big data and

&

cognitive computing

Article

NLA-Bit: A Basic Structure for Storing Big Data with
Complexity O(1)

Krasimira Borislavova Ivanova

check for

updates
Citation: Ivanova, K.B. NLA-Bit: A
Basic Structure for Storing Big Data
with Complexity O(1). Big Data Cogn.
Comput. 2021, 5, 8. https://doi.org/
10.3390/bdcc5010008

Received: 28 December 2020
Accepted: 18 February 2021
Published: 24 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Information Technology Department, University of Telecommunications and Post, 1700 Sofia, Bulgaria;
krasy78@mail.bg

Abstract: This paper introduces a novel approach for storing Resource Description Framework (RDF)
data based on the possibilities of Natural Language Addressing (NLA) and on a special NLA basic
structure for storing Big Data, called “NLA-bit”, which is aimed to support middle-size or large
distributed RDF triple or quadruple stores with time complexity O(1). The main idea of NLA is
to use letter codes as coordinates (addresses) for data storing. This avoids indexing and provides
high-speed direct access to the data with time complexity O(1). NLA-bit is a structured set of all
RDF instances with the same “Subject”. An example based on a document system, where every
document is stored as NLA-bit, which contains all data connected to it by metadata links, is discussed.
The NLA-bits open up a wide field for research and practical implementations in the field of large
databases with dynamic semi-structured data (Big Data). Important advantages of the approach
are as follow: (1) The reduction of the amount of occupied memory due to the complete absence of
additional indexes, absolute addresses, pointers, and additional files; (2) reduction of processing time
due to the complete lack of demand—the data are stored/extracted to/from a direct address.

Keywords: Big Data; Natural Language Addressing; NLA-bit; DBMS time complexity O(1)

1. Introduction

Traditional databases are built by taking into account the presence of regularity or
homogeneity in the data. Regularity is a principle in design standardization, providing
an abstract view of the world in which exceptions to the rules are not taken into account,
insofar as they are considered insignificant when designing a well-structured scheme. At
the same time, the a priori homogeneity required by the relational model, as a rule, leads
to a lack of flexibility in modeling the dynamics, as found in semantic web data [1].

The variety of data forms and types has led to the introduction of a “semi-structured
data model”. This model better fits web data such as HTML and XML [2]. As a rule, basic
approaches to storing semi-structured data either map the data to relational databases, or
use non-relational databases and/or flat files and indexes [3].

Semi-structured data have emerged as a leading topic, as there are a number of data
sources that cannot be limited by a schema, but need to be organized in some kind of
database. In addition, the need for an extremely flexible data-exchange format between
different databases is becoming increasingly important [4].

1.1. Graph Databases

Many of the semi-structured models are “graph-like”. This brought attention back to
the graph models. These are models in which the data structures for the schema and/or
instances are represented as a directed, probably labeled, graph. Data manipulation is
expressed through graph-oriented operations [5].

Database graph models emerged in the 1980s and early 1990s, and their influence
gradually diminished with the advent of other database models, in particular geographic,
spatial, semi-structured and XML models. Graph databases are used in areas where

Big Data Cogn. Comput. 2021, 5, 8. https:/ /doi.org/10.3390/bdcc5010008

https://www.mdpi.com/journal /bdcc

https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-1057-6789
https://doi.org/10.3390/bdcc5010008
https://doi.org/10.3390/bdcc5010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bdcc5010008
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc5010008?type=check_update&version=2

Big Data Cogn. Comput. 2021, 5, 8

2 of 20

information about the interconnectedness or topology of the data is more important than,
or as important as, the data themselves. Graph databases use a model in which the data
structures for the schema and/or instances are represented as an oriented graph, and the
data manipulation is set by graph-oriented operations [5].

We may classify the graph databases’ models in two main classes:

e With explicit schema, such as Gram [6], GMOD [7], PaMaL [8], GOOD [8,9], GOAL [10],
GDM [11,12], Logical Data Model (LDM) [13,14], Hypernode Mode (HyM) [15-17],
and GROOVY [18]. The explicit schema exists separately from the data in the database
and is used as an external pattern for data organization.

e With implicit schema such as RDF [19-21], GGL [22-25], Simatic-XT [26], and Object
Exchange Model (OEM) [27]. Implicit schema is integrated in the database as a root of
the data structure. In other words, the first data structure which can be accessed is the
schema from which all other structures may be traversed, using it as a pattern.

1.2. Resource Description Framework

The W3C’s recommendation, called “Resource Description Framework” (RDF), is a
standard syntax for semantic web annotations and languages [19,28]. There is a growing
amount of data that is not structured enough to be supported by traditional databases, but
contains regular structures that can be used in queries. Thus, the main purpose of RDF is
to describe and allow the processing of irregular or semi-structured data [29].

The basic structure of RDF is a collection of triples, each of which consists of a Subject,
a Relation and an Object. The set of RDF triples is called an RDF graph. The RDF standard
allows RDF quadruple structure which consists of Subject, Relation, Object and Context [30].
We assume that the triple is a quadruple with an empty Context.

An important advantage of RDF as a storage language is the ability to connect different
data sources through a number of additional triplets, to represent the new connections.
With the Relational Database Management Systems (RDBMS), this is very difficult because
the schema may need to be redesigned. In addition, RDF provides great flexibility as a
result of the diversity of the graph-based model. In other words, almost any data type can
be described by RDF triplets, with no limit to the size of the graph, whereas, in RDBMS,
the scheme must be short. This is important when the data structure is not known in
advance. Finally, different types of knowledge can be presented through RDE. This allows
the extraction and reuse of knowledge from different sources [31].

Therefore, RDF offers a useful data format, which requires effective management. This
is a serious problem when working with a huge number of RDF instances. RDF repositories
should provide at least the basic operations on RDF data: searching, updating, inserting
and deleting RDF triplets.

In practice, different approaches are used to store RDF data: in main memory, in files
or in databases.

For small applications and for experimental purposes, storing and processing RDF
schemas and instances in RAM are useful because they can be effectively accessed and
manipulated. However, this cannot be a serious method for storing and processing dynamic
and very large volumes of data [32].

In order to enable permanent data storage, means for access to indexed files have been
developed, but with the increase in the amount of data, it is imperative to use a database
management system. Relational and Object-relational database management systems are
mainly used.

In general, the systems for RDF data management are based on the following (see also
Reference [33]):

e Structures in memory (TRIPLE [34], BitMat [35], Hexastore [36], Jena [37,38], YARS [39],
and Sesame [40,41]);

e Popular relational databases (ICS-FORTH RDF Suite [42,43], Semantics Platform
2.0 of Intellidimension Inc., Belfast, ME, USA [44], Ontopia Knowledge Suite [45],

Big Data Cogn. Comput. 2021, 5, 8

30f20

Hexastore [36], Jena [37,38], 3store [46], 4store [47], Kowari [48], Oracle [49], RDF-
3X [50], RDFSuite [42], Virtuoso [51], and Sesame [40,41]);

e File systems, usually indexed by key B-trees and/or non-relational databases, such as
Oracle Berkeley DB (Sesame [40,41], rdfDB [52], RDF Store [53], Redland [54], Jena [55],
Parliament [56], and RDFCube [57]).

1.3. Technologies for Storing RDF Data

Good reviews of existing technologies for storing and retrieving RDF data are given
in References [1,58]. Technologies for storing RDF data can be classified into the following:

(1) General schemes, i.e., schemes that do not support certain structures and run on
third-party databases, such as Jena SDB, which can connect to almost all relational
databases, such as MySQL, PostsgreSQL and Oracle;

(2) Specific to schemas that provide storing with their own database structures (Virtuoso,
Mulgara, AllegroGraph and Garlik JXT).

1.3.1. General Schemes
Vertical Presentation

This is the simplest RDF schema with only one table needed in the database.

The table contains three columns, called Subject, Relation and Object. Indexes are
added for each column [59]. The biggest advantage of this scheme is that it does not require
restructuring in case of data changes. This approach is used by 3store [46], RDFStore [53],
Redland [54], Oracle [60,61], and rdfDB [62]. In many publications “Relation” is named as
a “Property” with the same meaning.

