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Abstract: Air Conditioners (AC) impact in overall electricity consumption in buildings is very high.
Therefore, controlling ACs power consumption is a significant factor for demand response. With the
advancement in the area of demand side management techniques implementation and smart grid,
precise AC load forecasting for electrical utilities and end-users is required. In this paper, big data
analysis and its applications in power systems is introduced. After this, various load forecasting
categories and various techniques applied for load forecasting in context of big data analysis in
power systems have been explored. Then, Levenberg–Marquardt Algorithm (LMA)-based Artificial
Neural Network (ANN) for residential AC short-term load forecasting is presented. This forecasting
approach utilizes past hourly temperature observations and AC load as input variables for assessment.
Different performance assessment indices have also been investigated. Error formulations have
shown that LMA-based ANN presents better results in comparison to Scaled Conjugate Gradient
(SCG) and statistical regression approach. Furthermore, information of AC load is obtainable for
different time horizons like weekly, hourly, and monthly bases due to better prediction accuracy of
LMA-based ANN, which is helpful for efficient demand response (DR) implementation.

Keywords: Air Conditioners (AC); Artificial Neural Network (ANN); big data analysis;
cooling demand; energy consumption; Demand Response (DR); Load Forecasting (LF);
Levenberg–Marquardt Algorithm (LMA)

1. Introduction

In power systems, the end-users electrical demand characteristics have the most significant role.
End user’s participation in DR programs can provide load reductions during peak energy use periods.
Also, energy consumption can be controlled in distribution voltage level due to appliance level demand
management in an intelligent manner [1,2]. Among appliances, ACs are major contributors in energy
consumption at residential and commercial levels nowadays. ACs usage has been undoubtedly
acknowledged as an important contributor, especially to peaks perceived during strongly intense
summer. During intense summer, there is a probability of blackouts as a result of enormously rising
demand together with high temperatures contributing to generation and power transmission networks.
Similarly, peak electricity demands in several warmer global regions have been caused by AC usage.
Only in California, commercial AC usage shows almost 45% contribution in peak demand and projected
in commercial demand of about 30–40% during Australia peak demand days [3]. In addition to this,
in many areas, residential ACs are also significant contributors in peak demand of power systems [4].
In South Australia, ACs play a major role in rising of electricity peak demand where almost 90% of
the residences are equipped with AC due to frequent heat waves [5]. During the summer season,
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residential ACs contribute about 20–25% in electrical system peak demand of the Ausgrid, a largest
distribution utility in the New South Wales Sydney region of Australia [6].

Nowadays the most important challenge for electricity utility is to manage electricity demand to
satisfy customers. As electrical demand is totally uncertain and variable during different horizons
during a complete day. Traditionally, only utility adopts different options to manage demand variations.
But nowadays due to a variety of factors such as penetration of intermittent energy sources in existing
power system, minimization of energy cost with less energy consumption and energy efficiency
improvement create options for end customers to manage consumption of electricity. Demand side
management (DSM) is commonly referred to as activities for involvement of demand side in electricity
usage [7].

DR programs make available in 2016 of about total 13,036 MW peak reductions, and 26% of total
peak reductions from residential energy sector according to US Energy Information Administration [8].
Residential customers had showed their significant contribution in DR manipulation in [9–11].
Among home appliances, ACs contribute more significantly in DR attainment as investigated by
different researchers [12]. Residential ACs power reductions forecasts are required by both end users
and electric utilities for DR programs implementation [13,14]. To achieve DR benefits and exploitation
from residential appliances smart energy meters have been deployed in numerous homes as discussed
in [15]. By deployment of smart home energy management systems, DR implementation from ACs
become easily attainable. Residential electric appliances control in the variable electricity prices for DR
implementation was also highlighted in [16].

Big data is an outcome of advanced digital technologies in human daily life. These technologies
yield massive data volumes termed as big data due to rising of humans and machines
intercommunication. Mainly volume, velocity, veracity, and variety are fundamental characteristics of
big data. Load in power system is random and uncertain with respect to time. In power sector due to
smart grid technologies volume of data generated from grid increased excessively [17]. Future energy
consumptions are predictable by mean of LF-based upon information availability according to
end-user’s behavior. Future energy requirements have been predicted by making use of several
forecasting models based upon past load, weather observations, off-weak days, economy, power tariff
mode adoption, new load growth and availability of intermittent sources of energy. It is an efficient tool
for power system planning, operation, load switching, infrastructure development, contracts renewal,
investment/planning for new generating power units, new staff inductions, supply/demand balance
and effective DSM. LF approaches may be short, medium and long-term based upon planning and
operation [18]. But end-user’s energy usage randomness and seasonal uncertainties has made LF more
challenging. Based upon forecast error power system operational and maintenance costs may get
increase [19].

