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Abstract: In smart manufacturing, human-cyber-physical systems host digital twins and IoT-based net-
works. The networks weave manufacturing enablers such as CNC machine tools, robots, CAD/CAM
systems, process planning systems, enterprise resource planning systems, and human resources. The
twins work as the brains of the enablers; that is, the twins supply the required knowledge and help
enablers solve problems autonomously in real-time. Since surface roughness is a major concern of
all manufacturing processes, twins to solve surface roughness-relevant problems are needed. The
twins must machine-learn the required knowledge from the relevant datasets available in big data.
Therefore, preparing surface roughness-relevant datasets to be included in the human-cyber-physical
system-friendly big data is a critical issue. However, preparing such datasets is a challenge due
to the lack of a steadfast procedure. This study sheds some light on this issue. A state-of-the-art
method is proposed to prepare the said datasets for surface roughness, wherein each dataset consists
of four segments: semantic annotation, roughness model, simulation algorithm, and simulation
system. These segments provide input information for digital twins’ input, modeling, simulation,
and validation modules. The semantic annotation segment boils down to a concept map. A human-
and machine-readable concept map is thus developed where the information of other segments
(roughness model, simulation algorithm, and simulation system) is integrated. The delay map of
surface roughness profile heights plays a pivotal role in the proposed dataset preparation method.
The successful preparation of datasets of surface roughness underlying milling, turning, grinding,
electric discharge machining, and polishing shows the efficacy of the proposed method. The method
will be extended to the manufacturing processes in the next phase of this study.

Keywords: big data; surface roughness; digital twin; human-cyber-physical system; artificial intelligence

1. Introduction

Smart manufacturing (or Industry 4.0) [1] embarks on a human-cyber-physical system
(HCPS) [2], as shown in Figure 1. The HCPS (Figure 1) [2] consists of Internet of Things
(IoT)-based manufacturing enablers [3], digital twins (DT) [4,5], big data (BD) [6], and
documentation of past research and operational activities.

Like its predecessors, smart manufacturing needs manufacturing enablers such as
CAD/CAM systems, process planning systems, CNC machine tools, measuring devices,
actuators, robots, and human resources. The difference is that the enablers create an
IoT-based network [3], allowing both vertical and horizontal integrations. At the same
time, the enablers must perform human-like cognitive tasks [1,5] such as understanding
current situations, predicting future consequences, deciding the right courses of action,
and adapting to new situations as autonomously as possible. The autonomous execution of
the abovementioned cognitive tasks requires a great deal of knowledge [5,7,8] that can be

Big Data Cogn. Comput. 2021, 5, 58. https://doi.org/10.3390/bdcc5040058 https://www.mdpi.com/journal/bdcc

https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-4584-5288
https://doi.org/10.3390/bdcc5040058
https://doi.org/10.3390/bdcc5040058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bdcc5040058
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc5040058?type=check_update&version=1


Big Data Cogn. Comput. 2021, 5, 58 2 of 17

extracted from the relevant segments of BD using artificially intelligent systems. Machine
learning capacities empower these systems [9]. DTs contain knowledge extraction systems,
extracted knowledge, and capacities to perform human-like cognitive tasks [5]. DTs also
provide (or receive) feedback to (or from) the IoT-based manufacturing enablers to keep
the enablers adaptive to new situations [10].
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Figure 1. Constituents of smart manufacturing.

Let us focus on BD [6]. Generally speaking, BD consists of a vast array of heteroge-
neous unstructured, semi-structured, and structured datasets [11,12]. Some datasets can be
accessed through the Internet, and some cannot. However, the HCPS-friendly segments of
BD must have the following characteristics. The segments must be readily accessible to
all stakeholders, preferably through the Internet. In addition, the segments must be both
human- and machine-readable. Moreover, the segments can be effortlessly integrated with
the knowledge extraction systems and, thereby, to DT. The segments of BD exhibiting the
abovementioned characteristics are not readily available. They need to be prepared using
the relevant documentation of past research and operational activities. The documentation
is, by nature, messy, and there is no steadfast procedure by which the documentation
can be converted into an HCPS-friendly BD. This study sheds some light on this issue.
In particular, this study uses the case of surface roughness and elucidates a method for
preparing datasets to be included in an HCPS-friendly BD.

