
big data and
cognitive computing

Article

Edge Machine Learning: Enabling Smart Internet of
Things Applications

Mahmut Taha Yazici ID , Shadi Basurra ID and Mohamed Medhat Gaber * ID

School of Computing and Digital Technology, Birmingham City University, Birmingham B5 5JU, UK;
Mahmut.Yazici@mail.bcu.ac.uk (M.T.Y.); Shadi.Basurra@bcu.ac.uk (S.B.)
* Correspondence: Mohamed.Gaber@bcu.ac.uk

Received: 11 July 2018; Accepted: 17 August 2018; Published: 3 September 2018
����������
�������

Abstract: Machine learning has traditionally been solely performed on servers and high-performance
machines. However, advances in chip technology have given us miniature libraries that fit in our
pockets and mobile processors have vastly increased in capability narrowing the vast gap between the
simple processors embedded in such things and their more complex cousins in personal computers.
Thus, with the current advancement in these devices, in terms of processing power, energy storage
and memory capacity, the opportunity has arisen to extract great value in having on-device machine
learning for Internet of Things (IoT) devices. Implementing machine learning inference on edge
devices has huge potential and is still in its early stages. However, it is already more powerful than
most realise. In this paper, a step forward has been taken to understand the feasibility of running
machine learning algorithms, both training and inference, on a Raspberry Pi, an embedded version
of the Android operating system designed for IoT device development. Three different algorithms:
Random Forests, Support Vector Machine (SVM) and Multi-Layer Perceptron, respectively, have
been tested using ten diverse data sets on the Raspberry Pi to profile their performance in terms of
speed (training and inference), accuracy, and power consumption. As a result of the conducted tests,
the SVM algorithm proved to be slightly faster in inference and more efficient in power consumption,
but the Random Forest algorithm exhibited the highest accuracy. In addition to the performance
results, we will discuss their usability scenarios and the idea of implementing more complex and
taxing algorithms such as Deep Learning on these small devices in more details.

Keywords: machine learning; edge computing; Internet of Things; IoT

1. Introduction

The Internet of Things (IoT) is rapidly changing the world from the way we drive to how we
make purchases and even how we get energy for our homes [1]. The sophisticated sensors and chips
are embedded in the physical things that surround us, each transmitting valuable data which lets us
understand how these things work and work together [2]. In other words, machines are embedded
with sensors that can relay data to each other with no human involvement. Essentially, it means all
sorts of everyday items are connected to the Internet, which could potentially transform the way
we live.

Another reason that gives IoT its current importance and makes its use ubiquitous throughout all
industries is the fact that big businesses are already investing billions into the emerging technology.
In 2008, there were officially more devices connected to the Internet than there were human beings,
and by 2020 that number is expected to reach 50 billion [3].

In like manner, if corporations and policy-makers get it right, linking the digital and physical
worlds could generate up to $11.1 trillion a year in economic value by 2025 [4]. Thus, firms will further
invest in IoT to optimise distribution costs, redesign factory work-flows and improve tracking of

Big Data Cogn. Comput. 2018, 2, 26; doi:10.3390/bdcc2030026 www.mdpi.com/journal/bdcc

http://www.mdpi.com/journal/bdcc
http://www.mdpi.com
https://orcid.org/0000-0003-4145-6154
https://orcid.org/0000-0003-2316-094X
http://www.mdpi.com/2504-2289/2/3/26?type=check_update&version=1
http://dx.doi.org/10.3390/bdcc2030026
http://www.mdpi.com/journal/bdcc

Big Data Cogn. Comput. 2018, 2, 26 2 of 17

materials. For instance, both UPS (Multinational package delivery, Atlanta, USA) and John Deere
(Manufacturer of agricultural, construction, and forestry machinery, Moline, USA) are already using
IoT-enabled fleet tracking technologies to improve supply efficiency and cut operating costs [5].

Moreover, it has now become easier to digitise certain functions and key capabilities of
industrial-age products, thanks to advances in microprocessor technologies, increasingly efficient
power management, reliable memory, and broadband communication [6]. In addition, as stated
above, IoT solutions typically combine information technology (IT) with physical things in the form
of software and hardware. As a result, the primary thing-based physical functions of a thing can be
augmented with further IT-based digital services, which can be accessed not only on a local basis but
at a global level [7]. For example, the primary function of a light bulb is to provide light. If it was,
however, enriched with IoT technology, it could also sense human presence and serve as a low-cost
security system. Likewise, together with other energy consuming appliances in the house, it may be
connected to a central unit or application for energy consumption detection and optimisation [8].

Thereafter, data extracted from IoT must be exploited using some sort of process. For that,
traditional data analysis has been reliable so far at explaining data. Reports or models of what
happened in the past or of what is happening today can be generated, pulling useful insights to apply
to the organisation. Data analytics helps quantify and track goals, enable smarter decision making,
and later provide the means for measuring success over time. On the contrary, data models that are
typical of traditional data analytics are often static and of limited use in addressing fast-changing
and unstructured data. When it comes to IoT, it is often compulsory to identify correlations between
masses of sensor inputs and external factors that are, continuously and in real time, producing millions
of data points.

In traditional data analysis a model woul be built on past data and expert opinion to establish
a relationship between the variables. However, machine learning starts with the outcome variables
(e.g., saving energy) and then automatically utilising predictor variables and their interactions.
An eminent example is Google’s recent application of machine learning on their data center cooling
technology to maintain environmental conditions suitable for their servers operation. With the goal of
increasing energy efficiency, Google applied machine learning and cut its overall energy consumption
by 15%. This represents hundreds of millions of dollars in savings for Google in the coming years.

