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Abstract: A turbocharger’s radial turbine has a strong impact on the fuel consumption and transient
response of internal combustion engines. This paper summarizes the efforts to design a new radial
turbine aiming at high efficiency and low inertia by applying two different optimization techniques
to a parametrized CAD model. The first workflow wraps 3D fluid and solid simulations within a
meta-model assisted genetic algorithm to find an efficient turbine subjected to several constraints.
In the next step, the chosen turbine is re-parametrized and fed into the second workflow which makes
use of a gradient projection algorithm to further fine-tune the design. This requires the computation
of gradients with respect to the CAD parametrization, which is done by calculating and combining
surface sensitivities and design velocities. Both methods are applied successfully, i.e., the first delivers
a well-performing turbine, which, by the second method, is further improved by 0.34% in efficiency.

Keywords: Large Diesel Engine; turbocharger; radial turbine; optimization; meta-model; adjoint
sensitivity; efficiency; inertia

1. Introduction

The stationary and transient performance of large combustion engines is coined by the design
of its turbocharger system, i.e., its compressor and turbine. In the present paper, a radial turbine
is designed with a focus on both engine efficiency and transient response. These goals are directly
linked to the turbine efficiency and its inertia. Furthermore, a high life expectancy is requested,
which constrains the stress levels.

This problem is tackled with two different, subsequent design steps: The first is a gradient-free
multidisciplinary optimization based on a meta-model assisted evolutionary algorithm. It can be
considered standard in the sense that there are numerous publications that use comparable methods to
improve rotor designs, see [1–3] or [4]. This method can explore the design space. However, its success
is limited as the calculation effort scales with the number of design parameters, i.e., increasing the
design space or, respectively, the potential for improvement comes with a great computational cost.

To overcome this major drawback, the global optimization in the first step with a gradient-based
optimization in a second step. Additionally, the gradients in the second step are computed following
an adjoint technique, which has the advantage that the effort per iteration does not scale with the
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number of parameters and promises fast design improvements. However, differentiating every
available cost function with high accuracy and subsuming all of them in a single optimization is
challenging—which is probably why only few authors have presented comparable multidisciplinary
design chains. However, there are some, and the potential for design improvements has proven to
be considerable, see [5] or [6]. Setting up a multidisciplinary gradient-based design chain, one faces
several difficulties. First, the designer needs to have tools available that can calculate mesh sensitivities
for the considered cost functions. By now, several open-source and commercial CFD codes are available
that offer methods to calculate the flow-related ones using adjoint methods. However, finding codes
that can do this for the rest of the considered cost functions (eigenfrequency, mass, inertia) proves
troublesome. Hence, in this paper, we apply a combination of commercial codes, open-source academic
codes as well as in-house developed programs. Second, one needs to find a way to calculate design
velocities, which is compatible with the CAD tool in which the turbine is parametrized. Within this
work, a finite difference approach is applied to achieve this. Third, data must be mapped in between
meshes, so interpolation methods need to be applied, such as the implemented nearest neighbor
algorithm in the presented workflow. Finally, an optimizer is required that handles the different tools
and steers the overall process, like the in-house implementation of the gradient projection algorithm
according to [7].

In the following, both optimization methodologies will be presented: In the next chapter,
the gradient-free framework is detailed, and a turbine is designed. In the subsequent chapter,
this turbine is further improved by applying the gradient-based workflow.

2. Gradient-Free Optimization

Figure 1 visualizes the gradient-free workflow, which will be explained in this first part of the
paper. Initially, a fluid and a solid geometry are created and meshed based on a parametrized CAD
model and a parameter set s. The simulation is performed in three steps: First, an adiabatic CFD
(Computational Fluid Dynamics) simulation is conducted to calculate the efficiency η. Second, the solid
mesh is activated to facilitate a CHT (Conjugate Heat Transfer) calculation that is initialized with the
aforementioned CFD flow field. Finally, the CSM (Computational Structural Mechanics) is run, i.e.,
the temperature field in the solid, the surface pressure distribution and the rotation rate nmax are used
to calculate both the eigenfrequencies and the stresses. Furthermore, the rotor mass m, the center
of gravity zg, and the inertia Jz are calculated. The workflow is wrapped within an optimization
software that implements a meta-model assisted genetic algorithm described and detailed at the end
of this chapter.