Surface roughness [13,14] is a major concern of all manufacturing processes, and
ensuring the right surface roughness requires knowledge. In most cases, the required
knowledge is extracted from experimental datasets. In an HCPS, a dedicated DT supplies
the surface roughness-relevant knowledge to the manufacturing enablers. However, before
a DT supplies the required knowledge, it must be constructed. (See Section 3 for more
details.) The question is, from where does the DT collect the information? The obvious
answer is that BD supplies the information. In other words, BD must host datasets useful for
building a DT. Consequently, a mere digitized version of the documentation of experimental
and operational activities (Figure 1) is not enough to build BD; datasets needed to build
DT must be added to BD. Otherwise, BD may not be useful for the HCPS. Based on this
consideration, this article is written.

The rest of this article is organized as follows. Section 2 briefly reviews selected
publications on big data for smart manufacturing, highlighting the methods currently used
to construct and functionalize BD and analytics. Section 3 presents the different types of
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datasets often used to document research and operational activities of surface roughness.
This section also highlights the current utilization level of surface roughness datasets in
cyberspace. Section 4 presents a method for preparing datasets of surface roughness to be
included in BD for making it (BD) meaningful to DT. This section also articulates the major
issues, the structure and segments of the datasets, and their interplay with DT. Section 5
presents some noteworthy results when the proposed method is applied to preparing
datasets of the roughness of turning, milling, grinding, electric discharge machining, and
polishing. Section 6 concludes.

2. Literature Review

This section briefly reviews selected publications on big data for smart manufacturing.
The goal is to highlight the methods currently used to construct and functionalize BD and
relevant analytics. The research gaps are highlighted in Section 4, however.

Moktadir et al. [15] studied the barriers of BD implementation in real-life manufac-
turing organizations located in a developing economy. They found that collecting reliable
datasets from relevant sources is the most significant barrier. The second most signifi-
cant barrier is related to technology and resource—lack of IT infrastructure, data privacy
assurance, complexity in data integration, lack of appropriate BD analytics, and high
investment. As far as a developed economy is concerned, similar barriers still exist, as
reported in [16,17].

Syafrudin et al. [18] proposed a real-time monitoring framework of manufacturing
systems focusing on the automotive industry. The framework utilizes BD collected from
IoT-based sensors and processes it (BD) by a hybrid prediction model. In particular,
unstructured datasets collected from manufacturing processes by temperature, humidity,
accelerometer, and gyroscope sensors were preprocessed using platforms known as Apache
Kafka (message queue), Apache Storm (real-time processing engine), and MongoDB (data
storage). Subsequently, density-based spatial clustering with noise removal capacity was
used to detect outliers and to classify data for fault detection. They proposed BD-driven
system to prevent unexpected losses caused by faults during manufacturing automotive
parts and performing assembly operations.

Wiech et al. [19] considered that BD analytics and manufacturing execution systems
are needed to achieve the objectives of Industry 4.0. They studied the implementation
levels of BD analytics and manufacturing execution systems by conducting a survey in
which more than one hundred organizations participated. They found that the BD analytics
and manufacturing execution systems are heavily correlated, and the performance is not
likely to depend on organizational structures.

Escobar et al. [20] conducted a literature review to understand the interplay of BD and
process monitoring for quality control from the context of Industry 4.0 (i.e., Quality 4.0).
They proposed that manufacturing BD-centric challenges can be tackled by implementing
a seven-step approach: identify, accessorize, discover, learn, predict, redesign, and relearn.
In addition, they found that a vast array of process datasets collected either from plants or
from laboratories in the form of pictures, signals, and direct measurements can be analyzed
in real-time using simple machine learning algorithms rather than deep learning.

