respectively, and consequently interactions
for proposing a transaction take place between several agents.

Figure 24. Sequence diagram of the propose transaction behavior (Figure 6) in Hyperledger Fabric.

A global representation of our Hyperledger Fabric model using the cheeseboard
representation is shown on Figure 25. additionally, Appendix D shows a full page view of
the same cheeseboard representation on Figure A4.

Figure 25. Cheeseboard diagram for an organizational view of a Hyperledger Fabric system.



Big Data Cogn. Comput. 2022, 6, 1 27 of 41

7. Modeling Attacks

In the previous section, we have shown the effectiveness of the AGR4BS model for
modeling various blockchain systems. In this section, we shed light on some possible
attacks on blockchain systems to illustrate how our model is able to model them at both
the agent and organizational level.

The growing interest for blockchain and cryptocurrencies incentivizes the exploration
and exploitation of attacks that may target different parts of the system. For instance, some
attacks target the network or the system itself [70,71] either through partitioning, DDOS
attacks or wormhole attacks. Some other attacks, such as the 51% attack, aim at acquiring
an overwhelming share of the production capacities in the system (e.g., computational
power in a PoW blockchain or stakes in a PoS blockchain). With such power, an attacker
or group of attackers can rewrite the blockchain as they wish, perform double spending
attacks or censor any entity of their choice. Several elaborated ways to achieve such a goal
are explored in [22,25], where the attacker builds an adversarial chain and makes use of the
Bitcoin fork rule to waste a significant part of the honest participant’s computational power.

Other attacks, such as [72], combine both attack vectors into one, building an ad-
versarial chain with the help of unknowing participants that were previously isolated
from the network through an eclipse attack. Different attack vectors also exist through
smart contracts/DApp bug exploitation. The most well-known example is the DAO attack
(https://blog.b9lab.com/the-dao-hack-in-eight-minutes-94919018692d last accessed on
6 July 2021), which led to the theft of 3.6 million Ethereum tokens. Most DApp are suscep-
tible to front-running attacks [73], where the attacker makes an unfair use of information
related to events that were not yet written on the blockchain (i.e., pending transactions in
a blockchain are essentially insight on future events). This list of attack vectors is by no
means exhaustive and only aims at covering the main events and concerns about current
blockchain systems, highlighting the fact that blockchain systems are vulnerable. The
figures associated with examples of attacks are purposely simplified and do not show every
role to emphasize the organizational impact of such an attack.

In the following subsections, we will show briefly how AGR4BS can also be used for
modeling three of the aforementioned attacks on blockchain systems.

7.1. Front Running

In this attack, the attacker continuously monitors the pending transactions and takes
advantage of the transaction selection/block creation process to front run another transac-
tion in a profitable manner. For instance, on a decentralized exchange the attacker might
see that a user intents to buy a massive amount of a given asset, and therefore expect for
the price to increase significantly. In such a situation, the attacker might try to front run
that transaction to buy some of the asset before the honest user and profit from the attack.
The attacker can do so either by issuing a transaction with a large fee, thus ensuring that
block creators will select it, or by being a block creator itself. This attack does not make use
of any bug or deviates from protocol in any way, it is only possible due to the fact that the
blockchain makes future events and intents known to every participant beforehand.

We model this attack with an attacker role deviating from Transaction Proposer as
showed in Figure 26. The attacker relies on the Blockchain Manager role to get current
information about pending transactions through the Monitor Memory Pool behavior. When
a profitable front-running scenario is found in the memory pool, the attacker creates a
front-running transaction and proposes it to the network using the deviant Propose Front
Transaction behavior.

https://blog.b9lab.com/the-dao-hack-in-eight-minutes-94919018692d


Big Data Cogn. Comput. 2022, 6, 1 28 of 41

<<Group>>
Front Running Attack

Propose Front 
Transaction

<<Role>>
Attacker

<<Role>>
Blockchain 
Maintainer

Monitor
Memory Pool

«includes»

<<Role>>
Transaction 

Proposer

«extends»

Propose 
Transaction

«extends»

Figure 26. The organizational structure of a transaction based front-running attack.

7.2. Eclipse Attack

In this attack [71], the attacker interposes itself between its victim(s) and the rest of
the system by partitioning the network. The attacker then controls what the victim(s) are
sending and receiving. An attacker might infect a network router or an agent directly
to control both the incoming and outgoing traffic. Victim agents are not aware that they
are infected and may receive different blocks and transactions than the rest of the system
depending on what the attacker wishes to communicate. The impact of such an attack could
range from increased propagation delay to the creation of adversarial chains, possibly
leading to double spending attempts. For example, in the case of the creation of an
adversarial chain in a PoW blockchain, the victims might be mining on an adversarial chain
built by the attacker without any way of knowing it, therefore contributing to the malicious
intent of the attacker while behaving correctly according to the protocol as described in [72].