Normalized Triple Store

An additional idea is the normalized triple store. It consists of adding two additional
tables to store unique registration identifiers (URIs) and literals separately, which requires
significantly less storage space [46] (Table 1). A hybrid of simple and normalized triple
storage is also possible, in which the storing of the values themselves is either in the triple
table or in the resource table [37].

Table 1. Normalized triple store.

Triples: Resources: Literals:
Subject Relation Is Literal Object ID URI ID Value
rl 2 False r3 rl Lo #1 11 Valuel
rl r4 True 11 r2 S H2

URI, unique registration identifier.

The table can be divided horizontally into several tables, each of which represents a
separate Relation. These tables only need two columns for Subject and Object. Table names
implicitly contain Relations [63,64].

To implement the vertical partitioning approach, the tables must be stored by using a
column-oriented Database Management System (DBMS) (i.e., a DBMS designed specifically
for this case). The columns can be indexed (e.g., using a non-clustered B + tree). The main
advantage of vertical partitioning is the support for fast object join. This is achieved by
sorting tables. The vertical partition approach offers support for multivalued attributes. In
fact, if an object has more than one object value for a given property, each individual value
is listed sequentially in the table for this property. For a query, only the Relations included
in that query need to be read, and no clustering algorithm is required to split the table of
triplets into tables with two columns. Inserts are slow because multiple tables need to be
accessed [1].

Big Data Cogn. Comput. 2021, 5, 8

4 0f 20

1.3.2. Specific Schemas
Horizontal Presentation

The basic schema consists of a table with a column for the instance identifier (ID),
a column for the class name and a column for each Relation. Thus, one row in the table
corresponds to one instance. This scheme corresponds to the horizontal presentation [59]
and obviously has several drawbacks: a large number of columns, high sparsity, an inability
to handle multi-valued properties, the need to add columns to the table when adding new
properties to the ontology, etc.

Vertical Decomposition

The vertical decomposition results in one Relation table with only two columns for
Subject and Object. It is called a decomposition storage model. Relationships are also
stored in tables, e.g., the rdf:type table contains the relationships between instances and
their classes [58]. A similar hybrid scheme is used to use the combination of both class
table and class table Relation schemes (Table 2) [65].

Table 2. RDF hybrid schema (the table-per-relation approach).

ClassA: Relation1: ClassB:
1D Subject Object ID
. #1 .. #1 ... #3 ... #3

The main disadvantage of this approach is the generation of many NULL values, as
not all Relations will be defined for all Subjects. In addition, the ambiguous attributes that
are common in RDF data are difficult to express. When searching for all defined Relations
of an object, the scanning of all tables is required. The inclusion of new relationships also
requires the addition of new tables [1]. This approach has been used by systems such as
Jena2 [37,38], Sesame [40,66], RDFSuite [42], and 4store [47].

Multi-Indexing

The idea of multi-indexing is based on the fact that relationship-related queries are
not necessarily the most interesting or popular type of queries found in the real-world
semantic web applications.

RDF data should be processed equally by the following types of requests:

Triples with the same Subject;
Triples with equal Relations;
List of Subjects or Relations related to an Object.

To this end, a set of six indexes is maintained, covering all possible access schemes
that an RDF request may require. These indices are RSO, ROS, SRO, SOR, ORS and OSR (R
means Relation, O for Object and S for Subject).

At first glance, such multiple indexing would lead to a combinatorial explosion for a
simple relational table. Nevertheless, this is quite practical in the case of RDF data [30,36].
The approach pays equal attention to all elements of RDF [1]. This approach has been
used by tools such as the BitMat [35], Hexastore [36], Kowari system [48], RDF-3X [50],
Virtuoso [51], Parliament [56], RDFCube [57], TripleT [67], BRAHMS [68], RDFJoin [69],
RDFKB [70], and iStore [71].

Big Data Cogn. Comput. 2021, 5, 8

50f 20

1.4. The Goal of This Paper

The analysis of the considered tools showed that they all use one or more indexes for
access to the data. Thus, their complexity is at least O(log n).

In this paper, we introduce a novel approach for storing RDF data based on the
possibilities of Natural Language Addressing (NLA) [72,73] and on a special NLA basic
structure for storing Big Data, called “NLA-bit”, which is aimed to support very large
distributed RDF triple or quadruple stores with time complexity O(1).

In all traditional relational databases, continuous reconstructions of the index struc-
tures must be done due to the incoming dynamic data. This is a major and extremely
serious problem. The volume of data that is collected and indexed continuously soon
becomes so large that traditional databases become overloaded and their work becomes
extremely slow as they begin to use almost all the time for their own self-maintenance.

NLA-bit does not require such updates. This prevents overloading and slowing down
the operation of databases, even with the accumulation of huge arrays of data. The speed
of work is constant and independent of the volume of data, i.e., there is a constant time
complexity O(1).

In addition, important advantages of the approach are as follows:

e The reduction of the amount of occupied memory due to the complete absence of
additional indexes, absolute addresses, pointers and additional files;

e Reduction of processing time due to the complete lack of demand—the data are
stored/extracted to/from a direct address.

The NLA-bit is a fundamentally new structure to database organization that does
not replace, but naturally complements, other widely used structures of database manage-
ment systems.

By applying the idea of NLA to the dynamical perfect hash tables supported by
MDNDB™ (Multi-Domain Numbered Data Base™) [74], it is possible to realize the same
approach as multi-indexing without indexes but with direct access to all data elements.
In addition, because of not storing keywords used as addresses, the solution will occupy
les memory.

Thus, the structure NLA-bit introduced in this paper may be used in three variants:
for Subjects, for Relations and for Objects. Below we outline only the case for Subjects.

Presented in this paper is research that continues the work on possibilities of Natural
Language Addressing presented in 2015, in Reference [72], to establish special structures
suitable for working just with RDF instances. It is important that the instances may be
triples, quadruples or with many more elements. Proving the possibilities of dynamical
perfect hash tables for NLA was done in Reference [72]. In this work, the research continues
with defining a new structure which may be useful for building RDF stores.

1.5. Organization of the Paper

The paper is organized as follows. The Section 2 introduces the main concepts (Natural
Language Addressing and NLA-bit). Section 3 outlines an example based on a document
system, where every document is stored as NLA-bit which contains all data connected to it
by metadata. Section 4 presents discussion of the main results. The paper is finished by a
conclusion and the future-work section, two Appendixes, and References.

2. NLA-Bit
2.1. Natural Language Addressing (NLA)
Natural Language Addressing (NLA) consists of using codes of the letters as coordinates

(addresses) for storing the data. This avoids indexing and provides high-speed direct access
to the data with time complexity O(1). For example, let us have the following document:

document identifier: A519701/2
document data: letter of conformance of agreement for collaboration

Big Data Cogn. Comput. 2021, 5, 8

6 0f 20

In computer memory, this can be stored at a file at location address “00971555”, and
the index pair “key + pointer” is (“A519701/2”, “00971555").

The main text of the document (data) is stored, starting from the address “00971555”.
To read it, we first have to find the document identifier (name “A519701/2”) in the indexes
and then to access the address “00971555” in the file, to extract the text of the document.

In the same time, the name “A519701/2” is encoded by nine numbers (letters) if we
use the ASCII codes. “A519701/2” will look like this, (65, 53, 49, 57, 55, 48, 49, 47, 50), and
we can use this vector of codes as co-ordinates for direct addressing in a multidimensional
information space (file).

2.2. Advantages of NLA

To realize Natural Language Addressing, we use dynamic perfect hash tables [72].

Hash tables are attractive because of the constant algorithmic complexity they can
achieve. However, collisions can lead to a significant increase in execution time. Because of
this, we cannot use name encoding as hash table keys. To resolve this problem, a special
type of file internal organization with special additional indexing was established. Using
dynamic perfect hashing is good for the following reasons:

1. The function that uses the encoding of letters with integers locates unambiguously
and there is no way to get collisions;

2. This function can be used recursively for each string character and to build perfect
hash tables on many levels and thus to have quick access to the data.