Yu et al. [21] presented a BD ecosystem for predictive maintenance. The data sources
were the sensor signals collected from large-scale manufacturing plants. The ecosystem
used numerous technologies (data lake, NoSQL database, Apache Spark, Apache Drill,
Apache Hive, and OPC Collector) to solve data ingestion, integration, transformation,
storage, analytics, and visualization. In addition, the required transformation protocols,
authentication, and encryption methods were also addressed to secure the data transfer.
Finally, a Map-Reduce decentralized principal component analysis made sense of BD for
predictive maintenance. The Map-Reduce decentralized principal component analysis,
which is simple and can respond faster on a real-time basis, was used to make sense of
sensor signals for predictive maintenance.
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Faheem et al. [22] considered that sensor datasets collected by a wireless sensor
network from various sources (equipment, machines, assembly lines, material handling
devices, and inspection activities) constitute industrial BD. The datasets are subjected to
trigger errors and low transmission quality due to high noise, signal fading, multipath
effects, heat, and electromagnetic interference. In order to solve the abovementioned
problems, they introduced a multi-channel and multi-radio architecture denoted as CBI4.0.
As confirmed by an EstiNet 9.0 simulator, the proposed architecture exhibited robust
performance compared with other wireless sensor signal networks used to support BD in
the automotive industry.

O’Donovan et al. [23] presented data requirements, system requirements, and infor-
mation system models for utilizing BD in equipment maintenance. The goal was to provide
a scalable and fault-tolerant BD pipeline for integrating, processing, and analyzing datasets
relevant to industrial equipment. The focus was on the highly automated large-scale
manufacturing environments in which Internet-aware smart sensors play a vital role.

Shah et al. [24] showed that BD of sensor signals collected from IoT-networked manu-
facturing devices effectively modeled and monitored manufacturing processes. However,
to make sense of a large array of datasets, machine learning techniques must be employed.
In particular, they developed an IoT-based testbed capable of handling BD (about 70 GB)
underlying a pipe flow system coupled with five IoT-based vibration sensors. Furthermore,
they compared the complex deep learning models with simple statistical learning models
in processing the sensor signals. They identified that simple statistical learning could
achieve superior results over deep learning because there are still unsolved challenges
making deep learning less effective.

On the contrary, Fang et al. [25] showed that deep learning is more effective than other
machine learning (e.g., linear regression, back-propagation, and multi-layer and deep belief
networks) in making sense of manufacturing BD when predicting the remaining time to
complete a part. They used BD collected from various sensors in a large-scale job shop
equipped with 44 machines producing 13 types of parts. The proposed framework needs
raw data collection, candidate dataset design and selection, and predictive modeling using
a deep learning approach denoted as a stacked sparse autoencoder.

Zhang et al. [26] proposed an energy-aware cyber-physical system in which energy-
related BD and production-related BD play a vital role. The datasets were originated from
energy monitors (sensors) mounted on machine tools and on gas, liquid, and cutting fluid
circulation devices. Before making sense of these datasets, they were cleaned by removing
the noise and abnormalities. Finally, deep belief networks classified the continuous energy
consumption data according to different machining states, which helped ensure low energy
consumption.

Ko and Fujita [27] developed evidential analytics for unearthing the buried informa-
tion in BD samples, focusing on the manufacturing of semiconductors. They found that
raw datasets in BD often exhibit undesirable characteristics such as unspecified sampling
principles and analytics baselines, a large number of redundant variables or features, a
mixture of relevant and irrelevant datasets, indistinguishable noise, and outliers in datasets.
BD analytics must handle these characteristics and identify the causes of damage before-
hand. To achieve this, they proposed analytics denoted as evidential analytics for buried
information (EABI) that used the concept of granular information. EABI consists of three
phases. The first phase generates baselines expressing the relevance to damages in the
directions of high and low for reducing the number of variables. The second phase unearths
the preference and relevance together. The last phase aggregates evidence among variables
for evaluating the samples.

3. Surface Roughness Data

As described in the previous section, the root of all problems associated with construct-
ing BD and its utilization is the datasets themselves [15–17,22,27]. Thus, before presenting
the proposed method for preparing the datasets to be included in BD of surface roughness,
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it is important to see how and what kind of datasets of surface roughness are often docu-
mented after performing experimental and operational activities. This section serves this
purpose.