Big data analysis is more effective, detailed and accurate predictions from generation of energy
and its utilization by loads [20]. In [21], it has been discussed that LF can be classified as statistical,
probabilistic, physical methods, artificial intelligence (AI) and hybrid approaches based upon the
methods. The main contributions of this manuscript are as follows: 1) Big data analysis and its
applications in power systems are discussed, and main applications of LF approaches of AC demand
have been highlighted for DR accomplishment; 2) With weather information and past load data
considered, a novel LMA-based ANN approach to forecast future residential AC loads is proposed,
which is suitable for different time horizons like weekly, hourly and monthly basis, and could improve
the accuracy of forecasting; 3) Different performance assessment indices are presented and real
time hourly TMY3 data for Austin Texas is used for demonstrating the proposed LMA-based ANN
approach, which show that the proposed LMA-based ANN approach is better than SCG-based ANN
and conventional multiple linear regression approach.

The rest of this paper is organized in following sections.: Section 2 presents an overview of
big data analysis in context of power system and its applications. In Section 3 there is discussion
about increase in AC demand worldwide and LF classes, benefits, and influencing factors. Section 4
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presents LMA-based ANN approach for forecasting of AC loads. There is discussion about different
performance comparison parameter indices in Section 5. Section 6 highlights different forecasting
results. Finally, discussion and conclusions are also given in Section 7.

2. Big Data Analysis in Power Systems

Data generation has increased tremendously in recent years. Mechanisms and tools required
for extraction, conversion, and analysis of huge data volumes in order to present results
for system administrator is termed as big data analysis [22]. Due to big data complexity,
researchers and technologists are transforming traditional methods into advanced algorithms,
frameworks, and platforms to tackle novel challenges [23,24]. Parallel and cloud computing are applied
for big data analysis. Grid energy data gathered in power systems is categorized as high-volume big
data collected from numerous sources of various types, locations and applications at high velocity.
Power systems big data is classified as domain and off-domain data in [25]. Domain data comprises
SCADA, telemetry, oscillography, synchro phasor, metadata and financial data. While off-domain
power systems consist of data about social media, traffic, trade, weather, gas and water usage.

In power systems the main challenging factors handled due to big data analysis are reduction in
data collection cost and data storage [26]. Big data analysis shows most promising contributions in
short-term and long-term operations of power systems including theft indication, demand modelling,
distribution system management and granular level load and intermittent generation sources
forecasting [27]. Big data analysis supports in finding price trends of electricity and its utilization.
Furthermore, utility can handle demand and supply balance. Big data analysis in power systems has
been applied to indicate fault and outage, communication data management, forecasting of energy
consumption and cost of electricity [28–31]. In power generation, big data analysis assists in economic
dispatch, power planning, optimization, and efficiency improvement. Outage restoration, detection
of power loss, fault and transformer actions can be monitored during transmission and distribution
of power. Furthermore, big data analysis plays a significant role in load management. In load
management, main applications of big data analysis are loads classification, DR, energy savings and
theft control. Also, big data analysis plays a prominent role in LF. It can be applied to analyze different
appliance level effects on power system. In this paper, appliance level AC load forecasting by using
LMA-based ANN has been achieved. A big set of information indicated by different variables that
effect AC energy consumption have been applied to predict future AC load, that is also a sort of big
data analysis on appliance level that has been investigated in this manuscript.

3. AC Demand and Load Forecasting

Sales of ACs have blow-up worldwide over the last few years. Increase in ACs usage is dependent
on several social, economic and climatic factors. Globally in 2014 AC market was increased by up to
98 billion US dollars. It represents about 58% of the world total market and nearly about 10% total
increase as compared to 2013 [32]. AC demand for 2017 has increased by about 8.1% as compared to
2016. Largest AC sales were observed in China that show significant contribution of about 42% in
total world AC demand. Usage of about 17.30 million ACs units with 5.4% increase was observed in
Asia. Similarly, North America comprising AC demand of about 15.32 million ACs units with 4.9%
increase [33]. Cooling demand that is ACs utilization will significantly rise in coming years globally
especially in developing regions like Asia and Africa mainly due to climatic variation, income growth
and population increase as explored in [34] and [35].