Predictive capabilities are extremely useful in an industrial setting. By drawing data from multiple
sensors in or on machines, machine learning algorithms can “learn” what’s typical and abnormal
behaviour for a machine, sense soil moisture and nutrients in agriculture, manage smart homes, power
wearables, revolutionise healthcare, and so on. The billions of sensors and devices that will continue to
be connected to the Internet in the upcoming years will produce exponentially more data. This gigantic
increase in data will steer great improvements in machine learning, unlocking countless opportunities
for us to reap the benefits.

The objective of this research is to answer the following questions:

(a) How could machine learning algorithms be applied to IoT smart data?
(b) Is it feasible to run machine learning algorithms on IoT?
(c) What measures could be taken to enhance the execution of these algorithms on IoT devices?
(d) What would be the next step forward in applying machine learning to IoT smart data?

There are different types of IoT devices and each type depends on the application it is designed
for. For example, automating and control of home devices or industry tasks. These devices vary in
their processing capability, memory and energy requirement. One of the key platforms for IoT is
the Raspberry Pi. This is a popular platform because it is reasonably cheap, and it offers a complete
Linux server in a tiny device. We use Raspberry Pi because it is easy to connect various sensors into
the device to run machine learning for prediction and classification. The scope of this paper is to
understand how these devices can cope when running different types of machine learning algorithms.
This will help us to quantify the processing power and the energy required to run various algorithm to

Big Data Cogn. Comput. 2018, 2, 26 3 of 17

learn if these devices can survive on batteries when deployed in a remote location, and whether the
algorithms can be performed in a reasonable time with reasonable accuracy.

To comprehend which algorithms are more suitable for processing the generated data from the
IoT, visualising the following three concepts is essential. First, the IoT applications, second, the IoT data
characteristics, and, third, the data-driven vision of machine learning algorithms. Then, we discuss
the issues.

The research will use data sets that contain real data extracted from applications that would
enjoy the leverage which IoT and machine learning could bring. These data sets range across various
fields that include air quality and forest fires detection to autism screening and breast cancer exposure,
where imminent response with utmost accuracy is critical. Therefore, for the applications’ reliability,
the selected algorithms must perform with acceptable accuracy levels and do so in a short time without
consuming excessive amount of energy.

Having reviewed the state of the art about how IoT data is analysed, many noteworthy and
insightful findings have been revealed regarding data characteristics. To have a profound insight into
IoT smart data, patterns must be extracted, and the generated data to be understood. This will allow
for obtaining the right accuracy score, enabling the IoT device to respond to events and consequently
affecting IoT decision-making or controls. Moreover, to improve IoT speed and power consumption,
computationally expensive processes of the machine learning algorithms can be isolated, and possibly
executed on powerful machines e.g., the cloud, leaving only the necessary parts to run on the less
capable lightweight IoT devices.

Assuming that positive results have been obtained through this research, more complex and
demanding algorithms could be deployed and tested on these same devices to further test their
capabilities, and find out about the opportunities this may offer. Thereafter, algorithms such as Deep
Learning would extend the range of issues that can be tackled using IoT.

The rest of this paper is organised as follows. Related work in the area of edge analytics
is discussed in Section 2. The machine learning methods used in this experimental profiling are
discussed in Section 3. The chosen data sets are presented along with the experimental work in Section
4. The obtained results and observations from the experiments are viewed in Section 5, and the
conclusions together with future research directions and open issues are presented in Sections 6 and 7,
respectively.

2. Related Work

Realising the potential of handheld devices to run machine learning algorithms has been explored
in the early years of the new century by Kargupta et al. [9,10] and Gaber et al. [11–13]. The work
has provided evidence of the potential of edge analytics, even before the era of smartphones and
tablet computers.

Distribution of machine learning methods running on smartphones, with the rise of Internet
of Things, has been studied thoroughly in the area of Pocket Data Mining [14]. It is now evident
that edge devices are complementary to cloud computing to scale out machine learning systems.
Furthermore, the deployment of deep learning methods is a rising research area with compression of
deep learning models through pruning and quantisation [15]. The other approach is to directly train
small networks with the aim of decreasing latency. MobileNets models from Google is an exemplar in
this approach [16]. Advances in this area will ultimately lead to a wide deployment of deep learning
models at the edge to reduce latency. Shallower deep learning models and traditional shallow learning
models can be viable options for edge devices, especially those with resource constraints.

In this work, we focus on profiling the performance of notably successful shallow learning
methods. The choice of the methods was based on accuracy profiling of machine learning algorithms
over a large number of data sets [17].

Big Data Cogn. Comput. 2018, 2, 26 4 of 17

3. Machine Learning Methods

The aim is to deploy powerful Machine Learning algorithms (ML) on the IoT devices to
accommodate solutions for various setbacks that the IoT devices can overcome with the right tools as
the research targets to equip IoT devices with the best possible instruments, so they can tackle current
and future real-world difficulties. Less powerful techniques such as linear regression and decision
trees have already been implemented on IoT [18] and will not be considered. The goal is to stress the
devices to the furthest extent, acquire utmost usage and extend their benefit in their fields of use.

In the early stages of this research, Logistic Regression and K-Nearest Neighbour algorithm had
been implemented and tested with classification data set. Later, when ten data sets of two types (one
half classification and the other regression) and with different use cases were selected for testing,
LR and KNN were dropped as they could only be used for classification problems.

