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Abstract: Nowadays, the high-dimensionality of data causes a variety of problems in machine
learning. It is necessary to reduce the feature number by selecting only the most relevant of them.
Different approaches called Feature Selection are used for this task. In this paper, we propose a
Feature Selection method that uses Swarm Intelligence techniques. Swarm Intelligence algorithms
perform optimization by searching for optimal points in the search space. We show the usability of
these techniques for solving Feature Selection and compare the performance of five major swarm
algorithms: Particle Swarm Optimization, Artificial Bee Colony, Invasive Weed Optimization, Bat
Algorithm, and Grey Wolf Optimizer. The accuracy of a decision tree classifier was used to evaluate
the algorithms. It turned out that the dimension of the data can be reduced about two times without
a loss in accuracy. Moreover, the accuracy increased when abandoning redundant features. Based on
our experiments GWO turned out to be the best. It has the highest ranking on different datasets, and
its average iteration number to find the best solution is 30.8. ABC obtained the lowest ranking on
high-dimensional datasets.

Keywords: swarm intelligence; feature selection; dimensionality reduction; machine learning;
comparative analysis

1. Introduction

We are living in an age of Big Data. As the amount of data we collect is enormously
growing all the time, it becomes more important to extract the relevant information. When
using traditional model-based machine learning methods, high-dimensional data increase
the search space and computational time. Moreover, it can make noise, which affects the
construction of the model, resulting in effectiveness loss. To solve problems arising from
the high dimensionality of data, researchers mainly use two approaches: feature extraction
and feature selection [1]. Feature extraction creates a low-dimensional feature space by
combining some features. Feature selection removes redundant attributes and creates a
small subset of features that are relevant for the model.

We can perform a full forward feature selection by choosing the best feature from the
subset in each step, but it has 2n possible solutions where n is the total number of features.
So when n is large, the time complexity is too high. We are looking for faster solutions.

Feature Selection (FS) can be considered an optimization problem where we have a
search space of all features, and we want to find the optimal ones. There are three basic
steps in a typical FS method:

1. a generation procedure to generate the next candidate subset;
2. an evaluation function to evaluate the subset under examination;
3. a validation procedure to either choose the subset or abandon it.

In this paper, we propose a Swarm Intelligence solution for Feature Selection. Among
a large variety of known SI algorithms, we chose five that are considered to be effective:
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Particle Swarm Optimization (PSO), Bat Algorithm (BA), Artificial Bee Colony (ABC), Inva-
sive Weed Optimization (IWO), Grey Wolf Optimizer (GWO) and compared them. Firstly,
we provide SI definition and describe the chosen SI techniques in Section 3. Applying the
usual SI structure for solving FS is presented in Section 4. In Section 5, we talk a little about
the framework, show the experiments and compare the performance of implemented SI
algorithms. Finally, Section 6 summarizes the effectiveness of the proposed approaches
and mentions some future works.

2. Related Works

There are plenty of reviews on techniques for reducing the number of features.
Li et al. [2] provides a comprehensive overview of similarity-based, information-theoretical-
based, sparse-learning-based, and statistical-based methods. Saeys et al. [3] focuses on the
application of FS techniques in bioinformatics. Beyond traditional methods, Jović et al. [4]
reviews recent hybrid approaches for FS. A great overview of FS in supervised and unsu-
pervised learning is provided by Cai in [5].

When talking about dimension reduction, multidimensional scaling [6] is always men-
tioned. It is a set of techniques, that aim to find a configuration of points in a space, where
each point represents one of the objects or individuals, and the distances between pairs of
points in the configuration match as well as possible the original dissimilarities between
the pairs of objects or individuals. Another popular technique is principal component
analysis [7]. It is based on replacing the original variables by a smaller number of derived
variables, the principal components, which are linear combinations of the original variables.
Park et al. [8] compares several linear discriminant analysis algorithms. These algorithms
reduce the dimensionality by finding an optimal linear transformation that maximizes the
class separability.

Relatively new methods called Swarm Intelligence (SI) are gaining popularity in FS as
they can solve NP-hard computational problems. Authors of Swarm Intelligence Algorithms
for Feature Selection: A Review [1], A survey on swarm intelligence approaches to feature selection
in data mining [9] and Review of swarm intelligence-based feature selection methods [10] provide
reviews on applying SI for FS. However, we did not find articles comparing different
algorithms on the same datasets.