According to the latest figures globally, there are 1.6 billion ACs. International Energy Agency
(IEA) has predicted about 244% increase in the number of ACs worldwide from up till 2050.
Worldwide energy demand by 2050 due to AC usage has expected to reach about 6205TWh. The IEA
forecasted that global energy demand could be just 3407TWh if AC efficiency will be improved so that
it becomes double [36]. It has been revealed from the above observations that ACs figures are growing
day by day. As AC contribute significantly in world-wide total energy demand so it is a major challenge
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to handle and design some demand management programs to tackle this issue. It has been investigated
that LF is an efficient tool for power system planning, optimization, economic dispatch, scheduling
and operation among both utilities and end-users. LF classes, prediction horizons, achievable benefits
and influencing factors have been presented in Table 1 as follows.

Table 1. Comprehensive Summary of Load Forecasting (LF) classes, prediction horizons achievable
benefits, and influencing factors.

LF Approach Prediction Horizon Achievable Benefits Influencing Factors

Very Short-Term
• Few minutes
• One hour

• Security and sensitivity analysis of
electric equipment

• Load shedding planning
• Matching of demand and supply • Seasonal variations

• Events
• Holidays
• Festivals
• TV programs

Short-Term

• One hour
• One day
• One week

• Matching of demand and supply
• Spot power procurement
• Control and power system

scheduling to minimize reduction
• Regulate voltage,

unit commitment
• Utility revenues maximization [37]

Medium-Term
• Few months
• One year

• Maintenance scheduling
• Operation planning
• Energy management
• Power Procurement
• Load dispatching coordination
• Matching of demand and supply

• Seasonal variations
• Growth rate
• New customers

Long-Term
• One year
• Four to five years

• Planning of capacity expansion
• Investment for new

generating units
• New staff induction • Seasonal variations

• Growth rate
• New customers
• Change in lifestyle

Very Long-Term
• Greater than

five Years

• Investment planning of
capacity expansion

• Renewable sources
integration planning

• Planning about environmental
policies [38]

Traditionally load forecasting is based upon physical models unable to tackle uncertainties and
complex interrelationships among variables. Big data analysis as a data-driven approach is not
dependent upon physical models. These data-driven approaches consist of decision tree algorithm,
support vector machine (SVM) and ANN [19]. In [39], it has been discussed that upon the basis of
methods LF can be classified as statistical, artificial intelligence (AI)-based methods, physical and
hybrid approaches. Statistical-based LF can be achieved by using autoregressive moving average
(ARMA) [40], autoregressive integrated moving average (ARIMA) [41], autoregressive-moving-average
model with exogenous inputs [42], time series analysis, exponential smoothing, adaptive filtering,
similar day lookup approach, regression method and probabilistic methods as highlighted in [43].
Statistical methods are simple in implementation but not efficient in handling uncertainties.
Therefore, nowadays AI-based forecasting approaches are preferred to handle complex, non-linear
relationships and uncertainties between output and affecting variables. Furthermore, their results have
fast convergence and less computational complexities [44]. AI approaches are some modern or soft
computing methods may be categorized as support vector machines (SVM), fuzzy logic and genetic
algorithms (GA) and ANN. Although these techniques required a huge amount of observations for
training and assessment.
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Unlike the statistical and AI-based forecasting approaches, the physical methods require detailed
information for future prediction. Normally satellite is applied for short-term forecasting as explored
in [45]. For long-term forecasting weather-based numerical prediction models are appropriate.
In addition to physical forecasting tools, hybrid methods combine different approaches to handle
challenges in standalone techniques. Several hybrid techniques comprise fuzzy neural network,
fuzzy expert neural network system, neural expert systems and neural-genetic algorithm [46].
Forecast studies have been mainly focused on aggregate loads but individual residential household
level and appliance level energy forecasts have not been analyzed [47]. With the recent advancement
of smart grid, there is a growing interest for residential electricity analysis at individual household and
appliance level for DR manipulation and optimum power system planning and operation Residential
load profiles show high uncertainty and variations in comparison to commercial or larger loads. This is
mostly due to random residents’ behavior [48]. Hence, it is a greater challenge to forecast residential
loads at individual and appliance level.