The remaining algorithms that were implemented and used in all conducted tests. These are
Multi-Layer Perceptron, Support Vector Machine and Random Forests.

3.1. Multi-Layer Perceptron

Deep Learning and Neural networks are one of the hottest topics right now. Large corporations
and young startups alike are gold-rushing into this state-of-the-art field. Artificial neural networks
(ANNs) are currently driving some of the most ingenious inventions of the century, for the reasons
mentioned in [19]. ANNs are the artificial representation of the working nervous system. They are
an interconnected web of nodes, which are called neurons, that are connected with edges typically
have a weight that adjusts as learning continues (See Figure 1).

Figure 1. Visual Representation of an Artificial Neural Network.

ANNs are analytical algorithms that are widely used in the recognition and classification of
patterns. They are being used effectively, under many different architectures, to undertake specific
tasks—for example: forecasting, clustering, pattern recognition, decision making and management,
data compression and approximation [20]. Thus, since ANNs are vital at numerous real-world
applications, they could not be left out of this research. The ANN algorithm will be used for the testing
phase as they can be developed using multiple different training algorithms, and they require less
formal statistical training to develop. In addition, ANNs can detect nonlinear relationships between

Big Data Cogn. Comput. 2018, 2, 26 5 of 17

dependent and independent variables and possess the ability to detect all possible interactions between
predicator variables [21].

One of the biggest disadvantages of Artificial Neural Networks is their “black box” nature, which
explicitly gives limited ability to identify possible casual relationships [22]. However, this will not
affect this search, as the research’s sole purpose is to test and benchmark the devices’ capabilities rather
than understand the metamorphosis of data while training. Another issue that ANNs bring along is
that they require greater computational resources compared to more traditional ML algorithms [23].
The research will attempt to use this hindrance as a tool to discover the devices’ furthest limits in terms
of training time, computational power, storage capability and battery life.

The implementation of the ANN algorithm will resemble overclocking computer hardware for
better performance using the same exact pieces. To begin with, a shallow neural network will be
used. Incrementally, newer neurons and then new layers will be added to underpinning the algorithm
performance, all the while watching how these incremental changes affect the performance of the IoT
devices. Using the test data, the algorithm will be settled at the threshold where the best performance
meets the best possible accuracy.

Artificial Neurons are the heart of a neural network. The neuron of a neural network is
an activation node. The activation node takes the input from the presidency nodes, applies the
learning parameters to the weighted sum and then passes that sum to an activation function that
computes the composite prediction or probabilities. This is known as a perceptron which simply takes
multiple inputs and produces one output. Therefore, the predictions are progressively processed until
the final output is generated [24].

3.1.1. Random Forest

Random Forest (RF) is an easy to use and flexible machine learning algorithm. It is known
to achieve high accuracy results, even without hyper-parameter tuning [25]. It was a primary
consideration of the research because of its simplicity, and the fact that it can be used for both
classification and regression problems.

Random Forest is a supervised learning algorithm, and, as the name suggests, it creates a forest
and makes it in some way random. The “forest” is constructed from an assembly of Decision Trees,
mostly trained with the “bagging” method. RF grows multiple trees as opposed to a single tree in
court model to classify a new object based on attributes each tree gives. The classification is achieved
by having the most votes overall in the forest, and in the case of regression, it takes the average of the
outputs generated by different trees [26] (See Figure 2).

Figure 2. Random forest simplified representation.

Big Data Cogn. Comput. 2018, 2, 26 6 of 17

Random Forest was picked here because it can be used for both classification and regression tasks
and will not overfit the model. In addition, it can handle large data sets with higher dimensionality [25].

A major disadvantage of Random Forests is their complexity. They are less intuitive and are much
harder and time-consuming to be built in comparison with decision trees. However, on the bright side,
a single decision tree tends to overfit the data, while RF’s process of averaging or joining the results
of different decision trees aids to overcome the problem of overfitting. Moreover, they are extremely
flexible and tend to offer high accuracy outputs [26].

3.2. Support Vector Machine

The final algorithm is another powerful and widely used learning algorithm, the Support
Vector Machine (SVM). SVM looks at the extremes of the data sets and draws a decision boundary,
also known as a hyperplane, near the extreme points in the dataset. Essentially, the SVM algorithm is
a frontier which best segregates the two classes [27]. SVM can be considered as an extension of the
perceptron. However, the perceptron algorithm minimises misclassification errors, whereas, in SVMs,
the optimization objective is to maximize the margin (see Figure 3).

Figure 3. Demonstration of Support Vector Machine (SVM).

SVMs work with linearly separable datasets; hence, if the dataset is not linearly separable, it is
transformed into a higher dimensional space, so the maximum-margin can be plotted [28]. The problem
with transformation into higher dimensional feature space is that it is computationally expensive.
This issue can be avoided by using a “kernel trick” to reduce the computational cost: a function
that takes inputs as vectors in the original space and returns the dot product of the vectors in the
feature space. This is called a kernel function, also referred to as the kernel trick. Using a kernel
function, we can apply the dot product between two vectors so that every point is mapped into a high
dimensional space via some transformation [29]. A drawback of SVM is that it does not directly provide
probability estimates. On the other hand, SVM is versatile in specifying decision functions using
different Kernels. It is also effective and memory efficient in high dimensional spaces. They provide
high precision, making them applicable to datasets with a large number of features. Accordingly,
they are highly used in studying the air quality in urban areas of cities, image interpolation, as well as
medical classification [30].