3. Materials and Methods
3.1. Swarm Intelligence

SI algorithms are a set of nature-inspired artificial intelligence techniques. The term
Swarm Intelligence was first introduced in 1993 by Beni and Wang [11]. Nowadays, SI is
commonly accepted as a branch of Computational Intelligence. It concerns the collective,
emerging behavior of multiple, interacting agents that follow some simple rules [12]. Each
agent may be considered unintelligent, while the whole system of the multiple agents may
show some self-organization behavior and thus can behave like some sort of collective
intelligence. According to [13], the main properties for the SI-based algorithms can be
summarized as follows:

• Agents share information among each other.
• Self organization and autonomy of each agent.
• Adaptability and a fast response to environment change.
• It can be easily parallelized for practical and real-time problems.

In SI algorithms, a population of individual agents move in the search space and
cooperate with each other. Each agent represents a possible solution, and this solution is
evaluated by the fitness function. Agents become better and better over iterations, then
eventually find good enough solutions [14].

The general phases of each SI algorithm are shown in Figure 1. At first, agents should
be initialized. Most of the time, they are located on random points in the search space, but as
far as the space of features is different from the usual Descartes coordinate system, we will
discuss initializing in detail in Section 4. After that, each agent is evaluated by the fitness
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function. In our case, accuracy of the machine learning model is the main aspect of the
fitness function. In optimizing algorithms, most of the time, the stop condition is a defined
number of iterations, or it can be a value that we think is good enough. Therefore, while it
did not reach either of these conditions, one iteration of the main phase is performed. It
includes moving agents, updating their properties, and refreshing the best solution(s). In
the end, the global best solution is returned.

Similar to other search algorithms, it is important to establish a proper balance between
exploration and exploitation in swarm optimization approaches. In some algorithms, it is
achieved by controlling parameters (PSO), while others use more randomness in the search
(ABC, BA).

In the past 30 years, a large number of SI algorithms have emerged. The source of
inspirations are varying from human society (TLBO, BSO), animals (BA, GWO, MA, LOA),
insects and birds (ABC, PSO, ACO, FA, CS, GSO), bacteria (BFO), weeds (IWO), and also
some human-made phenomenon (FWA).

Evaluate fitness function

Return the global best solution

Update and move agents
Stop condition 

reached?

Yes

No

Initialize population

Figure 1. The Swarm Intelligence basic algorithm.

3.2. Particle Swarm Optimization

PSO was one of the first SI algorithms, introduced by Kennedy and Eberhart in
1995 [15]. Each individual in the particle swarm is composed of three D-dimensional
vectors, where D is the dimensionality of the search space. These are the current position
xi, the previous best position pi, and the velocity vi. Moreover, each particle knows the
global best solution so far: g. The velocity of each particle is iteratively adjusted so that the
particle oscillates around pi and g locations. Eventually, the swarm as a whole, like a flock
of birds collectively foraging for food, is likely to move close to an optimum of the fitness
function [16]. This process is presented in Algorithm 1.

3.3. Artificial Bee Colony

ABC is based on the foraging behavior of honey bees. It was proposed by Karaboga
in [17]. Honey bees collect nectar from vast areas around their hive and communicate with
each other via a dance that informs other bees in the hive as to the direction, distance, and
quality rating of food sources [18]. There are three types of bees: employees, onlookers,
and scouts. Scout bees employ a random flying pattern to discover new food sources and
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replace the abandoned one with the new food source [12]. Employee bees fly to known
food sources and collect nectar, then return to the hive and produce a dance. According to
this dance, onlooker bees choose the best food sources found by employee bees and exploit
them. Algorithm 2 shows this procedure with a detailed description of the moving strategy.