Nowadays, surface roughness [13,14] is measured by laser-based non-contact surface
metrology instruments [28], as shown in Figure 2a. This type of instrument moves a laser
source on the surface to be measured in a definite trajectory, as shown in Figure 2b. For
this, the instrument first sets an xy-mesh (Figure 2c) and obtains the height information of
the surface (Figure 2d). In addition to height information, the instruments can represent a
mesh using a pixel [29]. As such, two types of information are produced. One of the types
consists of a 3D surface based on height information (Figure 2e,f).
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The other is the images of the measured surface, as shown in Figure 3a–c. In particular,
Figure 3a shows a raw image of an arbitrary surface [29]. Figure 3b shows a binary
image [29]. This image is extracted from the image shown in Figure 3a and carries valuable
topographical information of the surface [29]. Figure 3c shows a color image in which
different heights are depicted using different colors (height gradation image). This is also
useful for surface topography analysis. Figure 3d shows a 3D surface rendered from the
height datasets using a curve-smoothening technique. Figure 3e shows a height profile
(surface profile) of the surface for a given y (or x) along the x (or y) direction [28]. A primary
profile (not shown in Figure 3) is obtained by removing linear or curved “form error”
underlying the surface height profile [14,28]. Figure 3f shows a surface roughness profile
obtained by removing the waviness from a primary profile.
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An online system developed by the NIST of the USA [14,30] (see Figure 4) supports
the surface height processing as mentioned above.
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Figure 4. Existing Internet-based surface roughness system.

The system [14,30] provides a user interface (Figure 4) for uploading a raw surface
profile dataset. The system then uses the standard procedures and calculates parameters,
including Ra and Rz [14,28,30]. Instead of using the standard parameters, advanced
parameters such as fractal dimension, surface entropy, and possibility distributions [30]
can be used to accurately quantify the complexity of surface roughness. For calculating
the advanced parameters, the surface profile height datasets must be retained in BD. Thus,
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Extensible Markup Language (XML)-based datasets in which the information of Ra and Rz,
only, is retained, as shown in [31], require a revisit.

4. Preparing Datasets of Surface Roughness for BD

In Section 2, using the literature review [15–27], the scope of limitations of BD from the
perspective of Industry 4.0 is described. In synopsis, the following remarks can be made.

(a) The raw or proposed datasets added to BD may not be able to bring benefits to smart
manufacturing if the targeted usages of the datasets are not considered in the first
place. This means that the datasets regarding surface roughness, as shown in Section 3
(Figure 3), should not be added directly to construct BD of surface roughness. Instead,
the datasets must be preprocessed based on the targeted use before adding them to
the BD of surface roughness.

(b) There is no steadfast approach available for preprocessing raw datasets collected
from real-time sensor signals or past experimental and operational activities for
building BD.

(c) Large organizations having the strength to maintain sophisticated IT infrastructures
(for example, the automotive industry and chemical industry) can execute sophisti-
cated BD analytics. However, an opposite scenario prevails for small- and medium-
sized organizations.

(d) The effectiveness of well-known machine learning approaches while making sense of
BD is controversial. For example, some authors advocate complex machine learning
approaches (artificial neural networks-driven machine learning such as deep learning);
others advocate rather simple ones.

Therefore, many open questions remain regarding how to construct and functionalize
BD for smart manufacturing. In order to address the abovementioned problems in a
befitting manner, this section presents a method that can be used to prepare the datasets
of BD of surface roughness from the context of an HCPS. Before presenting the proposed
method, three salient issues (BD inequality, semantic annotation, and DT) are presented
as follows.

First, consider the issue of BD inequality [32]. Recall that BD consists of a vast array
of heterogeneous datasets (unstructured, semi-structured, and structured) that evolve
with time [11,12]. Arrangements for extracting knowledge from a relevant segment of
BD are computationally heavy and highly resource-dependent as well. As a result, BD
benefits large organizations. Medium and small organizations fall behind. This results
in BD inequality [32]. Unfortunately, studies dealing with BD integration with an HCPS,
e.g., [33–36], have not yet addressed BD inequality. For example, consider the work in [33].
The authors formulated BD analytics, where the BD is integrated with machine learning
and computational intelligence paradigms. The arrangement requires highly sophisticated
computing devices and highly skilled human resources. As such, these systems are beyond
the affordability of medium and small organizations. One way to minimize the involvement
of sophisticated computing devices and highly skilled human resources is addressing how
the datasets are prepared in the first place. Care should be taken while developing dataset
preparation methods so that the methods help mitigate BD inequality.