CSM, CFD and 
CHT mesh

Run CFD 
(adiabatic)

Run CHT

Run CSM

Geometry

Automized design evaluation
within optimization process

• design parameters 𝒔

• ሶ𝑚
• 𝑇𝑡,𝑖𝑛(𝑝𝑡,𝑖𝑛)
• Rotation rate 𝑛
• Turbine power 𝑃𝑇

• Maximum rotation
rate 𝑛𝑚𝑎𝑥

• Tshaft

• 𝜂𝑡𝑠 , 𝜂𝑡𝑡

• 𝑓𝑒, 𝜎, 𝐽𝑧, 𝑚, 𝑧𝑔

Figure 1. Gradient-free setup.
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2.1. Geometry Parametrization

The CAD geometry is built using the 3D modeling software CAESES R©. The blade is modeled in
three steps:

1. A meridional view of the blade is created using B-Splines, including the leading edge, trailing
edge, hub, and shroud contour, see Figure 2. In the same step, the turbine back and outlet are designed.

2. The blade camber surface is created based on the meridional surface by specifying a
θ-distribution at hub, Figure 3, which is controlled via inlet angle βin and outlet angle βout plus
two weighting points (red). The θ-distribution solely depends on the axial position z, and describes
the peripheral angle. Consequently, the position x of every point on the camber surface is fully defined
by its radius r and its axial position z (x := x (r, θ(z))). The major benefit of this camber description is
that it leads to radially fibered blades, Figure 4, that prevent bending stresses within the blades due to
centrifugal forces.

3. Two splines are used to define a thickness distribution at both hub and shroud, Figure 3. A third
spline is used to control the blending of the spanwise thickness.

gradient-free

gradient-based

z

Figure 2. Meridional view.

Thickness, 𝜃𝑔𝑓 , 𝜃𝑔𝑏

Outlet Inlet

Hub

Shroud
𝛽𝑜𝑢𝑡

𝛽𝑖𝑛

-z

Figure 3. Thickness and θ-distribution.
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Figure 4. Radially fibered blades.

The model includes several further important features, Figure 5: Internally, the largest possible
fillet radius is calculated based on the smallest distance of two adjacent blades. The latter mostly
depends on the chosen number of blades and its hub thickness. This result is used to design the
variable fillet connection of blade and hub geometry and is automatically chosen as large as possible
to minimize the stresses in the fillets. The model also includes parameters to control the scallops.
They are used to steer the inertia of the rotor and the stresses at the turbine rear side. The fluid
geometry includes the gap between the heat shield and the rotor. The shroud tip gap can be defined,
and both length and diameter of the diffuser can be set. However, these parameters are fixed during
the optimization. In total, ng f = 42 parameters, including the number of blades, are varied during
optimization, see Table 1.

Figure 5. Solid (l.) and fluid (r.) body.

Eventually, the heat transfer calculations are substantially simplified as the fluid and the solid
body share the same periodic surfaces, i.e., the fluid-solid-interface has a perfect overlap, see Figure 6.
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Table 1. Variable parameters for gradient-free and gradient-based setup

Model Part Parameters Gradient-Free Setup Gradient-Based Setup

Leading edge 3 3
Trailing edge 2 4

Meridional contour Shroud contour 4 4
Hub contour 4 4
Axial length 1 1

Camber θ-curve 5 9

At hub 8 8
At shroud 4 4

Thickness Hub-to-shroud distribution 4 4
Leading edge ellipticity 0 0
Trailing edge ellipticity 3 3

Scallops 3 3

Number of blades 1 0

Sum 42 47

Figure 6. Mesh for CFD and CHT.