Algorithm 1: PSO
Result: Best position and fitness value
Initialize a population array of particles with random positions and velocities on

D-dimensions in the search space;
while Stop condition not met do

foreach particle do
Evaluate fitness function;
if current fitness value is better than pbesti then

Set pbesti equal to the current value and pi equal to the current location
xi;

end
Identify the particle with the best pbest so far, assign pbest to global best

gbest and its location pi to g ;
Change the velocity and position of the particle according to the following
equations

(see notes below):

vi = (w× vi) + U(0, f1)× (pi − xi)× c1 + U(0, f2)× (g− xi)× c2, (1)

xi = xi + vi (2)

end
end
/* Notes: ;
- U(0, fi) represents a vector of random numbers uniformly distributed
in [0, fi], which is randomly generated at each iteration and for each
particle ;
- × is component-wise multiplication ;
- w, c1 and c2 are parameters to control exploration and exploitation.

Usually, w decreases linearly with the number of iterations
(mostly when optimizing hyperparameters like in [19]), but in
this research, we used a fixed value - 0.5˙ */

3.4. Invasive Weed Optimization

The only evolutionary algorithm described in this paper is IWO [20], inspired by
the colonization of invasive weeds in nature. A finite number of weeds are being spread
out over the field. Those weeds that have better adoption to the environment and take
more unused resources grow faster and produce more seeds. The newly produced weeds
are randomly spread over the parent weed and grow into flowering weeds. When the
maximum number of weeds is reached on the field due to the limited resources, only those
weeds with better fitness can survive and produce new weeds [21]. Others are eliminated.
This competitive contest between the weeds causes them to become well adapted and
improved over time. The process is addressed in detail in Algorithm 3.



Big Data Cogn. Comput. 2021, 5, 36 5 of 15

Algorithm 2: ABC
Result: Best position and fitness value
Initialize n

2 random food sources. Initialize half of the population as employee
bees and the other half as onlooker bees;

while Stop condition not met do
foreach employee bee do

Choose a random food source y;
Choose a random dimension j;
Update the position of the bee using this equation:

xnewj = xoldj + (xoldj − yj)×Φ (3)

Calculate new fitness values;
if new fitness value is better than the old one then

accept new position;
end

end
foreach food source do

Compute probability to be chosen:
(see notes below):

pi =
fi
fs

(4)

end
foreach onlooker bee do

Choose one food source (z) to exploit based on its probability;
Choose a random food source y;
Choose a random dimension j;
Update the position of the bee using this equation:

xnewj = zj + (zj − yj)×Φ (5)

if new fitness value is better than the old one then
Accept new position;

end
end
foreach food source do

(scout bee phase)
if food source was visited more than t times then

Abandon that food source, create a random new one, and evaluate
fitness;

end
end
Choose best bee so far;

end
/* Notes:;
- fi is current agent’s fitness, and fs is the sum of all employee
bee fitnesses.;
- Φ is a random uniformly distributed number in [-1,1]˙ */
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Algorithm 3: IWO
Result: Best position and fitness value
A population of initial weeds is being spread out over the D-dimensional problem

space where random positions and fitness values are evaluated;
while Stop condition not met do

foreach weed do
Calculate the number of seeds the weed will produce based on this
equation:

(see notes below)

S = (minseeds + (maxseeds−minseeds)× ratio) (6)

Create S new seeds with positions that are normally distributed random
numbers with mean equal to the location of the parent plant and standard
deviation decreasing linearly with the number of iterations;

Evaluate their fitness values and add them to the population;
end
if population size reached it’s limit L then

Leave only L best weeds and eliminate the rest (competitive exclusion);
end
Set the best and the worst weeds;

end
/* Notes:;

- ratio = fi− fw
fb− fw

, where fb is the best fitness value, and fw is the

worst;
- minseeds and maxseeds are predefined parameters that represent the
minimum and maximum number of seeds that a weed can produce;

*/

3.5. Bat Algorithm

BA simulates the echolocational behavior of micro-bats. All bats create a loud and
short pulse of sound and sense the distance of an object by using the returning echo. In
some way, they are able to decide the difference between an obstacle and a prey, allowing
them to hunt in darkness. Bats fly randomly with velocity vi at position xi with varying
frequency f and loudness A to search for prey. They can automatically adjust the frequency
of their emitted pulses and the rate of pulse emission r depending on the proximity of their
target [22]. Each bat listens to the voices of other bats and flies in the direction of the prey.
The process of using simulated bats for optimization problems is presented in Algorithm 4.