The eclipse attack can be modeled using our generic model as shown in Figure 27.
We also show its organizational impact on the system on Figure 28. The victim’s view
of the blockchain system is controlled by a deviation of the Blockchain Maintainer role
from the attacker, which filters and diffuses only the data that it wishes its victims to see.
Similarly, any data received from victim agents will be filtered before being held or relayed
to the whole blockchain system. We model agents which are isolated as agents with the
Victim role, meaning that even though they believe to be connected to the whole blockchain
system, they are only connected to the attacker or possibly other victims. The Victim role
does not involve any behavioral deviation.

<<Group>>
Eclipse

Diffuse Data

<<Role>>
Attacker

<<Role>>
Victim

Filter Data

«includes»

<<Role>>
Group 

Manager

«extends»

Figure 27. The organizational structure of an eclipse attack.



Big Data Cogn. Comput. 2022, 6, 1 29 of 41

Figure 28. The cheeseboard transition diagram of an eclipse attack.

7.3. Wormhole Attack

In the wormhole attack, two or more attackers located at different points in the
network establish an overlay network to transfer information faster than on the main P2P
network. They do so through alteration/addition to the Propose Transaction and Propose
Block roles and their related behaviors. This attack aims at getting an unfair advantage
over other participants, relying solely on the longer propagation time of the P2P network.
Furthermore, the attackers may also choose to relay only relevant information according to
their criteria, such as highly valuable transactions or a new block proposal.

As shown in Figures 29 and 30, we model this attack through an Attacker role over-
loading the generic diffuse behavior. Every data received will be handled by the Filter
Data behavior to assess of its relevance for the attackers before being transmitted through
the wormhole using Diffuse Data through Wormhole. Figure 30 shows how the attackers
can create such wormhole to overcome a bad network topology. At any point in time, an
attacker might choose to include a new agent to the group. The attackers can do so since
they all extend the Group Manager role and can therefore expand their attack if it is deemed
necessary and profitable.

<<Group>>
Wormhole

Diffuse Data
through 

Wormhole

<<Role>>
Attacker

<<Role>>
Attacker

Diffuse Data

«includes»

<<Role>>
Group 

Manager

«extends»

Filter Data

«extends»

Figure 29. The organizational structure of a wormhole attack.



Big Data Cogn. Comput. 2022, 6, 1 30 of 41

Figure 30. The cheeseboard transition diagram of a wormhole attack.

8. Discussion

In this section, we first discuss the expressivity of AGR4BS followed by key differ-
ences between the blockchain systems that we modeled in Section 6 (Section 8.1). From
those differences we discuss the robustness and the vulnerabilities of blockchain systems
(Section 8.2). We follow with a discussion about robustness and resilience of blockchain
systems (Section 8.3). Finally, we conclude this section with a discussion about reliability
(Section 8.4).

8.1. Expressivity of AGR4BS

As discussed in Section 3, several frameworks are able to partially represent blockchain
systems. The generic model proposed in this study is compatible with the core characteris-
tics of blockchain systems (Section 2.5):

The distributed characteristic is expressed through many agents present in the system
which are required to execute a specific algorithm for both the blockchain and their indi-
vidual incentives. The social characteristic of blockchain systems are easily represented
through both inter- and intra-organization interactions. Each contributing agent is also
economically incentivized through the blockchain reward system, which encompasses the
economical nature of that environment. Finally, organizational modeling provides modu-
larity, thus allowing rapid development and adaptation of the model to new blockchain
designs. According to this, the case studies given in Section 6 show that our model provides
useful abstractions for defining different types of existing blockchain systems.

Consequently, AGR4BS can also be used to construct dedicated modular software
models (e.g., prototypes, simulation models and so on), allowing us to benchmark and
compare different types of blockchains based on common features through a generic
approach, with high component re-usability.

8.2. Organizational Differences of Blockchain Systems

In this subsection, we discuss the organizational differences of blockchain systems
based on the used abstractions, i.e., group, agent and role.

8.2.1. Group Differences

In Bitcoin (Section 6.1), both structural groups (i.e., Transaction Management and
Block Management) are implicit groups. The interest groups Overlay Network and Pool,



Big Data Cogn. Comput. 2022, 6, 1 31 of 41

on the other hand, are explicit groups. In Ethereum (Section 6.2), while the transaction
management group is implicit, the block management is explicit. The interest groups Pool
and Decentralized Application are explicit. In Tendermint (Section 6.3), the situation is
like in Ethereum. In Hyperledger Fabric (Section 6.4), on the other hand, all groups are
explicitly defined.

Entering into an explicit group is a complex process, since an agent has to be authorized
to enter (see Section 5.2). Our study shows that in different explicit blockchain groups, there
are different mechanisms for realizing such authorizations. In Hyperledger Fabric, the HF
Organization groups have an HF MSP agent playing Group Manager which is responsible for
authorizing agents. In Ethereum and Tendermint, on the other hand, the ETH Committee
group’s authorization logic is immutably defined on the blockchain and therefore has
no dedicated entry point. Furthermore, in Ethereum 2.0, structural functionalities and
therefore structural groups are managed by smart contract agents, which is a core difference
with other blockchains as the regulation mechanisms are an integral part of the system, not
one enforced by node agents or classical incentives.