4. Experimental Study

4.1. Data Sets

As the aim of this research is to test the capabilities of current IoT devices, they can be deployed
in various sectors to aid and improve real-world operations. Each of the chosen data sets are real
data collected by various recent research/study. For further information about the data type, size and
source, check the Table 1 below.

Big Data Cogn. Comput. 2018, 2, 26 7 of 17

The selected ten data sets [31] are divided into two categories, and these are classification data sets
and regression data sets. All data sets are different from each other except for one: “Energy Efficiency”,
as this is being used both for classification and regression.

4.1.1. Regression Data Sets

1. Air Quality Data Set—The data set contains hourly response averages coming from a gas
multi-sensor device deployed on the field in an Italian city. The goal is to estimate benzene levels in an
urban pollution monitoring scenario.

2. Concrete Compressive Strength Data Set—The objective here is to use age and ingredients
(cement, ash, water, etc.) found in the data set to determine the concrete material’s strength.

3. Energy efficiency Data Set—The data set contains eight features of energy analysis of
12 buildings. The aim is to visualize and assess the performance of heating and cooling operations of
houses.

4. Individual household electric power consumption Data Set—The data set is comprised of
one-minute sampling rate measurements of electric power consumption of a household over four
years. This data set will be used to detect bizarre usage patterns of the household.

5. Yacht Hydrodynamics Data Set—Data set containing dimensions and velocity of yachts for
evaluating the ships performance and for estimating the required propulsive power.

4.1.2. Classification Data Sets

1. Autism Screening Adult Data Set—Data on autistic spectrum disorder screening of adults.
It will be used to determine the state of a patient in the clinic for early diagnosis.

2. Breast Cancer Data Set—The data set contains instances described by nine attributes, some
of which are linear, and some are nominal, and will be used to classify the type of cancer for a given
patience at the spot.

3. Energy efficiency Data Set—The data set contains eight features of energy analysis of
12 buildings. The aim is to visualize and assess the performance of heating and cooling operations of
houses.

4. Glass Identification Data Set—Data set that consists of six types of glass, defined in terms
of their oxide content (i.e., Na, Fe, K, etc). It will be used to predict the types of glass motivated by
criminology investigation.

5. Leaf Data Set—The data set contains shape and texture features extracted from 40 different
plant leaf specimens. It will aid in the classification purposes of new species on the field.

The characteristics of all data sets are shown in Table 1.

Table 1. Number of instances and attributes for each data set used to test classification and regression.

Data Set Name Category No. of Instances No. of Attributes

Air quality Regression 9358 15
Concrete compressive strength Regression 1030 9

Energy efficiency Regression 768 8
Indidual household electric power consumption Regression 2,075,259 9

Yacht hydrodynamics Regression 308 7
Autism screening adult Classification 704 21

Breast cancer Classification 286 9
Energy efficiency Classification 768 8

Glass identification Classification 214 10
Leaf Classification 340 16

4.2. Machine Learning Algorithms

The aim is to deploy the powerful ML algorithms on the IoT devices to accommodate solutions
for various setbacks that the IoT devices can overcome with the right tools. The research targets

Big Data Cogn. Comput. 2018, 2, 26 8 of 17

IoT devices equipped with the best possible instruments, so they can tackle current and future
real-world difficulties.

Likewise, less powerful techniques such as linear regression and decision trees have already been
implemented on IoT [18]. Hence, the goal is to stress the devices to the furthest extent, acquire utmost
usage and extend their benefit in their fields of use.

4.3. Test Computer, IoT Device and Software

We ran the experiments on a PC with typical specification. It has an Intel Core i7-6700HQ (Intel
Corporation, California, USA), which is a quad-core processor based on the Skylake architecture that
was introduced in September 2015. It is a ubiquitous CPU running on most of the current personal
computers, which makes it an ideal choice to develop the algorithms on. For the IoT device, Raspberry
Pi 3 model B was chosen for the experiment. This is the latest version of Raspberry Pi available on
the market today, which is a cheap, functional, bare metal platform ideal for the research. It is small,
and has a Quad Core 1.2 Ghz at disposal with 1 GB of RAM and onboard connectivity through wireless
LAN and Bluetooth. The Figure 4 shows the Raspberry Pi 3.

Figure 4. Raspberry Pi 3 model B was used for the experiment.

Anaconda platform was selected since it is one of the most popular Python data science platforms.
Out of the box, it contains lead open source projects like NumPy and SciPy.

4.4. Measurement Tools

4.4.1. Accuracy

For classification, the ‘accuracy score’ metric from scikit-learn will be used. This uses two variables
total and count, which are used to calculate the frequency at which predictions match the labels.
This function simply divides the total by the count [32]:

accuracy =
y_predicted

y_true
. (1)

For regression, the ‘R2’ (coefficient of determination) function metric will be used. It is defined as
(1− u/v), where ‘u’ is the residual sum of squares and ‘v’ is the total sum of squares. The best possible
score is 1.0 [32]:

R2 = 1 − u
v

, (2)

Big Data Cogn. Comput. 2018, 2, 26 9 of 17

u = ∑(ytrue − ypred)
2 and v = ∑(ytrue − µpred)

2

4.4.2. Speed

As a basic measurement and to retain consistency, the speed of all algorithms will be measured in
seconds. This will be measured using the time module from python.