3.6. Gray Wolf Optimizer

The GWO proposed in [23] has been inspired by the social intelligence of gray wolves
that prefer living in a group of 5–12 individuals. In order to simulate the leadership
hierarchy of the wolf pack, four levels are considered in this algorithm: alpha (α), beta
(β), delta (δ), and omega (ω) [23]. According to [24], hunting is conducted in the following
way. Firstly, the gray wolves search and track the prey; secondly, the alpha α leads the
others to encircle the prey in all directions; thirdly, α commands the β and δ wolves to
attack the prey. If the prey escapes, the other wolves ω, which are supplied from the rear,
will continue to attack the prey until it is caught. In the iterative optimization process, the
possible position of prey is assessed by three wolves: alpha, beta, and delta. It is shown in
Algorithm 5.
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Algorithm 4: BA
Result: Best position and fitness value
Initialize position xi, velocity Vi, frequency Fi, loudness Ai and pulse rate ri of

each bat;
Evaluate fitness values;
while Stop condition not met do

foreach bat do
Generate new solutions by adjusting frequency, updating velocities and
locations/solutions according to following equations:

(see notes below)

Fi = Fmin + rand1× (Fmax − Fmin) (7)

Vi = Vi + (xi − xbest)× Fi (8)

xi = xi + Vi (9)

if rand2 > ri then
Generate a local solution around the best solution:

xi = xi + Aav × rand3 (10)

end
if new solution is better than the old one and rand4 < Ai then

Accept the new solution;
Update Ai and ri:

Ai = Ai × 0.9 (11)

ri = ri × (1− exp (−0.05× t)) (12)

end
end
Set best bat;

end
/* Notes:;
- rand1, rand2, rand4 are uniformly distributed random values in
[0,1] while rand3 is uniformly distributed in [-1,1] ;
- Aav represents the average loudness of all bats;
- t is the actual iteration number;

*/
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Algorithm 5: GWO
Result: Best position and fitness value
Initialize a population of n gray wolves with random positions;
while Stop condition not met do

Find the best α, second best β, and third best δ solutions based on their fitness
values;

Set coefficient a which linearly decreases from 2 to 0 with the increasing of
iteration number;

foreach wolf do
Update current wolf’s position Xi according to the following equations:

Dα = |C1 × Xα − Xi| (13)

Dβ = |C2 × Xβ − Xi| (14)

Dδ = |C3 × Xδ − Xi| (15)

X1 = Xα − A1 × Dα (16)

X2 = Xβ − A2 × Dβ (17)

X3 = Xδ − A3 × Dδ (18)

Xi =
X1 + X2 + X3

3
(19)

end
end
/* Notes:;
- A = 2a ∗ r1− a;
- C = 2 ∗ r2;
- r1 and r2 are random vectors located in the scope [0, 1];

*/

3.7. Summarizing Algorithms

In Table 1, you can find a short summary about the main properties of the presented algorithms.

Table 1. Short summary of the algorithms.

ID Inspiration Exploration Exploitation Aim Points Num of
Parameters

PSO birds high low 2 3
ABC honey bees low medium 2 1
IWO weeds low high 1 4
BA bats medium high 1 4

GWO wolves high medium 3 0

4. Feature Selection

In Section 1, we talked a bit about the importance of applying feature selection to the
data. Algorithms of FS can be classified into two classes: filters or wrapper approaches.
The former class includes methods independent from classifiers that work directly on
data, trying to find some correlations between variables. For example, fuzzy integral-
based aggregation processes can deal with this task [25]. On the other hand, wrapper
feature selection methods involve classifiers and find interaction between variables [26].
As the literature shows, wrapper-based methods are better than filter-based techniques
for classification algorithms [27,28]. In this section, we will describe how FS can be con-
ducted with SI methods and how can we improve decision tree classification by reducing
data dimensionality.
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4.1. Decision Tree Classifier

When choosing a classification algorithm for wrapper FS approaches aspects that
should be counted are computational time, generality, and classification performance. A
study realized by Xue in [29] examines four corresponding algorithms: support vector
machine (SVM), decision tree (DT), K-nearest neighbors (KNN), and Naïve Bayes (NB). It
recommends choosing DT or NB if users have a high demand on the computational time
and also need to avoid poor classification performance. That is one reason why we chose
DT for testing our FS algorithms. Moreover, it is easy to implement and does not acquire a
lot of parameter tuning.