As can be seen in Table 1, all interest groups are explicit. However, by merely looking
at this, it cannot be concluded that all interest groups are explicit. In fact, it is quite possible for
an interest group to be implicit (e.g., an attack group).

Finally, note that different agents might have different (and possibly wrong) views of
the same group. For instance, in the case of an Eclipse Attack (Section 7.2) even though the
attacker is creating an Interest Group, the victims still see it as the genuine Block Management
Group.

Table 1. Group differences of blockchain systems.

Groups
Systems BTC ETH TDM HF

Structural
Transaction Management Implicit Implicit Implicit Explicit

Block Management Implicit Explicit Explicit Explicit

Interest
Overlay Explicit Explicit Explicit N/A

Pool Explicit Explicit N/A N/A

DApp N/A Explicit Explicit Explicit

8.2.2. Agent Differences

Case studies also show that agents and roles are orchestrated in a different way in
different blockchain systems (see Figures 16, 19, 22 and 25). Consider, for instance, the
endorse transaction behavior involving the Transaction Proposer and Transaction Endorser
roles (Figure 6). While this behavior is implicitly realized by the same agent in Bitcoin
(Figure 15a), it is explicitly realized by several agents in Hyperledger Fabric (Figure 24).
Consider also, for instance, the endorse block behavior involving the Block Proposer and
the Block Endorser roles (Figure 6). While this behavior is implicitly realized by the same
agent in Bitcoin (Figure 15b), it is explicitly realized by several agents in Tendermint
(Figure 21).

8.2.3. Role Differences

Overall, not all generic role types are used and/or realized in every blockchain. While
Bitcoin (Figure 16), Ethereum (Figure 19) and Tendermint (Figure 22) use all of them, the
Investor and Investee roles are clearly irrelevant in Hyperledger Fabric (Figure 25). In
contrast, Hyperledger Fabric requires a specific implementation of endorsement mecha-
nisms for transactions while in both Bitcoin and Ethereum it serves no real purpose as
endorsements are always realized implicitly.



Big Data Cogn. Comput. 2022, 6, 1 32 of 41

8.3. Robustness and Resilience

Overall, looking at the blockchain systems discussed, it can be said that the very
essential group for a blockchain system is transaction management, since nearly all agents
play a role in it. Consequently, vulnerabilities in a transaction management group can
affect the whole blockchain system. However, except for Hyperledger Fabric, this group is
always implicitly defined.

As shown concretely by the case studies, AGR4BS allows us to see clearly the simi-
larities and differences between agents as well as blockchain systems. By identifying the
deviations of high-level behaviors of agents, it is possible to identify cross-cutting potential
high-level vulnerabilities of blockchain systems. The solutions found for these high-level
vulnerabilities might later be applied for all types of blockchains.

Regarding the resilience of existing groups, a clear emphasis is put on the block
management group in the existing literature for several obvious reasons. The block man-
agement group allows for significant rewards if taken over by malicious agents. This group
is also less reliant on other groups or the ledger than the transaction management one, and
therefore a more manageable target. However, there exist other less generic groups that
can allow for even greater reward, such as DApp and especially DeFI implementations.
But compromising those relies more on bug exploitation than on actual corruption, since
they are by definition replicated over the whole blockchain.

8.4. Reliability

In Section 5.1 we did not emphasize a core conceptual distinction regarding the
combination of roles and agents. When any given role is played by a Node agent, that
one has the possibility to deviate from its nominal behavior, which echoes to the trustless
paradigm of decentralized systems and, more specifically, to blockchain systems. On the
other hand, smart contracts are stored both immutably and transparently in the blockchain
data structure, and are deterministic by design. Therefore, when a functionality is required
in a blockchain system, it should always be implemented through smart contracts if
possible. The reason is that smart contracts bring trust in a trustless system through their
transparency and immutability, as well as being replicated and therefore decentralized.
While any functionality could technically be implemented in Node agents, they do have the
potential to purposely deviate from the nominal behavior. They are also subject to failures
and are not replicated by design. Node agents are therefore unreliable by opposition to
smart contracts.

9. Conclusions and Future Work

As of today, blockchain technology is used as a basis for a wide range of applications
ranging from mere cryptocurrencies to decentralized applications. However, we face
highly competitive and complex cases that have technical problems (e.g., data reliability,
confidentiality, archiving) which are being constantly reshaped by user (e.g., performance
(# of transactions/minute), fees), technology (e.g., consensus protocol, parameters, cost)
and regulatory (e.g., standards, laws, GDPR) requirements. Moreover, blockchain ap-
plications are intended to be deployed into various environments such as computers,
smartphones, vehicles, drones, IoT devices and so on. Furthermore, the blockchain ecosys-
tem is very active, dynamic and rich (e.g., Bitcoin, Ethereum, Tendermint, Hyperledger,
Sycomore). This defines a diverse and growing ecosystem wherein each blockchain solution
relies on common principles while having its own characteristics.