2.2. Meshes

The solid geometry for CSM is meshed with ALTAIR SIMLABTM producing roughly 80.000
tetrahedral second-order elements. Table 2 presents a mesh study with three different meshes.
A Richardson extrapolation [8] is used to calculate an estimate for the asymptotic values φext of
the eigenfrequency fe and von Mises stresses σ. The relative extrapolated error

eext = |(φ f ine − φext)/φext| (1)

shows that a high uncertainty of σf illet must be expected. This observation is not surprising as small
radii lead to high stress concentrations and therefore require many elements.

The fluid geometry for CFD and the solid geometry for CHT are meshed with unstructured
polyhedrals using the STAR-CCM+ meshing capabilities. Prism layers with a stretching of 1.2 are
used to resolve the boundary layer, which maintains y+ ≈ 1 and leads to approximately 1 million cells
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in total. The flow outlet is elongated with a mesh extrusion. Table 3 summarizes a mesh study that
once more uses a Richardson extrapolation to get an estimate for the asymptotic solution. The relative
extrapolated error is considered reasonably small.

Even though block-structured meshes offer a higher ratio of accuracy to computational cost,
unstructured meshes are preferred here, since they offer the flexibility to mesh the fillets, scallops,
and heatshield gap. Furthermore, a node-conformal mesh at the interface between solid and fluid can
be created, Figure 6. This facilitates a robust simulation of the turbine temperature field.

Table 2. Mesh study on CSM mesh.

# Elements fe [Hz] σ f illet [MPa] σback [MPa]

19051 6179.0 466.1 458.1
36419 6155.4 478.0 459.2

φ f ine, 83585 6141.0 489.2 462.0
φext 6130.0 516.7 466.0

eext in % 0.18 5.31 0.85

Table 3. Mesh study on CFD mesh.

# Cells pt,in [Pa] Tt,out [K] ηts

230325 320,590.0 620.1 0.8349
572710 320,475.0 617.9 0.8451

φ f ine, 1089061 320,282.6 617.2 0.8460
φext 320,194.7 616.3 0.8463

eext in % 0.03 0.14 0.03

2.3. Simulation Setup

After the meshes have been generated, an adiabatic CFD calculation in STAR-CCM+ is conducted.
The boundary conditions are set as follows: The inlet mass flow ṁ and the back pressure ps,out are
fixed. In absence of a volute, an inlet flow angle αin has to be set and is adjusted during simulation
to assure that the turbine is delivering the target power PT = ṁ∆ht. The angle is increased when
the current power is too high and vice versa. This way, pt,in, which is connected to the turbine inlet
temperature Tt,in in piston engines, is not known a priori. A simple, linear way ([9], p. 30) is used to
model this dependency to set the inlet temperature dynamically

Tt,in := Tt,in(pt,in) = TZ

[
1− κ − 1

κ
·
(

1− pt,in

pZ

)]
, (2)

where TZ and pZ are in-cylinder temperature and pressure at valve opening. The flow is assumed fully
turbulent. The Reynolds number based on the inlet width b is Re ≈ 2.2 · 105, which is why a turbulent
velocity profile is set at the inlet, i.e.,

v(r) = vmax · (1− 2
r
b
)1/8, (3)

with r as the distance from the mid of the inlet channel. The k-ω-SST-model is used for closure of the
RANS equations.

After convergence of the CFD simulation, the polyhedral mesh of the solid region is activated,
Figure 7. A constant temperature Tsha f t is set at the shaft. Every other wall is assumed adiabatic,
i.e., the shaft is the only heat sink and radiation is neglected. As this CHT simulation starts from
a converged flow solution, it converges reasonably fast: Runtime CHT

Runtime adiabatic CFD ≈ 0.8. The temperature
field is mapped onto the tetrahedral mesh as depicted in Figure 7. Additionally, the surface pressure
distribution is mapped onto the surface of the tetrahedral mesh.
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Figure 7. Tetrahedrals (CSM, left), polyhedrals (CHT, right).