The decision tree classifier by Quinlan [30] is made of decision nodes and leaf nodes.
Each decision node corresponds to a test X over a single attribute of the input data and has
a number of branches, each of which handles an outcome of the test X [31]. Each leaf node
represents a class that is the result of a decision for a case. The maximum depth of the tree
is limited by a parameter. Once a decision tree is built, the testing data, which are in the
same format as the training data, can be classified.

4.2. Search Space Representation

Each SI algorithm was presented in a way where agents are moving in 2-dimensional
continuous space. Therefore, the main challenge here is to convert this space so that a
point represents which features are selected. A good representation should satisfy the
condition that if two continuous values are close to each other, their transformed values
are close to each other as well. In most of the related works, it was carried out by creating a
binary variant of the chosen algorithm [28,32,33]. A straightforward way for that is to keep
using the continuous space and convert the continuous position to a binary position. A
sigmoid function is widely used for this task since it can convert any continuous value to a
continuous value in the range [0,1], which is then converted to a binary value by comparing
it with a random number or a threshold. However, it is complicated to decide which
sigmoid function to use. Moreover, in this kind of problem, it is not necessary because
we can scale [0,1] space to any other continuous values. In our experiments, we used
D-dimensional search space with [-100,100] edges, where D is the total number of features,
and the continuous value is compared to 0. Each dimension represents a feature, and for
its coordinate x: if x > 0, the corresponding feature is selected; otherwise, the feature is
discarded. We consider this is a big enough space for agents to move in.

Initialization: the position of each agent is a random D-dimensional vector with
minimum -100 and maximum 100. The only exception is ABC, where food sources are
initialized first, and then agents are assigned to food sources.

Movement: agents move in the same way as in the original SI algorithms presented
in Section 3. However, it is possible that after moving, the position of an agent will be
outside of [−100,100] boundaries. In this case, we relocate the agent to the border of the
search space.

4.3. Fitness Function

The fitness function is a function to evaluate the performance of the optimization
method. This feature selection aims to choose a subset of features for improving prediction
accuracy and decreasing the size of the structure without significantly decreasing prediction
accuracy of the classifier built using only the selected features. That is why we used the
following fitness function:

F = 0.9× accuracy(DT) + 0.1× 1
numF

(20)

where accuracy(DT) is the accuracy of the decision tree model with selected features, and
numF represents the number of selected features. Using the number of selected features
in the fitness function also prevents early convergence of the algorithm because even if
accuracy is 1, it does not stop and tries to achieve the same accuracy with fewer features.
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5. Results

In our experiments, we implemented the mentioned algorithms and chose different
datasets to compare their performances. The maximum number of iterations was set to
100 because most of the time, even after 50 iterations, the best solution did not change.
Furthermore, using more iterations would result in a long computational time. The popu-
lation size was also set to 100. A large number of agents like this adds more randomness to
the algorithm and increases the exploration factor. While comparing different approaches,
these parameters should be equivalent.

5.1. Datasets

In Table 2, you can see a list of datasets that we used for the experiments. Every dataset
can be downloaded from the UCI Machine Learning Repository [34]. We included data
from different areas, with a varying number of attributes and instances for comparison
fairness.

Table 2. The characteristics of the used datasets.

ID Name Attribute Types Instances Attributes

1 Arrhythmia Categorical, Real 452 279
2 Chess (KR vs. KP) Categorical 3196 36
3 Crowdsourced Mapping Real 10,546 29
4 Hepatitis C Virus (HCV)

for Egyptian patients Integer, Real 1385 29
5 MEU-Mobile KSD Integer, Real 2856 71
6 Phishing Websites Integer 2456 30
7 QSAR androgen receptor Integer 1687 1024
8 DBWorld e-mails Integer 64 4702
9 Musk (Version 2) Integer 6598 168