On the Raspberry Pi that runs Linux, the Python module returns the current processor time as
a floating point number expressed in seconds. The precision, and, in fact, the very definition of the
meaning of “processor time” depends on that of the C function of the same name, but, in any case,
this is the function to use for benchmarking Python or timing algorithms [33].

On the PC that runs Windows, this function returns wall-clock seconds elapsed since the first call to
this function, as a floating point number, and based on the Win32 function QueryPerformanceCounter,
the resolution is typically better than one microsecond [33].

In order calculate the common speed measurements with confidence, we ran each algorithm
20 times with the same data set, and then we calculated the average time which is reported in the
results section of this article.

4.4.3. Power Consumption

The power consumption will be measured using the Muker USB multimeter (M. way USB
Multimet Po, China). It is a small yet powerful device that provides all the information required for
this use case and much more: Current (A), Voltage (V), Energy (Wh), Resistance (Ω), Capacity (mAh)
and Power (W) going from the socket to the device that is charging from it in real time. It also shows
the Cumulative time (Seconds), Internal Temperature (◦C) of the device. Figure 5 depicts the Muker
USB multimeter device whilst in operation.

Figure 5. The Muker USB multimeter which was used to measure the energy consumption of running
MLs algorithms on the Raspberry Pi 3.

The power consumption of the IoT device for a given time while running the algorithm will be
monitored. This is achieved by measuring the algorithm’s excess usage of power in comparison to
when the device runs in idle mode. This is calculated as amps per second. Then, this will be fed into
another equation, resulting in its power usage over a specific time, which is measured in joules:

J = W × s, where W = V × A, (3)

J = joules, W = watts, s = seconds, V = volts, A = amps. (4)

Big Data Cogn. Comput. 2018, 2, 26 10 of 17

In addition, in this case V = 5, as that is the electric potential difference of the charger used.

4.5. Implementation

The aim here was to use the time efficiently and develop the models swiftly as it involved three
different models to be implemented, which would later be individually customised according to the
ten data sets.

4.5.1. Models

At a glance, building a good machine learning model is no different than building any other
product: starting with ideation, where the problem being tackled is investigated and some potential
approaches are considered. Once a clear direction is identified, a prototype solution is formed. Later,
this prototype get tested to check if it meets the requirements. The process can be broken down to
these four stages:

Ideation: Align on the main problem to solve, and consider the possible data inputs for
the solution.

Data preparation: Select and gather the data in a suitable format for the model to process and
learn from.

Prototyping and testing: Build a model to solve the problem, test the performance and iterate
until achieving satisfactory results.

Productisation: Stabilise and scale the model for all data sets to produce useful outputs in the
testing environment.

Thus, the initial goal was to build the models and have them working with at least one of the data
sets. This way, they would be ready for tuning, and so the testing phase would commence sooner.

Scikit-learn library will be used to build the three models.

• For Multi-Layer Perceptron ‘MLPClassifier’ is used for classification and ‘MLPRegressor’
for regression;

• For Support Vector Machine ‘svm’ and ‘SVR’ are used;
• and, finally, for Random Forest, ‘RandomForestClassifier’ and ‘RandomForestRegressor’ are used.

4.5.2. Pre-Processing and Tuning

The goal of this phase is to transform the data into a form that can be plugged as input into the
built models and then tune the models to achieve utmost performance.

Data cleansing is a valuable process that can help save time and increase efficiency [34]. It is
done by spotting and rectifying inaccurate or corrupt data from the data set. Furthermore, in this case,
the null values of certain features found in the data sets were deleted as they were not in abundance
and plentiful of data was left to be iterated on.

To further cleanse the data, feature selection techniques will be used to identify and remove
redundant and irrelevant data without causing dramatic loss of data [35]. This is also useful on
multiple fronts as it can reduce overall training times. Moreover, it can potentially minimise overfitting
and increasing generalisability [36]. Hence, after thorough reading of the research papers that each
data set used, several features that had very little impact were dropped. A good example for this is
‘Autism Adult Screening’ data set where features like the individual answers to particular questions
were dropped, as the sum of the remaining of the questions was sufficient to make a decision.

Because some of the selected data sets are too large, which is time-consuming to process,
and usually requires high computational power, the sampling technique was used on some data sets to
select a sample from the data while maintaining accurate representation of the entire population [37].
For example, the ‘Individual household electric power consumption’ data set contained over two
million entries and running through it on the Raspberry Pi would have been unfeasible. Therefore,
in such data sets, data was hourly sampled into average and total power consumed. This sampling
method reduced the number of entries to around ten thousand entries.

Big Data Cogn. Comput. 2018, 2, 26 11 of 17

Tuning

Open-source packages like scikit-learn enable the use of powerful ML tools quickly and easily, but
tuning these models is often a non-intuitive, time-consuming process. The tuneable hyperparameters
of these models themselves can greatly influence their accuracy [38].

Accordingly, grid search was used to tune the three models on each data set. The same
accuracy parameters (accuracy and R2) were used as the performance metrics and it was measured
by cross-validation on the data sets. For MLP, three of the hidden layers of size varying from 3 to
90 together with three solvers (lbfgs, sgd and adam) and four activation functions (identity, logistic,
tanh, relu) were fed in the grid search to find the best hyper-parameters. For SVM, the following
hyper-parameters were modified with grid search: C, coef0, degree, epsilon, kernel and tol. Lastly, for
RF, only the number of trees ranging from 100 to 200 trees was fed into the tuning algorithm.