Second, consider the issue of semantic annotation or metadata. It (semantic annotation
or metadata) has become a crucial issue due to the advent of web technology, and many
authors have contributed toward semantic annotation or metadata [37–45]. The fact of
the matter is that the new web technology called Semantic Web (SW) [46] is in the process
of replacing its predecessor. SW-based datasets need both the datasets themselves and
“data about datasets”. This “data about datasets” is referred to as semantic annotation or
metadata. As a result, all relevant datasets can be gathered quickly—the search engines
become more effective—which is not the case now. At the same time, the semantic anno-
tations facilitate the amalgamation of relevant datasets scattered in different information
silos. However, for constructing metadata, different types of ontological approaches are
proposed in the literature. Most of the approaches depend heavily on the query language
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and data access protocol (e.g., SPARQL) customized for the resource description frame-
work (RDF) [47]. As a result, the current semantic annotation preparation approaches are
unscalable and esoteric. Making the semantic annotation preparation approaches more
user-friendly and scalable and less esoteric is a challenge. This challenge can be overcome
if natural language-based semantic annotations are used, ensuring the freedom of using
any phrases that the users prefer. In this respect, concept mapping is the right approach, as
shown in [5,48].

Last, consider the case of DT (Figure 1). By definition, DTs are the computable virtual
abstractions of real-world objects, processes, and phenomena [5,39]. They have real-time
response capacity. As mentioned, DTs host knowledge extraction systems, knowledge-base,
and human-like cognitive tasks and provide (or receive) feedback to (or from) the IoT-based
manufacturing enablers. They keep the enablers adaptive to new situations. Thus, they
serve as the brains of the IoT-based enablers. Since surface roughness is a manufacturing
phenomenon, a DT dealing with surface roughness is a phenomenon twin. A phenomenon
twin (of surface roughness) consists of five modules: input module, modeling module,
simulation module, validation module, and output module [49]. The input module extracts
information from a source (e.g., BD) for building other modules. The modeling module
models a phenomenon. The simulation module simulates the expected outcomes of the
phenomenon upon request from the respective enablers. The validation model validates
the integrity of results produced by the twin. Finally, the output module integrates the
twin with the relevant IoT-embedded enablers. See [49,50] for more details.

Considering the issues of BD inequality, semantic annotation, and DT, a BD prepara-
tion method is proposed, as schematically illustrated in Figure 5. As seen in Figure 5, a
dataset of BD consists of four segments denoted as semantic annotation, roughness model,
simulation algorithm, and simulation system. These segments can be downloaded while
developing a DT of surface roughness.
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Figure 5. Proposed dataset preparation method.

The segment denoted as semantic annotation provides information for the input mod-
ule of the digital twin. The segment denoted as the roughness model provides information
for the modeling module of the digital twin. The segment denoted as the simulation
algorithm provides information for the simulation module of the digital twin. The segment
denoted as simulation system provides information for both the simulation and validation
modules of the digital twin. There are no segments in a dataset that provide information
for the output module of the digital twin. Based on the proposed method, a set of datasets
of surface roughness is constructed for different types of material processes such as turn-
ing, milling, grinding, polishing, and electric discharge machining. The results regarding
grinding are shown in the next section.
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5. Results and Discussions

This section presents the noteworthy results obtained using the proposed method and
discusses the results’ implications.

For better understanding, the roughness model segment of the dataset is presented
first, as follows. The roughness model segment presents the information of the delay map
of a roughness profile. Two pieces of information are stored. The first is the roughness
DNA, and the other is two sets of possibility distributions induced from the delay map. For
this, the following formulation is considered. Let x(i) ∈ [0,1], i = 0, 1, . . . , be the normalized
heights of a measured surface. A delay map consists of the ordered-pair (x(i), x(t + d)),
i = 1, 2, . . . , where d denotes the delay, a non-zero integer. Let Sj, i = 1, 2, . . . , M be the
states of roughness dividing the interval [0,1] into M mutually exclusive intervals. The
states of x(i) are represented by a roughness DNA = (Si|i = 0, . . . , N) so that ∀Si ∈ {Sj|j =
1, . . . , M}. The abscissa of the delay map is represented by the triangular fuzzy numbers
(a1(Sj),b1(Sj),c1(Sj)), j = 1, . . . , M, where [a1(Sj), c1(Sj)] is the range of Sj, and b1(Sj) is
the midpoint of Sj. The ordinate of the delay map is represented by the triangular fuzzy
number (a2(Sj),b2(Sj),c2(Sj)), j = 1, . . . , M, where the support [a2(Sj), c2(Sj)] and core b2(Sj)
are determined using the probability-possibility transformation applied to the map, as
defined in [51]. Figure 6 shows a typical surface roughness model.
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Figure 6. Constituents of roughness model.