10 A study of Asian Religious
and Biblical Texts Integer 590 8265

11 Ozone Level Detection Real 2536 73
12 Diabetic Retinopathy Integer, Real 1151 20
13 Geographical Original of Music Real 1059 68
14 Wall-Following Robot Navigation Real 5456 24
15 Insurance Company Benchmark Categorical, Integer 9000 85
16 Internet Advertisements Integer, Real 3279 1558
17 Amazon Commerce reviews Real 1500 10,000

5.2. Data Preprocessing

Real-world data generally contain noises and missing values, and the data may be
imbalanced or in a format that cannot be directly used for machine learning models. Before
training the model, we did data preprocessing, which is a required task for cleaning the
data and making it suitable for the classifier.

At first, we throw away rows that contain missing values. After that, for numerical
columns, we applied standard scaling, which means removing the mean and scaling to
unit variance. The standard score of a sample x is calculated as:

z = (x− u)/s

where u is the mean of the training samples, and s is the standard deviation of the training
samples. For categorical columns, we applied dummy encoding, which means creating
a column for each categorical value that shows if a particular category is present in that
instance (only categories with a 1/50 frequency rate are kept, others are marked as infre-
quent). Note that this transformation creates new features, so feature selection is applied
for an extended number of columns.
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Finally, data were split into train and test sets. The test size was 20% of all data. Since
some of the datasets were imbalanced, we took care of proper splitting so that the classes
were proportionally distributed between train and test sets.

5.3. Results

We collected most of the experimental results in two tables. Table 3 shows the max-
imum accuracy scores reached during optimizations, and Table 4 shows the number of
features selected for achieving these scores. Each row contains results for one dataset, and
column Original consists of values present before optimization.

Table 3. Accuracy scores before and after optimization.

Dataset ID Original PSO IWO ABC BA GWO

1 0.357 0.643 0.714 0.643 0.643 0.643
2 0.997 0.992 0.997 0.994 0.997 0.997
3 0.874 0.895 0.886 0.890 0.892 0.896
4 0.274 0.343 0.368 0.365 0.357 0.357
5 0.642 0.710 0.682 0.682 0.685 0.699
6 0.961 0.964 0.961 0.961 0.962 0.969
7 0.875 0.931 0.920 0.917 0.937 0.931
8 0.727 1.0 1.0 1.0 1.0 1.0
9 0.965 0.989 0.994 0.986 0.993 0.992

10 0.712 0.890 0.847 0.831 0.864 0.890
11 0.915 0.949 0.947 0.945 0.949 0.954
12 0.621 0.709 0.691 0.730 0.739 0.739
13 0.207 0.349 0.325 0.312 0.382 0.373
14 0.996 0.996 0.994 0.997 0.995 0.995
15 0.880 0.936 0.923 0.920 0.926 0.931
16 0.968 0.983 0.977 0.980 0.980 0.979
17 0.337 0.497 0.460 0.413 0.483 0.473

Table 4. The number of features before and after optimization.

Dataset ID Original PSO IWO ABC BA GWO

1 279 118 126 140 102 77
2 73 36 42 43 41 28
3 28 15 17 18 12 19
4 28 13 12 14 11 13
5 71 36 39 36 38 39
6 30 22 22 20 20 21
7 1024 493 512 515 503 511
8 4702 2131 2271 2311 1971 2034
9 168 84 83 104 89 93

10 8266 4085 4118 4235 4101 4063
11 73 39 32 40 31 38
12 19 9 11 12 8 7
13 68 38 32 36 38 28
14 24 11 12 16 9 7
15 85 28 43 31 34 33
16 1558 732 784 776 681 751
17 10,000 4960 5012 4969 4958 4908

It can be seen in Table 3 that almost all accuracy scores reached with some optimization
algorithm are better than the scores without optimization. The only exceptions are the
second and fourteenth datasets. This can be considered an excellent performance because
the optimization is almost lossless in terms of accuracy scores. The number of features
was always reduced significantly, stagnating around half of the original number. A great
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improvement can be seen in dataset 8, where every optimization algorithm could achieve
1.0 accuracy by reducing the number of attributes, but each example has promising results.