For example, the array “65, 53, 49, 57, 55, 48, 49, 47, 50” can be considered as a route
to a point in a multidimensional information space and the text of the document can be
stored at this point. The hashing function is recursive and builds a hierarchical multilayer
set of tables. In the case of A519701/2, we have nine levels.

Document identifiers may be arbitrary long. The length of the words is different,
too, and it is possible to use phrases. The set of all natural words and phrases defines
a multidimensional space with different dimensions and unlimited size. It is needed a
special algorithm to convert these (logical) addresses in (physical) addresses on the hard
disk and a program to implement the algorithm, and which would allow the creation of a
new type of document-storing system.

This is realized in the MDNDB™ (Multi-Domain Numbered Data Base™) tool system.
MDNDB™ is a multi-model database which works with distributed multi-space databases,
in particular with RDF graphs. MDNDB™ is based on the access methods ArM32™,
BigArM™ and NL-ArM™ and is the instrumental tool for the “INFOS™” system. The
MDNDB™ has been used in many practical solutions since 1990 [74].

2.3. NLA-Bit

Let us remember that the RDF triple is a statement of a relationship between the
following: “Subject”; “Relation” (also called a predicate or property), which denotes a
relationship; and “Object”, which may be raw text. RDF provides a general method to
decompose any information into pieces called triples. RDF quadruple is an RDF triple with
additional fourth element “Context”, which may be raw text, too [75]. For our research, if
the “Context” is empty, then the quadruple is assumed as a triple.

Definition 1. The structured set of all RDF instances with the same “Subject” is called “NLA-bit”.

NLA-bit is structured due to different “Relations” with corresponded “Objects”. The
“Subject” may have the same Relation with many different “Objects”. This way the “Rela-
tion” connects the “Subject” with a set of objects, which, in particular, may be empty.

The set of “Objects” connected by a same “Relation” to the same “Subject” is called
NLA-bit Layer.

It is assumed, by definition, that every NLA-bit has an unlimited number of layers, as
well as that every layer has an unlimited number of objects.

Big Data Cogn. Comput. 2021, 5, 8

7 of 20

If the practical solution needs processing of requests based on NLA-bits for Relations
or NLA-bits for objects, they may be used in parallel with NLA-bits for Subjects.

If the Subject is connected with multiple Relations, they are separate addresses in the
NLA-bit space and no conflicts exist.

If a Subject with concrete Relation is connected to multiple Objects, i.e., to the set or
multi-set of Objects, the realization solution may be trivial to apply classical concatenation
of all Objects in one address point, or specific for NLA to use additional RDF elements such
as Context to address separated different values of the Objects.

For the last case, a new “composite” Object is created by composing “Object” and
“Relation”, i.e., <object: relation>, and a new RDF triple is created by using the “Context”
as relation and “Object” as itself. The RDF triple is as follow: <object:relation> <context>
<object> and corresponded NLA-bit will be for the composed new “Subject”, i.e., for
(object:relation). This approach may be used recursively if it is needed.

Let remark that the multi-sets may be converted in usual sets with unique elements
by numbering. In our case, if the “Object” is a multi-set than corresponded numbers may
be added to the “Context”.

If the “Context” is empty, the receiving time of the triple is used as “Context” and no
numbering is need.

The complexity of this, specific for NLA-bits approach, is again O(1).

Interesting case is when the Subject and Object are connected by multiple Relations.
One possible realization of such a case is to use NLA-bits for relations. Another variant is
to use separate points for all combinations of Subject and Relations which will store the
Object many times in all corresponded points. At the end, the most efficient variant is to
use Subject and Object as NLA addresses and to store all relations in corresponded points,
using additional NLA addresses. In all variants, the complexity is O(1).

The physical organization of NLA-bits is by multi-dimensional information spaces [72].
In Figure 1, a two-dimensional variant is illustrated. Vertical arrows represent the NLA-bits,
and horizontal planes represent the layers (relations). NLA-bits with same relation are just
points in the same relation’s plane. It is assumed that all relations” planes exist, but more
of them are empty. This means that if any NLA-bit does not have a given relation, then
it is assumed that it has this relation with empty <Object>. This organization supports
complexity O(1).

0 20 20 2 2N
| :

Figure 1. Natural Language Addressing (NLA)-bits with same relations (layers).

An example of the NLA-bit for the “Subject” given by name of document “A519701/2”
with layers of its metadata is presented in Appendix A Table Al. Only data written in bold

Big Data Cogn. Comput. 2021, 5, 8

8 0of 20

are stored in the archive. Similar example for NLA-bit “CUT” of “Word Net Thesaurus” [76]
is given in Reference [72] (pp. 143-147).

The name of the document and names of the relations (layers) are NLA-addresses.
The RDF triples which correspond to NLA-bit for the document A519701/2 are shown in
Appendix A Table A2.

For relation <read>, there is a multi-set of <objects> and a corresponded NLA-bit
<A519701/2: read> is created (Appendix A Tables A3 and A4).

3. Results

As an example of the present work, we focus on the administrative documents and
the document turnover in the administrative state structures, insofar as there are a number
of regulatory laws and regulations. Since the documentary processes in non-governmental
organizations are analogous, the proposed approach here could be applied to them without
much change.

3.1. Use Case: The Document Flow
3.1.1. Administrative Document and Document Flow

The term “document” has Latin origins (documentum) and means proof or testimony.
“Administrative document” is a material Object containing data, whose main task is to store
in time and space certain official data. The term “document flow” includes all interrelated
processes regarding the movement of administrative documents, from the moment of their
compilation or receipt to the moment of their final processing, sending or postponing for
storing in an archive. The central and territorial administrations process documents of
different volumes.

The types of documents—internal, external and outgoing—are defined as such in their
specifics by the regulations, competencies and functions of the institutions.

Internal documents of the institution are orders, decisions, instructions and regula-
tions; reports, statements, opinions, inquiries and information; draft regulations; plans,
schedules and protocols; letters between the structural units of the institution; applications
of employees; business notes, etc.

Outgoing documents of the institution are reports, statements, information and in-
quiries; drafts of normative documents, initiative letters, answers to incoming documents,
cover letters, reminders and additional letters to initiative documents, etc.

Incoming documents are the letters arriving at the institution, accompanied or not by
additional documents/annexes.

The documents received or created in the institutions are accepted in the office /registry,
where a set of activities determine the way of processing, movement, use of the documents
and their archiving.

The most common document systems are organizational and administrative documen-
tation; financial and accounting documentation; commercial documentation; and scientific
and technical documentation.

The state administration mainly works with general administrative documents, which
can be divided into two main groups:

1. Organizational and administrative documents—order, decision and decree; refer-
ence, etc.;

2. Information documents—report, memorandum, information, official letter, report,
protocol, list, reference, etc.

“Electronic document” means any content stored in electronic form, in particular text
or audio, visual or audio—visual recording.

Electronic documents can be structured or unstructured and must use open formats.
Electronic documents with structured content are electronic documents that have a prede-
fined structure through a generally accepted standard. For example, ISO/IEC 26300-OASIS
Open Document Format for Office Application is used for text documents, spreadsheets
and presentation documents, unless there is a justified technological need for another

Big Data Cogn. Comput. 2021, 5, 8

9 of 20

format. Electronic documents with unstructured content are all other electronic docu-
ments [77]. All received and sent electronic documents are stored in the information system
of each administration.

3.1.2. Administrative Information System

The heads of the administrations ensure the development and implementation of an
Administrative Information System (AIS) in the administrations headed by them. Ad-
ministrative Information Systems ensure the maintenance and processing of data on the
turnover of electronic documents and paper documents in the provision of administrative
services and the implementation of administrative procedures. Procedures are all work
processes in the administration or between the different administrations, including the
internal turnover of documents, but they do not constitute the provision of administrative
services and internal electronic administrative services. The AIS maintains and ensures
the storing of the received and created electronic documents for a period of no less than
20 years, in a way that allows the reproduction of the documents without data loss.