In LF, past observations have been utilized to observe different variables relationship.
Numerous short time horizon load prediction approaches have been explored in literature. Regression is
commonly applied in case of historic data unavailability. ANNs are preferred in case of uncertainties
that are difficult to manage by conventional tools. Indonesian South Sulawesi Island’s load has been
predicted by regression based LF [49]. A short-term LF model was presented in [50] by applying
clustering regression. A fuzzy logic-based approach was applied for short time horizon load prediction
which utilizes fuzzy rules that were obtained from past weather and load. In addition to this fuzzy
logic, genetic and evolutionary algorithm were applied with ANN was also investigated in [46]. In [51],
an online support vector regression algorithm was presented to forecast Surrey, British Columbia
residential sector. In this paper there is investigation of AC load prediction by making use of multiple
linear regression, SCG and LMA-based ANN approach described as below.

4. LMA-based ANN Approach

ANN models have been applied for best execution through several small interrelated units
termed as neurons. In order to achieve better results, simultaneous massive processing’s have
been performed by neurons that have an artificial interconnection. Numerous repetitive processing
is performed by neurons that also connect input, output and hidden layers of neural network.
Relationship between input and output can be mapped by neurons weights updating that is achieved
by training algorithm applied in ANN. Activation function generates output by making use of weighted
inputs summation. Desired and generated output error can be minimized by adjustment of weights
and biases. Generally, neural network has been discussed in [52] can be represented mathematically in
(1) as follows.

An =
k∑

n=1

Pnwn (1)

where n = 1, 2, 3, ..., k, Pn is the nth input, wn is the allocated weight for nth input and An is the
nth ANN output. ANN approaches have been reviewed in detail in [20]. For ANN calibration
network architecture is selected and number of neurons will be selected as required. In addition,
ANN training algorithm for weights updating will be decided. Speed, accuracy and complexity of load
forecasting model depends upon machine learning algorithm applied for model training. In this paper,
a feed forward three-layer multi perceptron neural network has been proposed. By making use of an
activation function desired outcomes will be obtained by hidden neurons. Most commonly log-sigmoid
mathematical function is applied for training. Transfer function for this proposed function [52] is
represented as

F(n) =
1

1 + e−n (2)
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In the proposed forecasting model, the LMA has been used to for hidden layer weights updating in
order to solve nonlinear least square problems. Various algorithms applied for multi-layer perception
ANN model training are LMA, gradient decent and Bayesian regularization. In the proposed forecasting
approach, the LMA has been used for weights updating of hidden layers in order achieve desired
outcomes. In LMA, initially random weights wn are generated. Then sum square error En will be
computed from initial weights by using

En =
1
2

∑
1 ≤ p ≤ P
1 ≤ o ≤ O

e2
p,o (3)

where ep,o is training error that can be calculated from desired output dp,o and actual output Ap,o as
given by

ep,o = dp,o −Ap,o (4)

After this LMA weights are updated by

wn+1 = wn − (H)−1 JEn (5)

where J is Jacobian matrix and H is hessian matrix that can be computed by

H = JT J + (βI) (6)

where I is unity matrix and β is combination coefficient that value will be considered if updated
error En+1 becomes less than original En. If updated error En+1 becomes greater than original En,
then procedure will be again started from initial random weights generation [53–55]. LMA procedure
can be observed in detail from the following flow diagram given in Figure 1.
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5. Performance Assessment Indices

To access the fitness of LF approaches, different performance evaluation indices have been applied.
Firstly, the percentage absolute error has been computed to observe accuracy of proposed approach
as given in Equation (7). Xi represents actual AC load, Yi represents AC load predictions by applied
LF approach.

%AE =

∣∣∣∣∣Xi −Yi
Xi

∣∣∣∣∣× 100% (7)

Secondly, the mean squared error MSE a performance assessment indicator, has been applied
to observe the applied LF approach accuracy for AC load predictions. Equation (8) shows how to
formulate mean squared error. Ei is difference between observed and actual load for N observations.
An MSE value closer to zero represents that the predicted outcome is more accurate.

MSE =
1
N

N∑
i=1

(Ei)
2 =

1
N

N∑
i=1

(Xi −Yi)
2 (8)

Thirdly, the mean absolute percentage error (MAPE) that is also a performance assessment
indicator, to observe the applied LF approach accuracy for AC load predictions [56]. Equation (9)
represents MAPE formulation as follows:

MAPE =
1
N

N∑
i=1

∣∣∣∣∣Yi −Xi
Yi

∣∣∣∣∣× 100% (9)

However, the greater variations in energy consumptions have been observed for smaller
households. MSE and MAPE are not suitable accuracy predictions indicators in this case as power
consumption varies greatly during peak and off-peak periods. Therefore, another performance
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indicator namely the mean absolute error (MAE) has been adopted to access accuracy of applied
approach for AC load predictions that can be formulated as,