The average iteration number needed to reach values presented in Tables 3 and 4 can
be seen in Figure 2. The population size is 100 agents, so in one iteration, 100 models are
trained. However, the sizes of these models are much smaller than the original model
sizes because of the reduced number of attributes. Therefore, the computational time of
one training process is smaller as well. However, with around 5000 model training, this
optimization approach is very time-consuming, so it is rational to use it when the dataset
has more than 50 attributes.

0

20

40

60

PSO IWO ABC BAT GWO

Figure 2. The average iteration number to reach the best solution.

5.4. Comparing Algorithms

We used the results from Tables 3 and 4 to rank the algorithms according to the fitness
function mentioned in Section 4.3. Making any decisions based on the average accuracy or
fitness values did not seem rational because all datasets are very different with varying
accuracy ranges. Our ranking strategy was the following: on each dataset, we ranked the
algorithms from 1 to 5 where 1 was for the algorithm that had maximum fitness value, 2
for the second-best, and so on; after that, we added all rankings grouped by algorithm. The
results are presented in Figure 3. It can be seen that GWO outperformed other algorithms,
so it can be considered best during this experiment.

As you can see, ABC and IWO turned out to be worse than the other three algorithms.
The reason behind this for ABC is that it does not work well with high dimensions. When
searching for better solutions, one bee changes only one dimension of its position, which
means changing only one feature. However, when the number of features is not large (for
example datasets 4 and 14), ABC tends to outperform the other algorithms. Therefore,
if you chose ABC for feature selection, you should use some other representation of the
search space that is not so high-dimensional or modify the algorithm by changing more
dimensions in one step. The problem with IWO is that despite using a higher parameter
for step size decreasing (λ) , after a few iterations, it is too small to potentially change the
solution. It can be seen in Figure 2 that IWO needed the fewest average iteration number,
which is caused by the problem mentioned above. To solve it, you can use a higher λ
parameter, for example, 0.9.
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Figure 3. A ranking of algorithms based on results.

Our variant of PSO has higher exploration than exploitation, which gives it an oppor-
tunity to learn the space better. However, according to the results, most of the time, it can
not find the best solution. The exploration and exploitation factors should be balanced
individually depending on the dataset.

BA and GWO showed the best performance in both factors: increasing the accuracy
score and decreasing the future number. The effectiveness of GWO is in its logic to move
in the direction of three points instead of one or two like in other algorithms. It causes
active movement in different dimensions. In BA algorithm, the better solution is not always
accepted by an agent in order to achieve higher exploration. That is why it can take longer
to find good solutions. For this reason, if you should choose one algorithm, we would
recommend GWO.

Researches in this field mostly highlighted PSO, ABC, and Ant Colony Optimization
as the most effective SI algorithms for FS. However, from the results, it can be seen that
GWO and BA definitely deserve more attention and further studies.

5.5. Limitations

The findings of this study have to be seen in light of some limitations. Because of
the train-test split mentioned in Section 5.2, the obtained accuracy results can vary when
the split differs from the original one. The reason why we did not use cross-validation
is because of its time complexity. SI algorithms are very time-consuming, and nearly
100 models are trained every iteration. Executing them with more train-test splits would
significantly increase the research time and the required resources. Moreover, in this
research, we are not focused on the exact accuracy scores. We are interested in how they
change when reducing the number of features.

6. Conclusions and Future Works

In this paper, we showed the usability of SI methods for FS, implemented five SI
algorithms, and compared their performance using decision tree classifier. It turned out
that these methods can be effective for reducing the number of features as well as increasing
the accuracy of machine learning model. The best performance according to ranking on
different datasets was produced by GWO, but BA and PSO were very effective too.
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Because of the random initialization on the beginning, agents are situated in the way
that the number of selected features oscillates near the of the total number. To make the
optimization faster, other initialization approaches can be used.

The paper provides all the information needed to realize FS with any of the five
algorithms. However, individual parameter tuning is recommended before or during the
optimization to achieve better results.

Future Works

The following steps can be carried out to improve the optimization:

• Try the optimization with other machine learning algorithms, for example, support
vector machine or neural networks;

• Improve IWO or ABC using tips from previous section;
• Try different population sizes;
• Do parameter tuning;
• Implement and compare other SI methods;
• Try combining algorithms.
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