Consequently, with the modified hyper-parameters, an overall accuracy score of over 85% was
achieved throughout the three models on all data sets.

Script Separation

Throughout the implementation process mentioned above, the code was broken down and
separated into different scripts (files). This allowed concentrating into one problem at a time,
and negated the single point of failure while debugging.

Therefore, pre-processing, tuning, saving the model through pickling and extracting the model
using unpickling (more on this in the next subsection) has been separated into different scripts in
the folder.

Pickling and Inference

Pickling (and unpickling) also known as “serialization” is a Python module that implements
binary protocols for serializing and de-serializing an object structure [39]. Thus, using pickling,
the finalised models were converted into binary files on the PC, which were then uploaded to the
Raspberry Pi. On the Pi, they were unpickled and later used for inference for the testing phase.

5. Experimental Results

5.1. Testing

The testing phase stands as the main focal-point of the research where the capabilities of the IoT
device (Raspberry Pi) will be measured and evaluated. Each of the three models will be tested on all
data sets ten times, obtaining a reliable mean as the result. On each run, the accuracy of the model
on the data set and the average execution time will be recorded on both devices. While excess power
consumption per second and total power consumption throughout the execution time will only be
recorded on the Raspberry Pi. This will consist of three stages.

The models run from scratch on the PC to test training and inference, measuring their accuracy
and execution time. Training will be tested by running the complete model from start. This will give
us a baseline to compare with and distinguish the difference of running the same algorithm on the
smaller IoT device.

The models have been designed to run on the Raspberry Pi to test training and inference,
measuring accuracy and execution time plus energy consumption. As mentioned in Section 4.4.3,
their excess power usage (shown below) and the total power usage through the duration of
the algorithm.

Algorithm’s Excess Usage = Total Power consumption of RasPi − Idle power consumption of RasPi.

The inference will be tested on the IoT device inference by unpickling the earlier uploaded binary
files with the models already trained. This test will resemble the real-life use case of the device where

Big Data Cogn. Comput. 2018, 2, 26 12 of 17

it would collect data on the field and give a response by inference quickly, and without consuming
excessive amount of power. This experiment will be conducted by running the ML algorithm on
a selected random section/sample of 100 instances from the data set. Thus, to the execution time of
inference on a single instance:

Single Instance Inference = Execution time (100 instances)/100.

5.2. Evaluation

Figures 6 and 7 depict the training times required by the computer and Raspberry Pi. As expected,
the PC, running an i7 with a clock speed that is double the speed of the processor found in the IoT
device, outperformed its smaller counterpart by a great amount.

Figure 6. Random Forest-Execution Time-Raspberry Pi vs. PC.

Figure 7. Random Forest-Execution Time-Raspberry vs. PC.

Figure 8 demonstrated that running only inference on the small IoT device is feasible as the
average run time per instance is 0.05 s. The graph shows the run time for training and inference of
the three different algorithms on the IoT device. It is apparent that algorithms such as SVM required
a huge amount of time for training the algorithms to optimise the separating hyperplane to Multi-Layer

Big Data Cogn. Comput. 2018, 2, 26 13 of 17

Perception and Random Forest. Interestingly, the time required for the inference is almost identical
among all algorithms subject for this experiment.

Figure 8. Algorithm training and inference speed comparison.

Figure 9 displays the overall accuracy of the three models on classification and regression data
sets. SVM proved to be better at classification problems, while MLP showed a better performance for
regression in this case. However, on the other hand, RF outperformed both algorithms in classification
and regression problems.

Figure 9. Algorithm accuracy comparison.

Figure 10 depicts the measurement of the operating electrical current running through the
Raspberry Pi when running Multi-layer perception, Random Forest or SVM algorithms. The used
Muker USB multimeter measure this amps per second. The algorithms’ excess power consumption
adds to the statement made earlier about the feasibility of running inference on the IoT device.

Big Data Cogn. Comput. 2018, 2, 26 14 of 17

Their consumption is less than 15 amps per second, which is very feasible. Other tests were conducted
where the power consumption was measured whilst browsing the web, watching videos or playing
games, and all proved to consume at least 18 amps or more.

Figure 10. Algorithm energy consumption comparison.

Figure 11 displays the total energy consumption, which was calculated as discussed in
Section 4.4.3. This is the total energy consumed by the Raspberry Pi by running the machine learning
algorithms when training and inference on all the data sets. This is measured in Joules which is a unit
of energy needed to move one ampere through one ohm of resistance for one second. In training,
due to the time it takes, SVM has the biggest consumption by an extensive margin. Here again RF
proved to be the best option as it surpasses its rival algorithms both in training and inference.

Figure 11. Algorithm total energy consumption comparison.

Big Data Cogn. Comput. 2018, 2, 26 15 of 17

6. Discussion

Looking into the results, Random Forest is the overall winner in all categories. It is quick to train,
versatile, provides a pretty good indicator of feature importance and it is an excellent benchmark model.

However, those concerned with fast inference can still consider the Support Vector Machine and
the Multi-layer Perception. Although, their training is long, the inference is still fast and very close
to the one of the Random Forest. In these cases, we suggest a hybrid approach where training takes
place on a high performance computer to minimise the the time required for training. From the results,
it is apparent that SVM and MLP are best to run on lightweight IoT devices, but at the cost of having
slightly lower accuracy (8–14%).