In this context, several approaches for representing blockchain systems have been
proposed, according to different modeling paradigms, to investigate different aspects of
blockchain systems. In these studies, the designed models are not intended to be generic,
since they focus on particular issues. The modeling is often done considering only one
particular variation of high-level details, such as the used consensus protocol, or only
one particular kind of blockchain (e.g., Bitcoin). Consequently, there is not a unified way
of representing blockchain systems which the blockchain community could benefit and



Big Data Cogn. Comput. 2022, 6, 1 33 of 41

capitalize on. Therefore, in this paper we argued that there is a need for a realistic and
highly flexible model able to represent a wide range of existing and future blockchain
systems that may have widely different architectures and objectives.

To this end, in this paper, after having introduced the necessary blockchain concepts
(Section 2) and the existing ways of modeling such systems (Section 3), we have made
our choice for an organizational model (Section 4) and proposed a generic organizational
model for blockchain systems, namely AGR4BS (Section 5), whose main purpose is to
provide a unification of existing blockchain implementations through a single model. As
far as we know, AGR4BS is the first organizational multi-agent blockchain model for
blockchain systems.

More notably, AGR4BS provides the necessary basic abstractions (allowing consensus
on fundamental terms) to dissect existing blockchain systems and serves as a blueprint for
exploring new alternative ones. In particular, we have shown how we used AGR4BS to
model different blockchain systems such as Bitcoin (Section 6.1), Ethereum (Section 6.2),
Tendermint (Section 6.3) and Hyperledger Fabric (Section 6.4), thus demonstrating the
genericity and adaptability of AGR4BS. Moreover, both the Bitcoin and Tendermint pro-
totype implementations are available at: https://gite.lirmm.fr/fmichel/agr4bs, accessed
on 14 December 2021 Furthermore, in Section 7, we highlighted a few vulnerabilities of
blockchain systems and their organizational consequences. Being able to represent di-
vergent behavior at both the system level and the agent level is mandatory to provide a
complete view of any kind of blockchain system. Lastly, in Section 8, we analyzed and
discussed on the expressivity of AGR4BS.

AGR4BS is intended to be a useful tool when considering the following:

• Instead of building a new framework with each new model (either dedicated to de-
signing a new blockchain system or analyzing an existing one), libraries of well-tested
and documented blockchain system models would allow researchers and industries
to more efficiently work on new solutions, capitalizing on previous modeling efforts.

• For finding the best fit for a particular blockchain application, the proposed model
would be used to model and compare its variations in several types of blockchain sys-
tems.

As a research roadmap using AGR4BS, we plan to analyze vulnerability potential at
several organizational levels (i.e., behavior, role, agent or group) and common to several
blockchain organizations. After this, we will inspect the impact of these vulnerabilities on
the organization itself through its structural properties, group performances and/or on
the functionalities provided on top of it. A second research topic would be agent-based
blockchain regulation, where a set of agents or meta-agents are in charge of regulating the
system’s hyperparameters. Such agents would be part of the same regulation organization
and take on specific roles to fulfill the organization’s goal. Those regulation mechanisms
could be targeted at different objectives ranging from pure optimization to the monitoring
and detection of unwanted behaviors.

Author Contributions: Conceptualization, H.R., Ö.G. and F.M.; methodology, H.R., Ö.G. and F.M.
software, H.R. and F.M.; validation, H.R., Ö.G. and F.M.; writing—original draft preparation, H.R.,
Ö.G. and F.M.; writing—review and editing, H.R., Ö.G. and F.M.; visualization, H.R. and Ö.G.;
supervision, Ö.G. and F.M.; project administration, Ö.G. and F.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

https://gite.lirmm.fr/fmichel/agr4bs


Big Data Cogn. Comput. 2022, 6, 1 34 of 41

Abbreviations
The following abbreviations are used in this manuscript:

BC Blockchain
PoW Proof of Work
PoS Proof of Stake
DPoS Delegated Proof of Stake
Tx Transaction
DApp Decentralized Application
DeFi Decentralized Finance
DAO Decentralized Autonomous Organization
DEX Decentralized EXchange
MAS Multi-Agent System
RL Reinforcement Learning
AGR Agent Group Role
AGR4BS Agent Group Role For Blockchain Systems



Big Data Cogn. Comput. 2022, 6, 1 35 of 41

Appendix A. Bitcoin

Figure A1. Large Cheeseboard diagram for an organizational view of a Bitcoin system.



Big Data Cogn. Comput. 2022, 6, 1 36 of 41

Appendix B. Ethereum

Figure A2. Large Cheeseboard diagram for an organizational view of an Ethereum 2.0 system.