Note the presence of two sets of possibility distributions and the roughness DNA. The
case shown in Figure 6 corresponds to five-state modeling, S1, . . . , S5, where M = 5. The
simulation algorithm is shown by Algorithm 1 (Surface Profile Simulation).
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Algorithm 1: Surface Profile Simulation.

1: Define
M, N, [u, v], (Sj| j = 1, . . . , M), DNA = (Si| i = 0, . . . , N)
{(a1(Sj), b1(Sj), c1(Sj)) | j = 1, . . . , M}
{(a2(Sj), b2(Sj), c2(Sj)) | j = 1, . . . , M}

2: Initialization x(0)← r1 ∈ [0, 1]
3:

Calculate

For i = 0, . . . , N − 1
4: For j = 1, . . . , M
5: p(j) = x(i)−a1(Sj)

b1(Sj)−a1(Sj) , q(j) = c1(Sj)−x(i)
c1(Sj)−b1(Sj)

6: µ(j) = max(0, min(p(j), q(j)))

7: End For

8: µ(i) = max
j=1,...,M

(µ(j))

9: For j = 1, . . . , M
10: If S(i + 1) = Sj Then
11: x(SLj) = a2(Sj) + µ(i)(b2(Sj)− a2(Sj))
12: x(SRj) = c2(Sj)− µ(i)(c2(Sj)− b2(Sj))
13: If |x(i)− x(SLj)| ≥ |x(i)− x(SRj)| Then
14: x(i + 1) = x(SLj)
15: Else
16: x(i + 1) = x(SRj)
17: End For
18: End For
19: Output {x(i)| i = 0, . . . , N}
20:

Calculate

For k = 1, . . . , 2N
21: If

(
k
2

)
∈ N

22: w(k) = x
(

k
2

)
23: Else
24: t← r2 ∈ [u, v]
25: w(k) = x

(
k−1

2

)
× (1− t) + x

(
k−1

2 + 1
)
× t

26: End For
27: Output {w(k)| k = 0, . . . , 2N}

The calculation processes associated with Algorithm 1 are schematically illustrated in
Figure 7. As seen in Figure 7, the simulation process acknowledges the roughness model
(roughness DNA, possibility distributions, definitions of states). It initializes the roughness
height x(0) by a random number r1 ∈ [0,1]. After that, it calculates the maximum degree of
belief and sets it as µ(0) from the fuzzy numbers assigned to the abscissa. It then calculates
the values denoted as x(SLj) and x(SRj) for the state Si (this time, i = 1) dictated by the
roughness DNA, as schematically illustrated in Figure 7a. The algorithm then chooses
one of the calculated values that is the most far from x(0) compared with the other and
assigns it as x(1). This way, the simulation algorithm continues its simulation process for
all i = 0, . . . , N. This results in simulated roughness heights x(i), i = 0, . . . , N. The simulated
heights are linearly interpolated according to steps 20, . . . , 26, as schematically illustrated
in Figure 7b. As seen Figure 7b, two consecutive heights, x(i) and x(I + 1), are linearly
interpolated using a random value r2 ∈ [u,v], where u ≤ 0 and v ≥ 1. This results in a new
time series w(k), k = 0, . . . , 2N, where x(k) = x(k/2) if k is an even number, and w(k) is the
interpolated value when k is an odd number. Therefore, the outcomes, w(k), k = 0, . . . , 2N,
are the simulated surface roughness models.



Big Data Cogn. Comput. 2021, 5, 58 11 of 17

Big Data Cogn. Comput. 2021, 5, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 7. Illustrations of steps 3,…,27 of Algorithm 1. 