Subsequently, the von Mises stresses within the rotor are calculated with the open-source finite
element code CALCULIX [10] based on the maximum rotation rate nmax, including both the previously
calculated temperature and pressure field. While the temperature has a significant impact on the
stresses, especially in the turbine back, the latter is almost negligible as it just slightly increases the
stresses at the rotor-shaft-connection. The first blade eigenfrequency fe is calculated based on this
pre-stressed state.

Lastly, inertia Jz, mass m, and center of gravity zg are calculated. Gauss’s theorem is used, e.g.,

Jz = ρ
∫

V
(x2 + y2) dv = ρ

∫
S

(
x3/3, y3/3, 0

)>
· n da, (4)

to calculate these quantities based on a tesselated STL file of the solid body surface.
The respective simulation runtimes are reported in Table 4.

Table 4. Wall clock time within gradient-free setup.

Simulation Step Relative Wall Clock Time #CPUs

Geometry generation 0.04 1
Meshing 0.34 2

CFD 0.29 24
CHT 0.23 24
CSM 0.10 12

Total runtime 1.00
(47 min)

2.4. Objectives and Constraints

Two objective values are maximized during the optimization: The total-to-static efficiency and
the total-to-total efficiency, Equation (5):

ηts =
Tt,in − Tt,out

Tt,in ·
(

1−
(

ps,out
pt,in

) κ−1
κ

) , ηtt =
Tt,in − Tt,out

Tt,in ·
(

1−
(

pt,out
pt,in

) κ−1
κ

)
.

(5)
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These cost functions have a high correlation, yet, it is not one, see the final database in Figure 8.
Maximizing ηts is equivalent to assuming the exit kinetic energy after diffuser being a loss. However,
within modern piston engines the radial turbine is not the last geometry in the exhaust piping system,
i.e., there usually will be an exhaust after treatment (EAT). Consequently, from a system perspective,
the stagnation pressure between turbine diffuser exit and EAT is important. Summarized, assuming
having the choice between two designs with the same ηts, then deciding for the one with the higher ηtt

is reasonable.
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Figure 8. Comparison of ηts and ηtt.

Apart from these objectives, several constraints are considered:
The first eigenfrequency of the blade

fe ≥ smargin ·
nEO · 60 rpm

s
nmax

(6)

is constrained to lie above a specific engine order nEO ∈ N (+ safety margin), which is an empirically
chosen value. This constraint is set to prevent high cycle fatigue damages during operation.

The inertia Jz of the turbine is constrained as it affects the turbocharger’s transient performance
as a lower inertia leads to faster rotor acceleration. In that regard, the compressor inertia is not equally
significant as its density is substantially lower due to different materials: 3 · ρAluminum ≈ ρInconel .

The rotor mass m is constrained as it slightly affects the manufacturing costs, but more importantly,
influences the rotor dynamics as lower masses lead to smaller rotation orbits assuming comparable
eccentricity and center of gravity. As such, it prevents the rotor from rubbing against the housing
during operation even for small tip gaps. For the same reason, also the axial position of the center of
gravity zg is constrained.

The von Mises stresses σ are constrained at two different surfaces where peaks are expected:
On the fillet surface between two adjacent blades and at the turbine rear side, see Figure 5.
The allowable stress is set well below the materials yield strength σy with a large safety margin
as the turbine is designed to withstand a high number of load cycles. Furthermore, the stresses are
evaluated in an integral sense as in [5], i.e.,

σS =
p

√
1
|S|

∫
S

σp da, p = 10, S ∈ {fillet, back}. (7)
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This formulation has a smoothing effect on the non-differentiable max{·}-evaluation. Consequently,
it the quality of the applied meta-models and is less prone to mesh induced noise in the results.
The optimization problem is summarized as follows:

maximize ηts and ηtt such that


fe > c1 zg < c4

Jz < c2 σf illet < c5

m < c3 σback < c5

(8)