Big Data Cogn. Comput. 2022, 6, 1 37 of 41

Appendix C. Tendermint

Figure A3. Large Cheeseboard diagram for an organizational view of a Tendermint system.



Big Data Cogn. Comput. 2022, 6, 1 38 of 41

Appendix D. Hyperledger Fabric

Figure A4. Large Cheeseboard diagram for an organizational view of a Hyperledger Fabric system.

References
1. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 14 December 2021).
2. Gürcan, Ö.; Del Pozzo, A.; Tucci-Piergiovanni, S. On the Bitcoin Limitations to Deliver Fairness to Users. In On the Move to

Meaningful Internet Systems. OTM 2017 Conferences; Panetto, H., Debruyne, C., Gaaloul, W., Papazoglou, M., Paschke, A., Ardagna,
C.A., Meersman, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 589–606.

3. Ioannidis, E.; Varsakelis, N.; Antoniou, I. Intelligent agents in co-evolving knowledge networks. Mathematics 2021, 9, 103.
[CrossRef]

4. Wang, W.; Hoang, D.T.; Hu, P.; Xiong, Z.; Niyato, D.; Wang, P.; Wen, Y.; Kim, D.I. A Survey on Consensus Mechanisms and
Mining Strategy Management in Blockchain Networks. IEEE Access 2019, 7, 22328–22370. [CrossRef]

5. Bano, S.; Sonnino, A.; Al-Bassam, M.; Azouvi, S.; McCorry, P.; Meiklejohn, S.; Danezis, G. SoK: Consensus in the Age of
Blockchains. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies; Association for Computing Machinery:
New York, NY, USA, 2019; pp. 183–198.

https://bitcoin.org/bitcoin.pdf
http://doi.org/10.3390/math9010103
http://dx.doi.org/10.1109/ACCESS.2019.2896108


Big Data Cogn. Comput. 2022, 6, 1 39 of 41

6. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. 2014. Available online: http://cryptochainuni.
com/wp-content/uploads/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf (accessed on
14 December 2021).

7. Goodman, L. Tezos—A Self-Amending Crypto-Ledger White Paper. 2014. Available online: https://www.tezos.com/static/
papers/whitepaper.pdf (accessed on 14 December 2021).

8. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

9. Buchman, E.; Kwon, J.; Milosevic, Z. The latest gossip on BFT consensus. arXiv 2018, arXiv:1807.04938.
10. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform; White Paper; 2014; pp. 1–36. Available

online: https://translatewhitepaper.com/wp-content/uploads/2021/04/EthereumOrijinal-ETH-English.pdf (accessed on
14 December 2021).

11. Cai, W.; Wang, Z.; Ernst, J.B.; Hong, Z.; Feng, C.; Leung, V.C.M. Decentralized Applications: The Blockchain-Empowered
Software System. IEEE Access 2018, 6, 53019–53033. [CrossRef]

12. Werner, S.M.; Perez, D.; Gudgeon, L.; Klages-Mundt, A.; Harz, D.; Knottenbelt, W.J. SoK: Decentralized Finance (DeFi). arXiv
2021, arXiv:cs.CR/2101.08778.

13. Lin, L.X.; Budish, E.; Cong, L.W.; He, Z.; Bergquist, J.H.; Panesir, M.S.; Kelly, J.; Lauer, M.; Prinster, R.; Zhang, S. Deconstructing
Decentralized Exchanges. 2019. Available online: https://stanford-jblp.pubpub.org/pub/deconstructing-dex (accessed on
14 December 2021).

14. El Faqir, Y.; Arroyo, J.; Hassan, S. An Overview of Decentralized Autonomous Organizations on the Blockchain. In Proceedings of
the 16th International Symposium on Open Collaboration; Association for Computing Machinery: New York, NY, USA, 2020.

15. Caldarelli, G. Understanding the blockchain oracle problem: A call for action. Information 2020, 11, 509. [CrossRef]
16. Lo, S.K.; Xu, X.; Staples, M.; Yao, L. Reliability analysis for blockchain oracles. Comput. Electr. Eng. 2020, 83, 1–10. [CrossRef]
17. Goodman, L. A Self-Amending Crypto-Ledger; Tezos White Paper; 2014. Available online: https://tezos.com/whitepaper.pdf

(accessed on 14 December 2021).
18. Gürcan, O. On Using Agent-based Modeling and Simulation for Studying Blockchain Systems. In JFMS 2020—Les Journées

Francophones de la Modélisation et de la Simulation—Convergences entre la Théorie de la Modélisation et la Simulation et les Systèmes
Multi-Agents; Cépaduès: Cargese, France, 2020; pp. 23–24.

19. Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [CrossRef]
20. Gürcan, O. Multi-Agent Modelling of Fairness for Users and Miners in Blockchains. In Highlights of Practical Applications of

Survivable Agents and Multi-Agent Systems. The PAAMS Collection; De La Prieta, F., González-Briones, A., Pawleski, P., Calvaresi,
D., Del Val, E., Lopes, F., Julian, V., Osaba, E., Sánchez-Iborra, R., Eds.; Springer International Publishing: Cham, Switzerland,
2019; pp. 92–99.