The segment coupled with the simulation algorithm segment is the simulation sys-
tem because the system is developed using the simulation algorithm. The simulation sys-
tem must be kept simple to mitigate the BD inequality (see Section 4). At the same time, it 
must be executable by many stakeholders, including those who belong to medium and 
small organizations. Based on this consideration, the authors used a spreadsheet-based 
computer program to build the simulation system; one of the user interfaces is shown in 
Figure 8. As seen in Figure 8, the user can set a delay and input the data points of surface 
roughness heights. The system simulates the surface roughness heights. The similarity 
between the simulated and real surface roughness heights can be compared in terms of 
time series, delay maps, and possibility distributions, as shown in Figure 8. 

x

μ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

S1
S2

S3
S4

S5

x(i)

x

μ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

S1
S2

S3
S4

S5

x(SL1)

Si = S1

x(SR1) x(i)

x(i+1)

μ(i)

(a)

i

x

-0.5

0

0.5

1

1.5

x(i)

x(i+1)

v

u

t

k

w

-0.5

0

0.5

1

1.5

w(k)

w(k+1)

w(k+2)

x(i+2)

(b)

Figure 7. Illustrations of steps 3, . . . , 27 of Algorithm 1.

The segment coupled with the simulation algorithm segment is the simulation system
because the system is developed using the simulation algorithm. The simulation system
must be kept simple to mitigate the BD inequality (see Section 4). At the same time, it
must be executable by many stakeholders, including those who belong to medium and
small organizations. Based on this consideration, the authors used a spreadsheet-based
computer program to build the simulation system; one of the user interfaces is shown in
Figure 8. As seen in Figure 8, the user can set a delay and input the data points of surface
roughness heights. The system simulates the surface roughness heights. The similarity
between the simulated and real surface roughness heights can be compared in terms of
time series, delay maps, and possibility distributions, as shown in Figure 8.
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The contents shown in Figures 6–8 do not incomplete the dataset of surface roughness
for constructing BD. The semantic annotation segment must be added to complete the
dataset. This segment (semantic annotation) becomes the face of the dataset. It integrates
other segments shown in Figures 6–8. At the same time, the XML codes generated from
the semantic annotation link the BD to a DT and other constituents of the HCPS. The
remarkable thing is that the semantic annotation segment manifests a concept map (a
user-defined ontology of the issue considered). Before constructing the concept map, a
set of proposition blocks (PBs) must be considered expressed by natural language (here,
English). The number of propositions depends on the individuals who construct them.
Some of the PBs provide a general description, and some others represent the dataset
segments. PBs share some common concepts, resulting in a concept map.

Here, a seven proposition-based set of PBs for constructing the semantic annotation
segment of the dataset are considered. These PBs are listed in Table 1.

Table 1. Proposition blocks for concept mapping.

Blocks Propositions

PB1 Surface roughness profile heights of a manufacturing process called <name of the
process> produces a delay map

PB2 Abscissa and ordinate of the delay map are divided by some fuzzy numbers

PB3 Delay map entails a roughness DNA
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Table 1. Cont.

Blocks Propositions

PB4 Surface roughness profile heights are simulated using a simulation, producing
simulate roughness profile heights

PB5 Simulated roughness heights can be further processed by linear interpolation

PB6 Simulation process and linear interpolations underlie a simulation algorithm

PB7 Simulation algorithm manifests a simulation system

The resulting concept map is shown in Figure 9. This map is the semantic annotation
segment of the surface roughness dataset to be added to BD. The URL of this annotation
is https://cmapspublic2.ihmc.us/rid=1WYZG3ZMM-1SZ8JR8-41S0/surface-roughness%
20datasets%20for%20big-data.cmap (accessed on 20 October 2021). It can be accessed
through the Internet. The annotation also carries the roughness DNA, fuzzy numbers of the
return map, simulation algorithm, and the simulation system, which can be downloaded
for reuse (for building DT of surface roughness). Alternatively, XML code of the annotation
can be generated to use the code in an IoT-based enabler network directly.
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Note that other methods can also model chaotic data points such as surface roughness
heights: Markov chain, DNA-based computing, non-stationary Gaussian process, semantic
modeling, and the like [49]. The roughness model, simulation algorithm, and simulation
system segments are in accord with the modeling method. Even though the dataset seg-
ments are reconstructed according to the modeling method, the dataset structure remains
the same. Thus, the dataset structure (semantic annotation, roughness model, simulation
algorithm, and simulation system) serves as the metadata of the surface roughness.