MAE =

∑N
i=1 (Yi −Xi)

N
(10)

The whole procedure adopted for LMA-based ANN including performance assessment indices is
given in the following flow chart given in Figure 2.
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6. Case Studies

The residential AC real time hourly TMY3 data for Austin Texas are served for demonstrating
the effectiveness of the proposed LMA-based ANN AC load forecasting approach. TMY3 represents
typical metrological yearly parameters of different locations. Data collected is most accurate and
recommended to forecast buildings energy consumption. It represents typical data for 1020 different
regions that has been utilized nowadays, an improved version as compared to old version TMY2 and
initial TMY collected information [57,58]. All forecast results have been obtained by making use of
Statistics and Machine Learning and Neural Network Toolboxes in MATLAB R2016b. Accuracy of
forecasting approach is affected due to numerous parameters. Figure 2. presents the input variables
applied for AC load predictions. Overall accuracy and efficiency of proposed LF approach have been
accessed by input variables data like time, weather and load. Large number and volume of input data
is used to analyze forecasting results. AC load variations profile during complete year 2014 for Austin
Texas that has been applied also as an input can be observed from the Figure 3 given below.
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Figure 3. Air Conditioner (AC) Load variations during complete year.

Number of input variables have been applied to predict AC load. Some relationships are
mentioned here to show the big data involvement in power systems nowadays. Huge amount of data
is applied to check accuracy of LMA-based ANN approach. In other words, big data analysis has been
performed for AC load prediction. Meanwhile, the effect of Dew Point and Dry Bulb temperature over
AC loads can be visualized from Figure 4.
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Both statistical and ANN based models have been validated for residential AC real time hourly
TMY3 data for Austin Texas. The actual and forecasted residential AC load by applying conventional
statistical multiple linear regression approach can be observed in Figure 5.
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Furthermore, both actual and forecasted residential AC loads by applying SCG-based ANN can
be observed in Figure 6. For ANN architecture, eight variables have been applied as input. Each input
variable comprises yearly observations as input. The number of neurons is set to 10 with sigmoid
transfer function in hidden layer. A single output will be achieved that represent predicted AC load.
This method makes use of about 70% input data for training and 15% input data for testing and 15% of
input data for validation of SCG-based ANN.Big Data Cogn. Comput. 2019, 3, x FOR PEER REVIEW 10 of 16 
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Figure 6. Actual and forecasted AC load by Scaled Conjugate Gradient (SCG)-based ANN approach.

Similarly, both actual and forecasted residential AC loads by applying proposed LMA-based
ANN approach as discussed in Section 4 can be observed in Figure 7. For ANN architecture,
eight variables have been applied as input. Each input variable comprises yearly 8760 observations as
input. The number of neurons is set to an optimal value of 10 with sigmoid transfer function in hidden
layer. A single output of predicted AC load will be achieved. This method makes use of 70% input
data for training and 15% input data for testing and 15% of input data for LMA-based ANN validation.
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The performance comparisons of multiple linear regression, SCG and LMA-based ANN approach
for AC load forecast by making use of performance assessment indices as discussed in Section 5 shown
in Table 2.

Table 2. Comparisons of performance assessment indices for multiple linear regression SCG and
LMA-based ANN approach.

Multiple Linear
Regression SCG-Based ANN LMA-Based ANN

Hour Actual Predicted %AE Predicted %AE Predicted %AE

1 129.60 144.31 5.26 131.49 1.46 136.41 5.26
2 124.27 141.02 5.65 131.29 5.65 131.29 5.65
3 120.89 139.27 6.12 131.78 9.01 128.29 6.12
4 119.48 139.07 7.13 133.15 11.44 128.00 7.13
5 119.96 141.09 8.98 135.88 13.27 130.73 8.98
6 123.18 147.60 11.51 141.03 14.49 137.35 11.51
7 129.91 159.20 13.14 148.64 14.42 146.98 13.14
8 138.11 166.99 10.66 154.49 11.86 152.84 10.66
9 147.38 170.49 5.74 158.07 7.25 155.85 5.74
10 155.07 172.81 1.25 160.52 3.52 157.01 1.25
11 159.14 173.72 1.54 161.90 1.73 156.69 1.54
12 160.29 172.65 2.66 162.31 1.26 156.02 2.66
13 159.40 170.55 2.62 162.10 1.69 155.23 2.62
14 157.09 168.46 1.39 161.77 2.98 154.90 1.39
15 154.99 165.95 0.28 161.18 3.99 155.43 0.28
16 155.96 165.71 1.54 161.07 3.27 158.36 1.54
17 162.86 172.54 1.09 163.30 0.27 164.64 1.09
18 167.66 180.35 0.07 165.67 1.19 167.78 0.07
19 164.53 178.28 1.89 164.33 0.12 167.64 1.89
20 158.47 173.62 3.92 162.05 2.26 164.68 3.92
21 152.15 168.57 4.23 159.26 4.67 158.59 4.23
22 143.47 161.65 4.97 154.34 7.58 150.60 4.97
23 134.31 152.91 5.01 147.31 9.68 141.04 5.01
24 124.61 143.29 4.73 138.69 11.30 130.50 4.73