21. Cachin, C.; Guerraoui, R.; Rodrigues, L. Introduction to Reliable and Secure Distributed Programming, 2nd ed.; Springer Publishing
Company, Incorporated: New York, NY, USA, 2011.

22. Eyal, I.; Sirer, E.G. Majority is not enough: Bitcoin mining is vulnerable. In Proceedings of the International Conference on
Financial Cryptography and Data Security, Christ Church, Barbados, 3–7 March 2014; pp. 436–454.

23. Garay, J.; Kiayias, A.; Leonardos, N. The Bitcoin Backbone Protocol: Analysis and Applications. In Advances in Cryptology—
EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30
April 2015, Proceedings, Part II; Oswald, E.; Fischlin, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 281–310.

24. Decker, C.; Seidel, J.; Wattenhofer, R. Bitcoin Meets Strong Consistency. In Proceedings of the 17th International Conference on
Distributed Computing and Networking Conference (ICDCN), Singapore, 4–7 January 2016;

25. Sapirshtein, A.; Sompolinsky, Y.; Zohar, A. Optimal selfish mining strategies in bitcoin. In International Conference on Financial
Cryptography and Data Security; Springer: New York, NY, USA, 2016; pp. 515–532.

26. Anceaume, E.; Del Pozzo, A.; Ludinard, R.; Potop-Butucaru, M.; Tucci-Piergiovanni, S. Blockchain Abstract Data Type. In The
31st ACM Symposium on Parallelism in Algorithms and Architectures; Association for Computing Machinery: New York, NY, USA,
2019; p. 349–358.

27. Neuder, M.; Moroz, D.J.; Rao, R.; Parkes, D.C. Selfish Behavior in the Tezos Proof-of-Stake Protocol. arXiv 2020,
arXiv:cs.CR/1912.02954.

28. Kwon, J. TenderMint: Consensus without Mining. The-Blockchain.Com 2014, 6, 1–10.
29. Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling byzantine agreements for cryptocurrencies.

In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 28–31 October 2017; ACM: Shanghai,
China, October 2017; pp. 51–68.

30. Herlihy, M. Atomic Cross-Chain Swaps. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
Egham, UK, 23–27 July 2018; pp. 245–254.

31. Nowak, T. Topology in Distributed Computing. Master’s Thesis, Vienna University of Technology, Vienna, Austria, 2010.
32. Herlihy, M.; Rajsbaum, S. Algebraic topology and distributed computing a primer. In Computer Science Today: Recent Trends and

Developments; van Leeuwen, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 203–217.

http://cryptochainuni.com/wp-content/uploads/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
http://cryptochainuni.com/wp-content/uploads/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
https://www.tezos.com/static/papers/white paper.pdf
https://www.tezos.com/static/papers/white paper.pdf
https://translatewhitepaper.com/wp-content/uploads/2021/04/EthereumOrijinal-ETH-English.pdf
http://dx.doi.org/10.1109/ACCESS.2018.2870644
https://stanford-jblp.pubpub.org/pub/deconstructing-dex
http://dx.doi.org/10.3390/info11110509
http://dx.doi.org/10.1016/j.compeleceng.2020.106582
https://tezos.com/whitepaper.pdf
http://dx.doi.org/10.1126/science.1172133


Big Data Cogn. Comput. 2022, 6, 1 40 of 41

33. Saks, M.; Zaharoglou, F. Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing; Association for Computing Machinery: New York, NY, USA, 1993;
pp. 101–110.

34. Alpern, B.; Schneider, F.B. Defining liveness. Inf. Process. Lett. 1985, 21, 181–185. [CrossRef]
35. Malcolm, G. Sheaves, Objects, and Distributed Systems. Electron. Notes Theor. Comput. Sci. 2009, 225, 3–19. [CrossRef]
36. Wolfram, D.; Goguen, J. A Sheaf Semantics for FOOPS Expressions. In Proceedings of the Object-Based Concurrent Computing,

ECOOP’91 Workshop, Geneva, Switzerland, 15–16 July 1991.
37. Sagar, P.V.; Kishore, M.P.K. Sheaf Representation of an Information 664 System. Int. J. Rough Sets Data Anal. 2019, 6, 78–83.
38. Meldman-Floch, W. Blockchain Cohomology. arXiv 2018, arXiv:1805.07047.
39. Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3rd ed.;

Prentice Hall PTR: Upper Saddle River, NJ, USA, 2004.
40. Alharby, M.; van Moorsel, A. BlockSim: An Extensible Simulation Tool for Blockchain Systems. Front. Blockchain 2020, 3, 28.

[CrossRef]
41. Marchesi, L.; Marchesi, M.; Tonelli, R. ABCDE –agile block chain DApp engineering. Blockchain Res. Appl. 2020, 1, 100002.