3.1.3. Information Objects

The Administrative Information System maintains a set of related data—information
Objects, on which as inseparable units are applicable functions for creation, destruction,
access management and other functions. The data in the composition of the information
Object are created automatically or manually in the AIS.

In order to service the joint maintenance of electronic documents and paper documents,
information Objects of the “document” type are maintained in the AIS. The file content
of the electronic documents is one of the data in the composition of an Object of the type
“document” and is stored only with the means of AIS. The control of the access to the file
content of the electronic documents is performed only with the means of AIS. To access it,
a connection is maintained between the description of the information Object with which
the electronic document is presented and its file content.

If other data are received together with the file content in the AIS, their processing
is performed in connection with the manner of receiving the document in the AIS and
in accordance with the requirements of the ordinance. The names of the documents in
the AIS are formed according to the internal rules of the administration. The names of
the documents can be formed automatically when they are created in the AIS on data
submitted by external persons, according to a pre-established scheme in an automatically
executed algorithm or in another way.

3.1.4. Electronic Correspondence

The correspondence is a set of thematically related documents. An electronic corre-
spondence is created in the AIS on a document requesting an electronic administrative
service, including when the document itself is on paper, but a desire to provide the ser-
vice electronically or a processing procedure is explicitly stated. Each of the sections is
presented with a list of links to documents in the AIS, classified in the respective section.
The Administrative Information System shall ensure the inclusion of the same document
in the relevant sections of any number of correspondences or the inclusion of the same
correspondence in the internal sections of any number of other correspondences.

3.1.5. Metadata for Documents

The unique identifiers for electronic documents must be used within the AIS. They
are accompanied by metadata, providing information for each individual record in the
database and revealing all actions with it from the moment of its creation and throughout
the life cycle of the document.

Metadata are used to describe the document and reproduce the links between the
document and the activities around it, as well as the relationship of individual electronic
documents within the entire document system. For each e-document in the electronic

Big Data Cogn. Comput. 2021, 5, 8

10 of 20

archive, it is necessary to maintain a number of metadata, such as unique registration
identifier (URI); type—an explanation of the type of document, ensuring its unambiguous
identification by entering the relevant text; concerning—a brief presentation of the essence
through text; data on the authorized person, who is authorized to sign the respective type
of document; correspondent-name/title; address; PIN/UIC, etc. Data on the storing of
the document from the departmental nomenclature presents the term and the schemes
for storing of the documents, which manage their stay in the AIS until the transfer of the
document to the National Archive Fund; the type of file format for the respective document;
attached files’ list (name, content); additional comment; additional data; deadline for
completion of work on the document; employee, the attention to which it should be directed;
e-signature of the document, including the signatures of the employees who prepared
and agreed on the document; recipient registration number; method of sending/receiving;
creating software; volume of the archive file and the file with the content of the document
and its appendices; case index from the nomenclature of cases; chronology of the activities
related to the storing and audit of the document; etc.

In addition, there are obligatory requisites to which the electronic documents must cor-
respond. For example, such details are as follows: “Address of the sending organization”;
“Address of the recipient”; “About”; “On your Ne... ”; “To Ne... ”; “Address”; “Application”;
“Compiled” and “Agreed”; “Signature”; “Resolution”; “Note”; “Transcript”; etc. These
details also in a certain way identify the documents and are a type of metadata, which
are set in the document in a form implicit for AIS. With the means of artificial intelligence
for content analysis, these details, as well as many other data present in the document,
can be turned into metadata for the document, and, through it, they can be used to access
its content.

3.1.6. Example of a System from Practice: DocuWare System

DocuWare is a complete system for digital management of information and pro-
cesses [78]. DocuWare is a business information and process management software solution
that has won the trust of over 18,000 companies and over 500,000 users worldwide.

The DocuWare system allows users to optimize all stages of document processing,
access and retrieval of information, and it facilitates collaboration and efficient workflow.

The documents are easily accessible to all authorized users, allowing them to work
together on shared files, add notes and annotations, comments, mark individual places in
the text and put electronic stamps.

DocuWare allows the creation of clearly structured information management pro-
cesses. In this way, the work is systematized: The processing of documents is performed
electronically and automatically follows a predetermined sequence. Authorized users have
the ability to track the movement of the document and the progress of each task.

3.2. Experimental System Design
3.2.1. The NLA_Doc System

When designing and developing automated systems for servicing document manage-
ment activities, the administrations need to follow the legal and regulatory requirements
governing the main processes of document management—collection and storing of docu-
ments, extraction of essential data, processing and presentation of detailed or summarized
user results, etc. As a rule, all of these requirements are already covered by the existing
AIS and should not, with implemented and well-functioning AIS, go to the design and
implementation of new ones. The correct approach is to expand the capabilities of existing
systems with new functionalities that were not available at earlier stages.

This is the leading idea of the current work. By preserving all available functionalities
for data storing for the document circulation of the existing AIS, we can offer an extension
that would allow a qualitatively new type of organization of data storing for documents
that would supplement the already realized possibilities in the available databases.

Big Data Cogn. Comput. 2021, 5, 8

11 of 20

Here we consider a supplement distributed system for storing document-flow-data
based on NLA-bits called NLA_Doc.

3.2.2. NLA_Doc Data Structures
The main idea for storing in NLA_Doc is through RDF triplets of the following type:

<document ID> <metadata ID> <data> D

where all three elements are natural language strings.

All data are organized in NLA-bits. Every document is stored as NLA-bit, which
contains all data connected to it by metadata.

Metadata identifiers are accepted as NLA-bit’s layers, and document identifiers are
accepted as names of NLA-bits. Both <document ID> and <metadata ID> are not recorded
in the archives—they are natural language addresses. Only <data> are stored in appropriate
containers located at addresses specified by the document identifiers, in layers indicated
by the metadata identifiers.

3.2.3. NLA_Doc Functions

The NLA_Doc main functions are Write and Read.

The input data are organized in a file, in CSV format. Each record contains one triple
<document ID> <metadata ID> <data>. File size is not limited. The records in the file are
read sequentially.

For each of them, the system does the following:

Converts <document ID> and <metadata ID> into spatial addresses;
Stores <data> in the point located at the address <document ID> in a layer specified
by <metadata ID> in the triple.

For data retrieval, NLA_Doc uses as input a pair file
<document ID>; <metadata ID> (2)

(each pair in a separate line) and retrieves the corresponding <data> from the archive.
If some <data> do not exist, the output is empty, i.e., < > (one space).
For each of them, the system does the following:

Converts <document ID> and <metadata ID> into spatial addresses;
Retrieves <data> from the container located at the address <document ID> from a
layer specified by <metadata ID>.

The result is a set of triplets:
<document ID>; <metadata ID>; <data> 3)

where every triple occupies an output record.
The resulting file size is not limited. The records in the file are written sequentially.

3.3. Basic Measurements
The program experiments were performed on the following computer configuration:

e Processor: Intel Core2 Duo T9550 2.66 GHz; CPU Launched: 2009, Average CPU Mark:
1810 (PK = 1810);
Physical Memory: 4.00 GB (MK = 4);
Hard Disk: 100 GB data partition; 2 GB swap (DK = 100);
Operating System: 64-bit operating system Windows 7 Ultimate SP1.

To perform experiments with the NLA_Doc, two datasets were prepared, containing
1000 and 10,000 instances, respectively, which are triples containing a document identifier,
a metadata name and a metadata value (string): document identifiers (ten characters with
letters and numbers), metadata names (six characters—word META and two numbers)

Big Data Cogn. Comput. 2021, 5, 8

12 of 20

and values generated at random (Bulgarian names—character strings with variable length)
(Appendix B Table A5).

The tests performed showed a recording speed of one instance from 1 to 8.5 millisec-
onds. The increase in time is due to the emergence of more types of metadata, the initial
registration of which takes time to create the corresponding layers, and the speed varies
from 100 to about 1000 instances per second (Appendix B Figure Ala).