These tests and results can also be considered as a starting guide for those looking to deploy
machine learning models on IoT edge devices and are not sure which ML algorithms to choose.
In addition, all information regarding the software and hardware is given, so the tests can be replicated
with ease.

7. Conclusions

In the paper, the feasibility of running a number of ubiquitous machine learning algorithms on an
IoT edge device was questioned. As a result of the conducted tests, comparing performances of all
three algorithms namely Multi-layer perception, Random Forest and SVM algorithms, the Random
Forest algorithm proved to be slightly faster in speed and widely better in accuracy. However, looking
at the research from a wider perspective, all of the algorithms’ accuracy exceeded 80%, the time
required to run them for inference was below one millisecond and they all had moderately low energy
consumption.

Hence, the conducted research proves that running the state-of-the-art machine learning
algorithms is feasible to be run on edge IoT devices for all purposes.

As a recommendation, the idea of implementing more complex and taxing algorithms such as
Deep Learning, using platforms like TensorFlow, on these small devices would be the next step in
revealing their power in more detail. Work on deployment of pruned deep learning models in recent
research looks promising.

Nevertheless, the future of IoT seems much more fascinating as billions of things will be
communicating to each other and human intervention will become least. IoT will bring a macro
shift in the way we live and work.

Author Contributions: For research articles with several authors, Conceptualization, S.B. and M.M.G.;
Methodology, M.T.Y., S.B. and M.M.G.; Software, M.T.Y.; Validation, M.T.Y., S.B. and M.M.G.; Formal Analysis,
M.T.Y.; Investigation, M.T.Y.; Resources, M.T.Y., S.B. and M.M.G.; Data Curation, M.T.Y.; Writing—Original Draft
Preparation, M.T.Y.; Writing—Review & Editing, S.B. and M.M.G.; Visualization, M.T.Y.; Supervision, S.B. and
M.M.G.; Project Administration.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Green, H. The Internet of Things in the Cognitive Era: Realizing the Future and Full Potential of Connected Devices;
Technical Report; IBM Watson IoT: New York, NY, USA, 2015.

2. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

3. Evans, D. The Internet of Things: How the Next Evolution of the Internet is Changing Everything. CISCO
White Paper 2011. 1, 1–11.

4. Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.A.D. Unlocking the Potential of the Internet of
Things; Technical Report; McKinsey Global Institute: New York, NY, USA, 2015.

5. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises.
Bus. Horiz. 2015, 58, 431–440. [CrossRef]

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.bushor.2015.03.008

Big Data Cogn. Comput. 2018, 2, 26 16 of 17

6. Yoo, Y.; Henfridsson, O.; Lyytinen, K. The New Organizing Logic of Digital Innovation: An Agenda for
Information Systems Research. Inf. Syst. Res. 2010, 21, 724–735. [CrossRef]

7. Wortmann, F.; Fluchter, K. Internet of Things: Technology and Value Added. Bus. Inf. Syst. Eng. 2015.
57, 221–224.

8. Fleisch, E.; Weinberger, M.; Wortmann, F. Business Models for the Internet of Things-Bosch IoT Lab White Paper;
Universität St. Gallen: St. Gallen, Switzerland, 2014.

9. Kargupta, H.; Park, B.H.; Pittie, S.; Liu, L.; Kushraj, D.; Sarkar, K. MobiMine: Monitoring the stock market
from a PDA. ACM SIGKDD Explor. Newsl. 2002, 3, 37–46. [CrossRef]

10. Kargupta, H.; Bhargava, R.; Liu, K.; Powers, M.; Blair, P.; Bushra, S.; Dull, J.; Sarkar, K.; Klein, M.;
Vasa, M.; et al. VEDAS: A mobile and distributed data stream mining system for real-time vehicle monitoring.
In Proceedings of the 2004 SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA,
22–24 April 2004; pp. 300–311.

11. Gaber, M.M.; Philip, S.Y. A holistic approach for resource-aware adaptive data stream mining. New Gener.
Comput. 2006, 25, 95–115. [CrossRef]

12. Gaber, M.M. Data stream mining using granularity-based approach. In Foundations of Computational,
Intelligence Volume 6; Springer: Berlin/Heidelberg, Germany, 2009; pp. 47–66.

13. Gaber, M.M.; Krishnaswamy, S.; Zaslavsky, A. On-board mining of data streams in sensor networks.
In Advanced Methods for Knowledge Discovery From Complex Data; Springer: Goldaming, UK, 2005; pp. 307–335.

14. Gaber, M.M.; Gomes, J.B.; Stahl, F. Pocket Data Mining. In Big Data on Small Devices; Series: Studies in Big
Data; Springer: Cham, Switzerland, 2014.

15. Anwar, S.; Hwang, K.; Sung, W. Structured pruning of deep convolutional neural networks. ACM J. Emerg.
Technol. Comput. Syst. (JETC) 2017, 13, 32. [CrossRef]

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

17. Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real
world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181.

18. Chavan, G.; Momin, B. An integrated approach for weather forecasting over Internet of Things: A brief
review. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 83–88. [CrossRef]

19. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. arXiv 2015, arXiv:1510.00149.

20. Ata, R. Artificial neural networks applications in wind energy systems: A review. Renew. Sustain. Energy Rev.
2015, 49, 534–562. [CrossRef]

21. Raschka, S. Python Machine Learning: Effective Algorithms for Practical Machine Learning and Deep Learning,
2nd ed.; Packt Publishing Limited: Birmingham, UK, 2017.

22. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for
predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]

23. Tang, J.; Sun, D.; Liu, S.; Gaudiot, J.L. Enabling Deep Learning on IoT Devices. Computer 2017, 50, 92–96,
doi:. [CrossRef]

24. Ng, A. Neural Networks and Deep Learning-Coursera. 2017. Available online: https://www.coursera.org/
learn/neural-networks-deep-learning/ (accessed on 27 August 2018).

25. Mestre, D.; Fonseca, J.M.; Mora, A. Monitoring of in-vitro plant cultures using digital image processing and
random forests. In Proceedings of the 8th International Conference of Pattern Recognition Systems (ICPRS
2017), Madrid, Spain, 11–13 July 2017; pp. 1–6. [CrossRef]

26. Dogru, N.; Subasi, A. Traffic accident detection using random forest classifier. In Proceedings of the 2018
15th Learning and Technology Conference (L T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 40–45, doi:.
[CrossRef]

27. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.;
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2011.

28. Tian, Y.; Qi, Z.; Ju, X.; Shi, Y.; Liu, X. Nonparallel Support Vector Machines for Pattern Classification.
IEEE Trans. Cybern. 2014, 44, 1067–1079. [CrossRef] [PubMed]

http://dx.doi.org/10.1287/isre.1100.0322
http://dx.doi.org/10.1145/507515.507521
http://dx.doi.org/10.1007/s00354-006-0005-1
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1109/I-SMAC.2017.8058291
http://dx.doi.org/10.1016/j.rser.2015.04.166
http://dx.doi.org/10.1016/S0895-4356(96)00002-9
http://dx.doi.org/10.1109/MC.2017.3641648
https://www.coursera.org/learn/neural-networks-deep-learning/
https://www.coursera.org/learn/neural-networks-deep-learning/
http://dx.doi.org/10.1049/cp.2017.0137
http://dx.doi.org/10.1109/LT.2018.8368509
http://dx.doi.org/10.1109/TCYB.2013.2279167
http://www.ncbi.nlm.nih.gov/pubmed/24013833

Big Data Cogn. Comput. 2018, 2, 26 17 of 17

29. Kruczkowski, M.; Szynkiewicz, E.N. Support Vector Machine for Malware Analysis and Classification.
In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT), Warsaw, Poland, 11–14 August 2014; Volume 2, pp. 415–420. .
[CrossRef]

30. Amin, S.; Singhal, A.; Rai, J.K. Identification and classification of neuro-degenerative diseases using statistical
features and support vector machine classifier. In Proceedings of the 2017 8th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017; pp. 1–8. .
[CrossRef]

31. Asuncion, A.; Newman, D. UCI Machine Learning Repository. Available online: https://archive.ics.uci.
edu/ml/index.php (accessed on 27 August 2018).

32. Scikit-Learn. Documentation of Scikit-Learn 0.19.1. Available online: https://github.com/amueller/scipy-
2017-sklearn (accessed on 27 August 2018).

33. Van Rossum, G. Python Tutorial; Technical Report CS-R9526; Centrum voor Wiskunde en Informatica (CWI):
Amsterdam, The Netherlands, 1995.

34. Rahm, E.; Do, H.H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull.108 2000, 24, 3–13.
35. Bermingham, M.L.; Pong-Wong, R.; Spiliopoulou, A.; Hayward, C.; Rudan, I.; Campbell, H.; Wright, A.F.;

Wilson, J.F.; Agakov, F.; Navarro, P.; et al. Application of high-dimensional feature selection: Evaluation for
genomic prediction in man. Sci. Rep. 2015, 5, 10312. [CrossRef] [PubMed]

36. Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003,
3, 1157–1182.

37. Choudhury, M.D.; Lin, Y.R.; Sundaram, H.; Candan, K.S.; Xie, L.; Kelliher, A. How Does the Data
Sampling Strategy Impact the Discovery of Information Diffusion in Social Media? In Proceedings of
the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM), Washington, DC, USA,
23–26 May 2010.

38. Kong, W.; Dong, Z.Y.; Luo, F.; Meng, K.; Zhang, W.; Wang, F.; Zhao, X. Effect of automatic hyperparameter
tuning for residential load forecasting via deep learning. In Proceedings of the 2017 Australasian Universities
Power Engineering Conference (AUPEC), Melbourne, Australia, 19–22 November 2017; pp. 1–6. [CrossRef]

39. Rossum, G. Python Reference Manual. Available online: https://docs.python.org/2.0/ref/ref.html
(accessed on 27 August 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/WI-IAT.2014.127
http://dx.doi.org/10.1109/ICCCNT.2017.8204068
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://github.com/amueller/scipy-2017-sklearn
https://github.com/amueller/scipy-2017-sklearn
http://dx.doi.org/10.1038/srep10312
http://www.ncbi.nlm.nih.gov/pubmed/25988841
http://dx.doi.org/10.1109/AUPEC.2017.8282478
https://docs.python.org/2.0/ref/ref.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Machine Learning Methods
	Multi-Layer Perceptron
	Random Forest

	Support Vector Machine

	Experimental Study
	Data Sets
	Regression Data Sets
	Classification Data Sets

	Machine Learning Algorithms
	Test Computer, IoT Device and Software
	Measurement Tools
	Accuracy
	Speed
	Power Consumption

	Implementation
	Models
	Pre-Processing and Tuning

	Experimental Results
	Testing
	Evaluation

	Discussion
	Conclusions
	References