[CrossRef]
42. Rocha, H.; Ducasse, S. Preliminary Steps Towards Modeling Blockchain Oriented Software. In Proceedings of the 2018

IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Gothenburg,
Sweden, 27 May–3 June 2018; pp. 52–57.

43. Filho, J.L.; Braga, J.L., UML: Unified Modeling Language. In Encyclopedia of GIS; Shekhar, S., Xiong, H.;,Zhou, X., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 2345–2346.

44. Ferber, J. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence; Addison-Wesley Reading: Boston, MA,
USA, 1999.

45. Wooldridge, M. An Introduction to Multiagent Systems; John Wiley & Sons: Hoboken, NJ, USA, 2009.
46. Hou, C.; Zhou, M.; Ji, Y.; Daian, P.; Tramèr, F.; Fanti, G.; Juels, A. SquirRL: Automating Attack Discovery on Blockchain Incentive

Mechanisms with Deep Reinforcement Learning. In Proceedings of the Network and Distributed System Security Symposium
(NDSS), San Diego, CA, USA, 21–24 February 2021.

47. Wang, T.; Liew, S.C.; Zhang, S. When blockchain meets AI: Optimal mining strategy achieved by machine learning. Int. J. Intell.
Syst. 2021, 36, 2183–2207. [CrossRef]

48. Zhang, J.; Hong, Z.; Qiu, X.; Zhan, Y.; Guo, S.; Chen, W. SkyChain: A Deep Reinforcement Learning-Empowered Dynamic
Blockchain Sharding System. In Proceedings of the 49th International Conference on Parallel Processing-ICPP, Edmonton, AB,
Canada, 17–20 August 2020; pp. 1–11.

49. Zhang, L.; Wang, Y.; Li, F.; Hu, Y.; Au, M. A Game-theoretic Method based on Q-Learning to Invalidate Criminal Smart Contracts.
Inf. Sci. 2019, 498, 144–153. [CrossRef]

50. Toroghi Haghighat, A.; Shajari, M. Block withholding game among bitcoin mining pools. Future Gener. Comput. Syst. 2019, 97,
482–491. [CrossRef]

51. Amoussou-Guenou, Y.; Biais, B.; Potop-Butucaru, M.; Tucci-Piergiovanni, S. Rational vs byzantine players in consensus-based
blockchains. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS,
Auckland, New Zealand, 9–13 May 2020; pp. 43–51.

52. Ciatto, G.; Mariani, S.; Omicini, A.; Zambonelli, F. From agents to blockchain: Stairway to integration. Appl. Sci. 2020, 10, 7460.
[CrossRef]

53. Ciatto, G.; Mariani, S.; Maffi, A.; Omicini, A. Blockchain-Based Coordination: Assessing the Expressive Power of Smart Contracts.
Information 2020, 11, 52. [CrossRef]

54. Hübner, J.F.; Sichman, J.S.a.; Boissier, O. MOISE+: Towards a Structural, Functional, and Deontic Model for MAS Organization. In
Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1; AAMAS ’02; Association
for Computing Machinery: New York, NY, USA, 2002; pp. 501–502.

55. Ferber, J.; Gutknecht, O.; Michel, F. From Agents to Organizations: An Organizational View of Multi-agent Systems. In
Agent-Oriented Software Engineering IV; Giorgini, P., Müller, J.P., Odell, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 214–230.

56. Dignum, V.; Vázquez-Salceda, J.; Dignum, F. OMNI: Introducing Social Structure, Norms and Ontologies into Agent Orga-
nizations. In Programming Multi-Agent Systems; Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 181–198.

57. Giorgini, P.; Kolp, M.; Mylopoulos, J. Multi-Agent Architectures as Organizational Structures. Auton. Agents Multi-Agent Syst.
2006, 13, 3–25.

58. Criado, N.; Argente, E.; Botti, V. THOMAS: An agent platform for supporting normative multi-agent systems. J. Logic Comput.
2013, 23, 309–333. [CrossRef]

59. Abbas, H.A. Realizing the NOSHAPE MAS Organizational Model: An Operational View. Int. J. Agent Technol. Syst. 2015,
7, 75–104. [CrossRef]

60. Mintzberg, H. Structure in 5’s: A Synthesis of the Research on Organization Design. Manage. Sci. 1980, 26, 322–341. [CrossRef]

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/j.entcs.2008.12.063
http://dx.doi.org/10.3389/fbloc.2020.00028
http://dx.doi.org/10.1016/j.bcra.2020.100002
http://dx.doi.org/10.1002/int.22375
http://dx.doi.org/10.1016/j.ins.2019.05.061
http://dx.doi.org/10.1016/j.future.2019.03.002
http://dx.doi.org/10.3390/app10217460
http://dx.doi.org/10.3390/info11010052
http://dx.doi.org/10.1093/logcom/exr025
http://dx.doi.org/10.4018/IJATS.2015040103
http://dx.doi.org/10.1287/mnsc.26.3.322


Big Data Cogn. Comput. 2022, 6, 1 41 of 41

61. Rodriguez, S.; Thangarajah, J.; Winikoff, M. User and System Stories: An Agile Approach for Managing Requirements in AOSE.
In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, Online, 3–7 May 2021;
pp. 1064–1072.