When extracted, the speed is relatively constant and is about 1000 instances per second
(Appendix B Figure Alb).

4. Discussion

Analyzing the results of the experiments, we can note that the main conclusions made
in Reference [72] regarding NLA are valid here as well.

In all traditional relational databases, continuous reconstructions of the index struc-
tures must be done due to the incoming dynamic data. This is a major and extremely
serious problem. The volume of data that is collected and indexed continuously soon
becomes so large that traditional databases become overloaded and their work becomes
extremely slow as they begin to use almost all the time for their own self-maintenance.

NLA-bit does not require such updates. This prevents overloading and slowing down
the operation of databases, even with the accumulation of huge arrays of data. The speed
of work is constant and independent of the volume of data, i.e., there is a constant time
complexity O(1).

In addition, important advantages of the approach are as follows:

e The reduction of the amount of occupied memory due to the complete absence of
additional indexes, absolute addresses, pointers and additional files;

e Reduction of processing time due to the complete lack of demand—the data are
stored/extracted to/from a direct address.

The efficiency of the NLA for storing RDF triples and quadruples was proved in
Reference [72]. It was compared with such well-known system like Virtuoso, Jena and
Sesame. The conclusion is that it has a very good place, showing worse time than Virtuoso
but similar to Jena and better than Sesame.

In this paper, we present a possible implementation of the NLA approach for concrete
example for storing document based on NLA-bit structure.

It is impossible to compare results with all existing systems, because there are no
published standard benchmark data and, at the same time, it is impossible to simulate the
technical base used in their concrete installations. Because of this, the value of complexity
may be used for comparison.

For instance, the Neo4j uses pointers to navigate and traverse the graph. Thus, it
creates additional data to support the structure and operations with them. This takes time
and memory resources. At the same time, NLA-bit structures represent graphs without
additional pointers and without storing NLA addresses, which permits using less memory
and time.

Another well-known system, BadgerDB, is an embeddable, persistent and fast key-
value (KV) database. It is the underlying database for Dgraph [79]. In addition to key-value
file and indexes, structuring on the base of relations exists. This way, a two-dimensional
storing structure is available. NLA-bit is a key-value structure, too. The main difference is
the direct access without indexes. Thus, the complexity of BadgerDB is a least O(log n).
NLA-bit has complexity O(1). In addition, NL-addressing permits the use of more than
two dimensions, and, in this way;, it is more powerful.

The all similar systems use balanced three indexes with complexity at least O(log n).
NLA approach is based on computing of hash formulas and supports direct access to
dynamical perfect hash tables with complexity O(1). As mental concept, NLA-bit is more
powerful because, for every Subject, there exists only one NLA-bit in the world, and it is
easy to establish morphisms between all NLA databases which exist or will be created in
the future.

Big Data Cogn. Comput. 2021, 5, 8

13 of 20

A special remark has to be made about the Create, Read, Update and Delete (CRUD)
operations. NLA-bit needs only two of these operations, Read and Update; the other
two are not needed because of the NLA—all points of the database space are assumed as
existing but empty, and there is no need for creation and deleting. Only Update is needed
to change the content and Read to receive it. Both operations have complexity O(1).

The limitations of NLA-bit are connected to available disk space on the computer or in
the cloud. The main limitation is the length of NL-address, which, in different realizations,
may be reduced in accordance with practical needs. There is no reason to support 1K
symbols length of NL-address if used words and phrases are no longer than 100 symbols,
because buffers will occupy extra memory.

The main drawback of the approach is the traditional thinking in the frame of relational
model. It is difficult to jump from two- or three-dimensional space to multi-dimensional
one with more than four dimensions.

5. Conclusions and Further Work

In this paper, a possible approach for the implementation of a distributed system for
storing data for documents, related metadata and analytical results, based on NLA-bits,
was presented.

A data-storing system based on NLA-bits was outlined.

The NLA-bit is a fundamentally new structure to database organization that does not
replace, but naturally complements, other widely used structures of database management
systems. The NLA-bits open up a wide field for research and practical implementation in
the field of large databases with dynamic semi-structured data (Big Data).

This is an important direction for future work, which sets serious scientific and
scientific-practical tasks. As a first next step we can point out the development of new
possibilities of the presented system, which, due to the limited volume, remained out of
scope of the present work. These are the activities for extracting essential data with the
help of artificial intelligence functions and presentation (visualization) of summarized
results to the user, which are essential parts of real automated systems. In addition, the
NLA-bit structure raises new types of operations, which need corresponding functionalities
of the programming languages. For instance, a possible approach may be developing of
languages based on the Category theory like Haskell [80].

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval are not required for this study
due to artificially generation of data by a software program.

Informed Consent Statement: Informed consent is not required for this study due to artificially
generation of data by a software program.

Data Availability Statement: Data available on request from the author.

Conflicts of Interest: The author declares no conflict of interest.

Big Data Cogn. Comput. 2021, 5, 8

14 of 20

Appendix A

Table A1. Thirty-two layers of NLA-bit for the document A519701/2 (only data in bold are stored in
the archive; name of the document and names of the layers are NLA-addresses).

Layer Objects
URI A519701/2 (unique registration identifier)
About letter of conformance of agreement for collaboration

address of the recipient

Bulgaria, Sofia, 1000, PO Box 775

on your Ne B436213/73
to Ne
Address
Application
compiled Peter Dimov
agreed Damian Ivanov
signature
resolution Simon Nikolov
read <A519701/2: read>
note to be discussed on the board of directors
transcript
type letter of conformance
concerning a brief presentation of the essence through text

data on the authorized person

Stefan Stanev (authorized to sign the respective type of

document)
correspondent name/title; address; pin/uic, etc.
data on the storing of the document 20 February 2020
from the departmental nomenclature:
the type of file format docx

attached files

pathl, short descriptionl; path2, short description2;
path3, short description3; path4, short description4; . ..

additional comment

additional data

deadline for completion

20 May 2020

employee

Nikola Atanasov

e-signature

e-signatures of the employees who prepared and agreed
on the document

recipient registration number

method of sending/receiving

creating software

volume 18 MB
case index CS2468/FG83
paths to descriptions of the activities related to the
chronology

storing and audit of the document

Big Data Cogn. Comput. 2021, 5, 8

15 of 20

Table A2. Thirty-two RDF triples which correspond to NLA-bit for the document A519701/2.

Subject Relation Object
A519701 URI A519701/2 (unique registration identifier)
A519701 About letter of cfo;fggﬁag;c; toii igreement
A519701 address of the recipient Bulgaria, Sofia, 1000, PO Box 775
A519701 on your Ne B436213/73
A519701 to Ne
A519701 Address
A519701 Application
A519701 Compiled Peter Dimov
A519701 Agreed Damian Ivanov
A519701 Signature
A519701 Resolution Simon Nikolov
A519701 Read <A519701/2: read>
A519701 Note to be discussed on the board of directors
A519701 Transcript
A519701 Type letter of conformance
A519701 concerning a brief prest;r;f)al:igcgltzi ;che essence
A519701 data on the authorized Stefan Stan?V (authorized to sign the
person respective type of document)

A519701 correspondent name/ title; address; pin/uic, etc.

data on the storing of
A519701 the dg:;:;f;ﬁto;ln the 20 February 2020

nomenclature:
A519701 the type of file format docx
pathl, short descriptionl; path2, short
A519701 attached files description2; path3, short description3;
path4, short description4; . ..
A519701 additional comment
A519701 additional data
Ab519701 deadline for completion 20 May 2020
A519701 Employee Nikola Atanasov
o S o ey who pupard
A519701 recipient registration
number

AS19701 sendrirllf;/figifving
A519701 creating software
A519701 volume 18 MB
A519701 case index CS52468/FG83
A519701 chronology paths to descriptions of the activities related

to the storing and audit of the document

Big Data Cogn. Comput. 2021, 5, 8

16 of 20

Table A3. Six layers of NLA-bit for the subdocument <A519701/2: read> (only data in bold are
stored in the archive; name of the document and names of the layers are NLA-addresses).