Maximum 180.35 22.54 165.67 14.49 167.78 13.14

MSE % 9.68 8.30 5.57

MAPE % 4.9529 4.2782 2.9221

MAE(Wh) 7.2294 6.2456 4.2371

Daily
MAPE % 4.3743 4.1249 2.5348

The MSE and MAPE are performance assessment indicators that have been formulated by (7) and
(8) respectively. Difference between desired and actual output can be shown by error performance
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output from these indicators. LMA-based ANN for AC demand LF is showing error performance of
94.43% and 97.00% by MSE and MAPE respectively that is bitter higher than SCG-based ANN and
statistical multiple linear regression-based approach.

Furthermore, MAE can be computed from (9) that represents mean absolute error.
Figure 8 represents error distribution for LMA-based ANN approach. Most samples are in the
positive region, which shows better results. Also, MAE can be observed from red line in error histogram
that is about 4.2371Wh. In addition to this MAPE can be observed for LMA-based ANN approach
that is approximately about 2.9221% as indicated by red line. It has been observed that in addition
to error performance improvement LMA-based ANN has highest computation speed in contrast to
SCG-based ANN for big data analysis. Performance indices values indicate more accurate value for
proposed LMA-based ANN as observed from Table 2. It can be applied to predict appliance level
loads like AC with more accuracy as compared to SCG-based ANN and conventional multiple linear
regression-based approach.
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Furthermore, AC load prediction by utilizing LMA-based ANN approach for some weeks can be
shown in Figure 9. It can be depicted that load predictions shows little difference from the actual one.
Also, MAPE gives a less error value of 6.16% for selected weeks with prediction performance accuracy
of 93.84%.
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In addition, it is possible to obtain AC load forecast results for different time horizons like hourly,
weekly and monthly basis by making use of LMA-based ANN approach more accurately. Breakdown of
error statistics by using LMA-based ANN approach for AC load predictions can be observed visually
on hourly, weekly and monthly basis by each box in Figure 10. It can be seen from Figure 10 that that
median forecast percent is almost zero as observed from central line of boxes in boxplots at different
hours, days and months of year. The maximum value of forecast percent error is less than about 5%
during different time horizons. The bottom line of the boxes indicates that 25% of AC load predicted
values have about zero percent error while from top line of boxes it can be extracted that 75% of AC
load predicted values have percent error of about less than 5%. From boxplot observations, it can also
be visualized that due to increase in time span to predict load more values falls out of range showed
using +. Furthermore, interquartile range of percent error of AC predicted loads can be observed from
difference between top and bottom of boxes in box plots that presents accurate and considerable value
of about less than 5% by making use of LMA-based ANN.Big Data Cogn. Comput. 2019, 3, x FOR PEER REVIEW 13 of 16 
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7. Conclusions

In this paper, it has been investigated that AC impact in overall electricity consumption in
buildings is very high. Therefore, controlling ACs power consumption is a significant factor for
DR programs. Different evidence regarding AC load increase has been investigated worldwide.
In addition to this, various big data analysis applications in power systems and load forecasting
categories have been explored. Furthermore, this paper presents LMA-based ANN approach for
residential AC load forecasting. Different performance assessment indices have also been investigated.
Error formulations have shown that LMA-based ANN approach for residential AC load forecasting
presents better results in comparison to SCG-based ANN and conventional multiple linear regression
approach. It has been observed that, in addition to error performance improvement, LMA-based ANN
has the highest computation speed in contrast to SCG-based ANN for big sets of input data samples.
Furthermore, information of AC load is obtainable for different time horizons like weekly, hourly,
and monthly bases most accurately due to better LMA-based ANN prediction accuracy. It can be
applied to predict appliance level loads like AC with more accuracy as compared to SCG-based ANN
and conventional regression-based approaches.
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