62. Abbott, R.J. Program Design by Informal English Descriptions. Commun. ACM 1983, 26, 882–894. [CrossRef]
63. Tschorsch, F.; Scheuermann, B. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Commun. Surv.

Tutor. 2016, 18, 2084–2123. [CrossRef]
64. Taylor, M.B. The evolution of bitcoin hardware. Computer 2017, 50, 58–66. [CrossRef]
65. Romiti, M.; Judmayer, A.; Zamyatin, A.; Haslhofer, B. A deep dive into Bitcoin mining pools: An empirical analysis of mining

shares. arXiv 2019, 1–19, arXiv:1905.05999
66. Luu, L.; Velner, Y.; Teutsch, J.; Saxena, P. SmartPool: Practical decentralized pooled mining. In Proceedings of the 26th USENIX

Security Symposium, Vancouver, BC, Canada, 16–18 August 2017; pp. 1409–1426.
67. Szabo, N. Smart Contracts: Formalizing and Securing Relationships on Public Networks. First Monday 1997, 2. [CrossRef]
68. Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. Sok: Sharding on blockchain. In Proceedings of the AFT 2019—Proceedings of the 1st

ACM Conference on Advances in Financial Technologies, Zurich, Switzerland, 21–23 October 2019; pp. 41–61.
69. Kwon, J.; Buchman, E. Cosmos: A Network of Distributed Ledgers; White Paper; 2016. Available online: https://whitepaper.io/

document/582/cosmos-whitepaper (accessed on 14 December 2021).
70. Mirkin, M.; Ji, Y.; Pang, J.; Klages-Mundt, A.; Eyal, I.; Juels, A. BDoS: Blockchain Denial-of-Service. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, 9–13 November 2020; pp. 601–619.
71. Apostolaki, M.; Zohar, A.; Vanbever, L. Hijacking Bitcoin: Routing Attacks on Cryptocurrencies. In Proceedings of the 2017 IEEE

Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 375–392.
72. Nayak, K.; Kumar, S.; Miller, A.; Shi, E. Stubborn mining: Generalizing selfish mining and combining with an eclipse attack.

In Proceedings of the 2016 IEEE European Symposium on Security and Privacy, EURO S and P 2016, Saarbruecken, Germany,
21–24 March 2016; pp. 305–320.

73. Eskandari, S.; Moosavi, S.; Clark, J. SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain; Springer International
Publishing: New York, NY, USA, 2020; Volume 11599, pp. 170–189.

http://dx.doi.org/10.1145/182.358441
http://dx.doi.org/10.1109/COMST.2016.2535718
http://dx.doi.org/10.1109/MC.2017.3571056
http://dx.doi.org/10.5210/fm.v2i9.548
https://whitepaper.io/document/582/cosmos-whitepaper
https://whitepaper.io/document/582/cosmos-whitepaper

	Introduction
	Blockchain Systems Preliminaries
	Blockchain Data Structure
	Fundamentals of Blockchain Systems
	Decentralized Applications and Organizations
	Oracles in Blockchain Systems
	Common Characteristics of Blockchain Systems
	Blockchain Systems Are Distributed Systems
	Blockchain Systems Are Social Organizations
	Blockchain Systems Are Economic Systems
	Blockchain Systems Have a Very Active and Dynamic Ecosystem


	Existing Blockchain Modeling Approaches
	Process-Oriented Paradigm
	Graph-Theoretic Paradigm
	Object-Oriented Paradigm
	Agent-Oriented Paradigm
	Discussion

	Organization-Centric Modeling for Blockchain Systems
	Motivations behind Organization-Centric Modeling
	The Agent/Group/Role (AGR) Approach
	The Methodology for AGR

	AGR4BS: A Generic Organizational Model for Blockchain Systems
	Role Types
	Group Types
	Structural Group: Transaction Management
	Structural Group: Block Management
	Interest Group: Pool
	Interest Group: Decentralized Application (DApp)

	Management of the Groups
	Roles in Detail
	Interactions
	Agent Types

	Case Studies
	Bitcoin
	System Overview
	Organizational Model

	Ethereum 2.0
	System Overview
	Organizational Model

	Tendermint/Cosmos
	System Overview
	Organizational Model

	Hyperledger Fabric
	System Overview
	Organizational Model


	Modeling Attacks
	Front Running
	Eclipse Attack
	Wormhole Attack

	Discussion
	Expressivity of AGR4BS
	Organizational Differences of Blockchain Systems
	Group Differences
	Agent Differences
	Role Differences

	Robustness and Resilience
	Reliability

	Conclusions and Future Work
	Bitcoin 
	Ethereum
	Tendermint
	Hyperledger Fabric
	References