Layer

Objects

23 January 2021; 13:15:52

Sami Mogamad Alchalian

29 January 2021; 08:24:18

Viviyan Venelinova Valkova

2 February 2021; 16:38:44

Martin Borislavov Borisov

4 February 2021; 09:16:27

Viviyan Venelinova Valkova

5 February 2021; 11:52:45

Gabriel Metodiev Krumov

6 February 2021; 23:38:36

Sami Mogamad Alchalian

Table A4. Six RDF triples which correspond to NLA-bit for the subdocument <A519701/2: read>.

Subject Relation Object
Ab519701: read 23 January 2021; 13:15:52 Sami Mogamad Alchalian
A519701: read 29 January 2021; 08:24:18 Viviyan Venelinova Valkova
A519701: read 2 February 2021; 16:38:44 Martin Borislavov Borisov
A519701: read 4 February 2021; 09:16:27 Viviyan Venelinova Valkova
A519701: read 5 February 2021; 11:52:45 Gabriel Metodiev Krumov
A519701: read 6 February 2021; 23:38:36 Sami Mogamad Alchalian
Appendix B

Table A5. Sample instances of input (a), test (b) and extracted data (c).

A519701/2; META62; NIKOLA BRANIMIROV IVANOV
B436213/73; META82; GRIGOR GAVRILOV GRANDZHEV

C531719/36; META68; LACHEZAR VENTSISLAVOV IVANOV

D448266/7; META43; SAMI MOGAMAD ALCHALIAN
E847955/73; META38; VIVIYAN VENELINOVA VALKOVA
F326742/15; META32; MARTIN BORISLAVOV BORISOV
G356217/15; META50; GABRIEL METODIEV KRUMOV

H430291/27; META71; ANGEL ALEKSANDROV BOYADZHIEV
1239507 /17; META95; STANISLAV SVETLOZAROV ZLATEV

J31634/40; META39; MARTIN MITKOV DIMITROV

(a) sample Input data
A519701/2; META62;
B436213/73, METAS82;

C531719/36, METAG6S;

D448266/7, META43;
E847955/73, META3S;
F326742/15, META32;

G356217/15; METAS50;
H430291/27, META71;

1239507 /17; META95;
J31634/40, META39;

Big Data Cogn. Comput. 2021, 5, 8 17 of 20

Table A5. Cont.

(b) sample test data

A519701/2; META62; NIKOLA BRANIMIROV IVANOV;
B436213/73; META82; GRIGOR GAVRILOV GRANDZHEV;
C531719/36; META68; LACHEZAR VENTSISLAVOV IVANOV;
D448266/7; META43; SAMI MOGAMAD ALCHALIAN;
E847955/73; META38; VIVIAN VENELINOVA VALKOVA;
F326742/15; META32; MARTIN BORISLAVOV BORISOV;
G356217 /15; METAS50; GABRIEL METODIEV KRUMOV;
H430291/27;, META71; ANGEL ALEXANDROV BOYADZHIEV;
1239507 /17; META95; STANISLAV SVETLOZAROV ZLATEV;
J31634/40; META39; MARTIN MITKOV DIMITROV;

(c) sample extracted data

NLA-Doc X NLA-Doc e S
e 1 oy
e = - e =5 - el
) B NLA-Doc e) B NLA-Doc T 2]
. Time used for 1000 instances: 2980 miliseconds. . Time used for 10000 instances: 85489 milisesconds.
Write Time used for one instance: 3.0E+0000 miliseconds. Write Time used for one instance: B8.5E+0000 miliseconds.
Work is done successfully. Work is done successfully.
Delete archives Delete archives
« m » 4 m [
Time used for 1000 instances: 999 milisecends. Time used for 10000 instances: 12106 miliseconds.
Read Time used for one instance: 1.0E+0000 miliseconds. Read Time used for one instance: 1.2E+0000 miliseconds.
Work is done successfully. Work is dene successfully.
< i b < il 5

Figure A1. Results for recording and retrieving (a) 1000 documents and (b) 10,000 documents.

References

10.

11.

David, C.F; Olivier, C.; Guillaume, B. A survey of RDF storage approaches. ARIMA J. 2012, 15, 11-35.

Mendelzon, A.; Schwentick, T.; Suciu, D. Foundations of Semistructured Data. 2001. Available online: http://www.dagstuhl.de/
Reports/01/01361.pdf (accessed on 20 July 2013).

Bhadkamkar, M.; Farfan, F; Hristidis, V.; Rangaswami, R. Storing Semi-Structured Data on Disk Drives. ACM Trans. Storage 2009,
5, 6. [CrossRef]

Buneman, P. Semi-Structured Data; Department of Computer and Information Science University of Pennsylvania: Philadelphia,
PA, USA, 2001.

Angles, R.; Gutierrez, C. Survey of Graph Database Models. ACM Comput. Surv. 2008, 40, 1-39. [CrossRef]

Amann, B.; Scholl, M. Gram: A graph data model and query language. In Proceedings of the European Conference on Hypertext
Technology (ECHT), ACM, Milan, Italy, 30 November—4 December 1992; pp. 201-211.

Andries, M.; Gemis, M.; Paredaens, J.; Thyssens, 1.; den Bussche, J.V. Concepts for graph-oriented object manipulation. In
Proceedings of the 3rd International Conference on Extending Database Technology (EDBT) LNCS, Vienna, Austria, 23-27 March
1992; Volume 580, pp. 21-38.

Gemis, M.; Paredaens, J. An object-oriented pattern matching language. In Proceedings of the First JSSST International Symposium
on Object Technologies for Advanced Software, Kanazawa, Japan, 4-6 November 1993; pp. 339-355.

Gyssens, M.; Paredaens, J.; den Bussche, J.V.; Gucht, D.V.A. Graph-oriented object database model. In Proceedings of the 9th
Symposium on Principles of Database Systems (PODS), Nashville, TN, USA, 2—4 April 1990; pp. 417—424.

Hidders, J.; Paredaens,]. GOAL A graph-based object and association language. In Advances in Database Systems: Implementations
and Applications; CISM: Brussels, Belgium, 1993; pp. 247-265.

Hidders, J.A. Graph-Based Update Language for Object-Oriented Data Models. Ph.D. Thesis, Technische Universiteit, Eindhoven,
The Netherlands, December 2001.

http://www.dagstuhl.de/Reports/01/01361.pdf
http://www.dagstuhl.de/Reports/01/01361.pdf
http://doi.org/10.1145/1534912.1534915
http://doi.org/10.1145/1322432.1322433

Big Data Cogn. Comput. 2021, 5, 8 18 of 20

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.

Hidders, J. Typing graph-manipulation operations. In Proceedings of the 9th International Conference on Database Theory
(ICDT), Siena, Italy, 8-10 January 2002; pp. 394—409.

Kuper, G.M.; Vardi, M.Y. A new approach to database logic. In Proceedings of the 3rd Symposium on Principles of Database
Systems (PODS), Waterloo, ON, Canada, 25-27 March 1984; pp. 86-96.

Kuper, G.M.; Vardi, M.Y. The Logical Data Model. ACM Trans. Database Syst. (TODS) 1993, 18, 379-413. [CrossRef]

Levene, M.; Loizou, G. A Graph-Based Data Model and its Ramifications. IEEE Trans. Knowl. Data Eng. (TKDE) 1995, 7,
809-823. [CrossRef]

Levene, M.; Poulovassilis, A. The hypernode model and its associated query language. In Proceedings of the 5th Jerusalem
Conference on Information Technology, Jerusalem, Israel, 22-25 October 1990; pp. 520-530.

Poulovassilis, A.; Levene, M. A Nested-Graph Model for the Representation and Manipulation of Complex Objects. ACM Trans.
Inf. Syst. (TOIS) 1994, 12, 35-68. [CrossRef]

Levene, M.; Poulovassilis, A. An Object-Oriented Data Model Formalised Through Hypergraphs. Data Knowl. Eng. (DKE) 1991, 6,
205-224. [CrossRef]

Klyne, G.; Carroll,].J. Resource Description Framework (RDF): Concepts and Abstract Syntax; W3C Recommendation; W3C: Canberra,
Australia, 2004.