Security Assurance

Security assurance in Industrial Internet of Things (IIoT) is a critical issue. The datasets
prepared by the presented data preparation method help assure security. For understanding
the interplay of security assurance and presented dataset preparation method, consider
Roughness DNA (one of the elements of the roughness model) and the provenance layer of
the Semantic Web (SW), as schematically illustrated in Figure 10. The concept of SW has
been proposed for smoothly exchanging and reusing information among large information

https://cmapspublic2.ihmc.us/rid=1WYZG3ZMM-1SZ8JR8-41S0/surface-roughness%20datasets%20for%20big-data.cmap
https://cmapspublic2.ihmc.us/rid=1WYZG3ZMM-1SZ8JR8-41S0/surface-roughness%20datasets%20for%20big-data.cmap
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silos [52]. The main idea is to extend the potency of the Web with an analogous extension
of the human’s cognitive process [52,53]. SW consists of four layers—syntax layer (XML,
URI, and Unicode), semantic layer (ontology and RDF), provenance layer (rule, logic,
proof, and trust), and application layer [53]. The syntax layer encodes datasets to be
exchanged. The semantics layer provides the meaning of the datasets. The provenance
layer ensures the trustworthiness of the datasets for reuse. Finally, the applications layer
hosts the applications by which the users (humans and other systems) exchange and reuse
the information. The XML code produced from the semantic annotation (Figure 9) populate
the syntax layer. Similarly, the semantic annotation itself provides the information for
the semantics layers. Finally, some segments of the Roughness Model (Figure 6) can be
used in the provenance layer. In this case, Roughness DNA can be input to a DNA-Based
Computing (DBC) [54,55] system to see the integrity of the datasets to be transferred to
digital twins of surface roughness. It has been shown that a DBC system effectively builds
trust in the content related to the manufacturing process. Consequently, a DBC system
can help achieve a trustworthy exchange of content. This phenomenon is referred to as
pragmatic adaptation of resources from one working environment (big data) to another (digital
twin). See [54,55] for more details. It is worth mentioning that as a consequence of the
biologicalization of manufacturing, representation of manufacturing data and knowledge
using DNA-like information has earned a great deal of attention [29,56].
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6. Concluding Remarks

The datasets included in human-cyber-physical system-friendly BD must have the
following three characteristics: (1) The datasets must be readily accessible to all stakehold-
ers through the Internet; (2) The datasets must be both human- and machine-readable;
(3) The datasets can effortlessly be integrated with the machine-learning-based knowledge
extraction segment of a digital twin. Unfortunately, BD exhibiting the abovementioned
characteristics is not readily available. Thus, it (BD) needs to be prepared from the docu-
mentation of past research and operational activities. This is a challenge because of the lack
of a steadfast procedure. This study fills this gap by presenting a state-of-the-art method
for preparing the datasets of surface roughness to be included in industrial BD from the
context of smart manufacturing and cognitive computing.

The surface roughness datasets included in human-cyber-physical system-friendly
BD consist of four segments: semantic annotation, roughness model, simulation algorithm,
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and simulation system. These segments provide input information for the input module,
modeling module, simulation module, and validation module, respectively, of a digital
twin dedicated to administering surface roughness in a human-cyber-physical system.

The semantic annotation segment of the dataset boils down to a concept map. A
human- and machine-readable concept map is developed for the dataset of surface rough-
ness. The information of other segments (roughness model, simulation algorithm, and
simulation system) can be integrated with the semantic annotation, which is done in
this article.

The delay map of surface roughness profile heights plays a pivotal role in the dataset
preparation.

It is confirmed that the proposed method can be used to prepare datasets of surface
roughness of milling, turning, grinding, electrical discharge machining, and polishing. In
the next phase of this study, the surface profile height datasets of other processes will be
considered to prepare surface roughness BD comprehensively.

Instead of the surface roughness modeling method used in this study, other modeling
methods such as Markov chain, DNA-based computing, non-stationary Gaussian process,
and semantic modeling can be used. The roughness model, simulation algorithm, and sim-
ulation system segments are in accord with the modeling method. Even though the dataset
segments are reconstructed according to the modeling method, the data structure remains
the same. Thus, the dataset structure (semantic annotation, roughness model, simulation
algorithm, and simulation system) serves as the metadata of the surface roughness.
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