Angles, R.; Gutierrez, C. Querying RDF data from a graph database perspective. In Proceedings of the 2nd European Semantic
Web Conference (ESWC), Heraklion, Greece, 29 May-1 June 2005; pp. 346-360.

Hayes, J.; Gutierrez, C. Bipartite graphs as intermediate model for RDF. In Proceedings of the 3rd International Semantic Web
Conference (ISWC), Hiroshima, Japan, 7-11 November 2004; pp. 47-61.

Graves, M.; Bergeman, E.R.; Lawrence, C.B. Querying a genome database using graphs. In Proceedings of the 3rd International
Conference on Bioinformatics and Genome Research, Tallahassee, FL, USA, 1-4 June 1994.

Graves, M.; Bergeman, E.R.; Lawrence, C.B. A graph-theoretic data model for genome mapping databases. In Proceedings of the 28th
Hawaii International Conference on System Sciences (HICSS), IEEE Computer Society, Maui, HI, USA, 4-7 January 1995a; p. 32.
Graves, M.; Bergeman, E.; Lawrence, C.B. Graph Database Systems for Genomics: Special issue on Managing Data for the Human
Genome Project. IEEE Eng. Med. Biol. 1995, 11, 737-745. [CrossRef]

Graves, M. Theories and Tools for Designing Application-Specific Knowledge Base Data Models. Ph.D. Thesis, University of
Michigan, Ann Arbor, MI, USA, January 1993.

Mainguenaud, M.; Simatic, X.T. A Data Model to Deal with Multi-scaled Networks. Comput. Environ. Urban Syst. 1992, 16,
281-288. [CrossRef]

Papakonstantinou, Y.; Garcia-Molina, H.; Widom, J. Object exchange across heterogeneous information sources. In Proceedings of
the 11th International Conference on Data Engineering (ICDE), Taipei, Taiwan, 610 March 1995; pp. 251-260.

Hayes, P. RDF Semantics: W3C Recommendation. 10 February 2004. Available online: http://www.w3.org/TR/rdf-mt/
(accessed on 21 January 2021).

Muys, A. Building an Enterprise Scale Database for RDF Data; Seminar; Netymon: Sydney, Australia, 2007.

RDF. Available online: http:/ /www.w3.org/RDF/#specs (accessed on 21 February 2021).

Owens, A. An Investigation into Improving RDF Store Performance an Investigation into Improving RDF Store Performance.
Ph.D. Thesis, University of Southampton, Southampton, UK, March 2009.

Rohloff, K.; Dean, M.; Emmons, L.; Ryder, D.; Sumner,]. An evaluation of triple-store technologies for large data stores. In On
the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops; Meersman, R., Tari, Z., Herrero, P., Eds.; OTM 2007: Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4806. [CrossRef]

Magkanaraki, A.; Karvounarakis, G.; Anh, T.T.; Christophides, V.; Plexousakis, D. Ontology Storage and Querying; Technical
Report. No 308; Foundation for Research and Technology, Hellas Institute of Computer Science, Information Systems Laboratory:
Heraklion, Greece, 2002.

Sintek, M.; Decker, S. TRIPLE-an RDF query, inference, and transformation language. In Proceedings of the Deductive Databases
and Knowledge Management Workshop (DDLP’ 2001), Tokyo, Japan, 2022 October 2001.

Atre, M,; Srinivasan, J.; Hendler, A.]. BitMat: A Main Memory RDF Triple Store; Technical Report; Tetherless World Constellation,
Rensselaer Polytechnic Institute: Troy, NY, USA, 2009.

Weiss, C.; Karras, P.; Bernstein, A. Hexastore: Sextuple indexing for semantic web data management. In Proceedings of the 34th
Very Large Data Bases (VLDB) Conference, Auckland, New Zealand, 24-30 August 2008.

Jena2 Database Interface—Database Layout. Available online: http://jena.sourceforge.net/DB/layout.html (accessed on 21
January 2021).

Wilkinson, K.; Sayers, C.; Kuno, H.; Reynolds, D. Efficient RDF Storage and Retrieval in Jena2; SWDB: Berkeley, CA, USA, 2003.
Harth, A.; Decker, S. Optimized Index Structures for Querying RDF from the Web; Digital Enterprise Research Institute (DERI),
National University of Galway: Galway, Ireland, 2013.

Sesame, OpenRDF. Available online: https://www.w3.org/2001/sw/wiki/Sesame (accessed on 21 January 2021).

Broekstra, J.; Kampman, A.; van Harmelen, F. Lecture notes in computer science. In Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema, Proceedings of the Semantic Web—ISWC 2002, Sardinia, Italy, 9-12 June 2002; Horrocks, 1., Hendler, J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 54-68. [CrossRef]

http://doi.org/10.1145/155271.155274
http://doi.org/10.1109/69.469818
http://doi.org/10.1145/174608.174610
http://doi.org/10.1016/0169-023X(91)90005-I
http://doi.org/10.1109/51.473268
http://doi.org/10.1016/0198-9715(92)90009-G
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/RDF/#specs
http://doi.org/10.1007/978-3-540-76890-6_38
http://jena.sourceforge.net/DB/layout.html
https://www.w3.org/2001/sw/wiki/Sesame
http://doi.org/10.1007/3-540-48005-6_7

Big Data Cogn. Comput. 2021, 5, 8 19 of 20

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

Alexaki, S.; Christophides, V.; Karvounarakis, G.; Plexousakis, D.; Tolle, K. The ICS-FORTH RDFSuite: Managing voluminous
RDF description bases. In Proceedings of the 2nd International Workshop on the Semantic Web (SemWeb’01), Hong Kong, China,
30-31 July 2001.

Alexaki, S.; Christophides, V.; Karvounarakis, G.; Plexousakis, D. On storing voluminous RDF descriptions: The case of web
portal catalogs. In Proceedings of the 4th International Workshop on the Web and Databases (WebDB’01), In Conjunction with
ACM SIGMOD/PODS, Santa Barbara, CA, USA, 24-25 May 2001.

Intellidimension Inc. Semantics Platform 2.0. Available online: http:/ /www.intellidimension.com/products/semantics-platform/
(accessed on 21 January 2021).

The Ontopia Knowledge Suite: An Introduction, White Paper (V. 1.3), 2002. Available online: http://www.regnet.org/members/
demo/ontopia/doc/misc/atlas-tech.html (accessed on 21 January 2021).

Harris, S.; Gibbins, N. 3store: Efficient bulk RDF storage. In Proceedings of the 1st International Workshop on Practical and
Scalable Semantic Systems, PSSS 2003, Sanibel Island, FL, USA, 20 October 2003.

Harris, S.; Lamb, N.; Shadbolt, N. 4store: The design and implementation of a clustered RDF store. In Proceedings of the SSWS2009
5th International Workshop on Scalable Semantic Web Knowledge Base Systems, Washington DC, USA, 26 October 2009.

Wood, D.; Gearon, P.; Adams, A. Kowari: A platform for semantic web storage and analysis. In Proceedings of the XTech 2005
Conference, Chiba, Japan, 10-14 May 2005.

ORACLE. Available online: http:/ /www.oracle.com/technetwork/ (accessed on 21 January 2021).

Neumann, T.; Weikum, G. RDF-3X: A RISC-Style Engine for RDF; JDMR; VLDB Endowment: Auckland, New Zealand, 2008.
Erling, O.; Mikhailov, I. RDF support in the virtuoso DBMS. In Proceedings of the Conference on Social Semantic Web, Leipzig,
Germany, 26-28 September 2007.

Dumbill, E. Putting RDF to Work. Article on XML.com, 09.08.2000. Available online: http:/ /www.xml.com/pub/a/2000/08/09
/rdfdb (accessed on 21 January 2021).

RDFStore. Available online: http:/ /rdfstore.sourceforge.net/documentation/api.html (accessed on 21 January 2021).

Beckett, D. The design and implementation of the Redland RDF application framework. In Proceedings of the WWW’01: 10th
International Conference on World Wide Web, Hong Kong, China, 1-5 April 2001.

McBride, B. Jena: Implementing the RDF model and syntax specification. In Proceedings of the Second International Workshop
on the Semantic Web-SemWeb2001, Hongkong, China, 1 May 2001.

Kolas, D.; Emmons, I.; Dean, M. Efficient Linked-List RDF Indexing in Parliament. Available online: https://www.researchgate.
net/publication/228910462_Efficient_Linked-List_RDF_Indexing_in_Parliament (accessed on 21 January 2021).

Matono, A.; Pahlevi, M.S.; Kojima, I. RDFCube: A P2P-based three-dimensional index for structural joins on distributed triple
stores. In Databases, Information Systems, and Peer-to-Peer Computing; Springer: Berlin/Heidelberg, Germany, 2007.

Hertel, A.; Broekstra, J.; Stuckenschmidt, H. RDF storage and retrieval systems. In Handbook on Ontologies, International Handbooks
on Information Systems; Staab, S., Studer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 489-508. [CrossRef]
Agrawal, R.; Somani, A.; Xu, Y. Storage and querying of e-commerce data. In Proceedings of the 27th Conference on Very Large
Data Bases (VLDB), Rome, Italy, 11-14 September 2001.

Chong, LE; Das, S.; Eadon, G.; Srinivasan, J. An efficient SQL-based RDF querying scheme. In Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway, 30 August—2 September 2005.

OracleDB. Available online: http://www.oracle.com/technetwork/database/options/semantic-tech /index.html (accessed on 21
January 2021).

Guha, R.V. RAfDB: An RDF Database. Available online: http:/ /www.cs.cmu.edu/afs/cs/usr/niu/rdf/ (accessed on 21 January
2021).

Broekstra, J. Storage, Querying and Inferencing for Semantic Web Languages. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The
Netherlands, December 2005.

Gabel, T,; Sure, Y.; Voelker,]. KAON—An Overview; Insititute AIFB, University of Karlsruhe: Karlsruhe, Germany, 2004.

Pan, Z.; Heflin, J. DLDB: Extending Relational Databases to Support Semantic Web Queries; Technical Report LU-CSE-04-006;
Department of Computer Science and Engineering, Lehigh University: Bethlehem, PA, USA, 2004.

Broekstra, J.; Kampman, A.; van Harmelen, F. Sesame: A generic architecture for storing and querying RDF and RDEF. In
Proceedings of the Semantic Web—ISWC 2002, First International Semantic Web Conference, Sardinia, Italy, 9-12 June 2002.
Fletcher, G.H.L.; Beck, P.W. Scalable indexing of RDF graphs for efficient joins processing. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management (CIKM'09), Hong Kong, China, 2-6 November 2009.

Janik, M.; Kochut, K. BRAHMS: A WorkBench RDF store and high-performance memory system for semantic association
discovery. In Proceedings of the Fourth International Semantic Web Conference, Galway, Ireland, 610 November 2005.
McGlothlin, J.P.; Khan, L.R. RDFJoin: A Scalable of Data Model for Persistence and Efficient Querying of RDF Datasets; UTDCS-08-09;
University of Texas at Dallas: Richardson, TX, USA, 2009; pp. 1-12.

McGlothlin, J.P.; Khan, L.R. DFKB: Efficient support for RDF inference queries and knowledge management. In Proceedings of
the 2009 International Database Engineering Applications Symposium (IDEAS’09), Cetraro-Calabria, Italy, 16-18 September 2009.
Tran, T.; Ladwig, G.; Rudolph, S. iStore: Efficient RDF Data Management Using Structure Indexes for General Graph Structured Data;
Institute AIFB, Karlsruhe Institute of Technology: Karlsruhe, Germany, 2009.

http://www.intellidimension.com/products/semantics-platform/
http://www.regnet.org/members/demo/ontopia/doc/misc/atlas-tech.html
http://www.regnet.org/members/demo/ontopia/doc/misc/atlas-tech.html
http://www.oracle.com/technetwork/
http://www.xml.com/pub/a/2000/08/09/rdfdb
http://www.xml.com/pub/a/2000/08/09/rdfdb
http://rdfstore.sourceforge.net/documentation/api.html
https://www.researchgate.net/publication/228910462_Efficient_Linked-List_RDF_Indexing_in_Parliament
https://www.researchgate.net/publication/228910462_Efficient_Linked-List_RDF_Indexing_in_Parliament
http://doi.org/10.1007/978-3-540-92673-3
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.cs.cmu.edu/afs/cs/usr/niu/rdf/

Big Data Cogn. Comput. 2021, 5, 8 20 of 20

72.

73.

74.

75.

76.
77.

78.

79.
80.

Markov, K.; Ivanova, K.; Vanhoof, K.; Velychko, V.; Castellanos, J. Natural Language Addressing; ITHEA: Hasselt, Belgium; Kyiv,
Ukraine; Madrid, Spain; Sofia, Bulgaria, 2015; p. 315. ISBN 978-954-16-0070-2 /978-954-16-0071-9.

Markov, K.; Ivanova, K.; Vanhoof, K.; Depaire, B.; Velychko, V.; Castellanos, J.; Aslanyan, L.; Karastanev, S. Storing big data using
natural language addressing. In Proceedings of the International Scientific Conference Informatics in the Scientific Knowledge:
VFU, Varna, Bulgaria, 27-29 June 2014; Lyutov, N., Ed.; pp. 147-164.

Markov, K.; Vanhoof, K.; Mitov, I.; Depaire, B.; Ivanova, K.; Velychko, V.; Gladun, G. Intelligent data processing based on
multi-dimensional numbered memory structures. In Data Mining: Concepts, Methodologies, Tools, and Applications; IGI Global:
Hershey, PA, USA, 2013; pp. 445-473. ISBN 13 978-1-4666-2455-9. [CrossRef]

Briggs, M. DB2 NoSQL graph store. In What, Why & Overview, A presentation, Information Management software IBM; IBM:
Endicott, NY, USA, 2012.

WordNet. Available online: http://WordNet.princeton.edu (accessed on 21 January 2021).

OASIS Open Document Format for Office Applications (OpenDocument) TC. Available online: https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=office (accessed on 21 January 2021).

Complete System for Digital Management of Information and Processes; Nemetschek Bulgaria Ltd.: Sofia, Bulgaria, 2019; Avail-
able online: https:/ /www.edocument.bg/?gclid=EAIalQobChMIoYGVy5yv6QIVGLLICh1cMgMKEAMYASA AEgKqoPD_BwE
(accessed on 21 January 2021). (In Bulgarian)

BadgerDB. Available online: https://dgraph.io/docs/badger/ (accessed on 21 January 2021).

Haskell. Available online: https:/ /www.haskell.org/ (accessed on 21 January 2021).

http://doi.org/10.4018/978-1-4666-2455-9.ch022
http://WordNet.princeton.edu
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
https://www.edocument.bg/?gclid=EAIaIQobChMIoYGVy5yv6QIVGLLtCh1cMgMKEAMYASAAEgKqoPD_BwE
https://dgraph.io/docs/badger/
https://www.haskell.org/

	Introduction
	Graph Databases
	Resource Description Framework
	Technologies for Storing RDF Data
	General Schemes
	Specific Schemas

	The Goal of This Paper
	Organization of the Paper

	NLA-Bit
	Natural Language Addressing (NLA)
	Advantages of NLA
	NLA-Bit

	Results
	Use Case: The Document Flow
	Administrative Document and Document Flow
	Administrative Information System
	Information Objects
	Electronic Correspondence
	Metadata for Documents
	Example of a System from Practice: DocuWare System

	Experimental System Design
	The NLA_Doc System
	NLA_Doc Data Structures
	NLA_Doc Functions

	Basic Measurements

	Discussion
	Conclusions and Further Work
	
	
	References