2.5. Optimization Results

Based on the previously described workflow, the automated design evaluation is implemented within
the optimization software MODEFRONTIER. To sample the design space, first, a design of experiments is
set up. A uniform Latin hypercube is used that delivers 395 successful design evaluations. Upon this
database, the optimization is started exploiting one of the software’s implemented meta-model
assisted multi-objective genetic algorithm (GA) called FAST MOGA II [11]. During the optimization,
the software sets up four meta-models (polynomial SVDs, neural networks, radial basis functions,
kriging) per output function and automatically chooses the most successful one for every function by
comparing their prediction to the evaluated designs of the newest generation of designs. ’Success’ is
determined by using a mean error. Afterwards, the new generation is added to the meta-model training
base and the next generation is started. Another 1302 designs are assessed this way. 1697 designs
are evaluated in total with 1105 being infeasible and violating at least one of the constraints, see
Figure 9. The design with the highest efficiency ηtt fulfilling all constraints is picked and prepared
for the subsequent design step, described in the next chapter. Figures 4–7 show the chosen design.
This design, coincidentally, is the one with the highest total-to-static efficiency ηts, i.e., there is just one
rank 1 Pareto design. Evaluating 1697 designs serially on 24 CPUs would have taken approximately
1300 h (see Table 4), so this process is very costly. This is driven by both the runtime per design and
the 42 free parameters. Reducing the latter may drastically reduce the optimization runtime. However,
deciding which parameters to render down is a difficult task on its own, which may either be guided by
the designer’s experience or a prior sensitivity study. At last, this motivates the workflow presented in
the next chapter as the number of free parameters has a marginal impact on the optimization runtime
in the gradient-free setup.
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Figure 9. Optimization results.
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3. Gradient-Based Optimization

Figure 10 summarizes the process used to drive a gradient-based optimization of the radial
turbine. The central idea is to locally approximate each response function f j linearly as

f j(s + ∆s) ≈ f j(s) + ∆s ·
∂ f j

∂s
. (9)

A gradient projection algorithm is applied to drive an optimization aimed at raising the efficiency

ηtt while satisfying several constraints. Calculating
∂ f j
∂s for every response function in a reasonable

timeframe is, however, not straightforward:

Using finite differences is too costly as it would require ngb design evaluations to approximate
∂ f j
∂s .

Hence, the derivative is split via the chain rule

∂ f j

∂s
=

∂ f j

∂X
· ∂X

∂s
, (10)

where X refers to the surface mesh node positions and
∂ f j
∂X is computed in a single simulation per

response function. Still, ngb evaluations are necessary to approximate ∂X
∂s ; however, these operations

are cheap. Both steps are detailed below.
Unfortunately, not all response functions handled in the gradient-free framework are available

in this gradient-based setting. In particular, the calculation of the stress sensitivity ∂σ
∂X has not been

included yet. One way to implement this has been presented by [12].

Create geometry

Determine design 

velocities
𝜕𝑋

𝜕𝑠𝑖

Determine surface

sensitivities
𝜕𝑓𝑗

𝜕𝑋

Determine 
𝜕𝑓𝑗

𝜕𝑠𝑖
=

𝜕𝑓𝑗

𝜕𝑋
⋅
𝜕𝑋

𝜕𝑠𝑖

Calculate projected descent
direction

𝑘 ≔ 𝑘 + 1

Figure 10. Gradient-based optimization workflow.

3.1. Altered Geometry Parametrization and Simulation Setup

To investigate whether the method is capable of further improving the design, the geometry is
re-parametrized, i.e., two splines are exchanged to add further degrees of freedom. The two chosen
splines describe the turbine trailing edge, and the θ-distribution, Figures 2 and 3, sketched in red (old)
and green (new). In total, it contains ngb = 47 parameters (reminder: ng f = 42). As the number of
blades is a discontinuous parameter, it needs to be set constant.

The CFD simulation setup is adapted for this optimization: Tt,in and αin remain fixed and a
stagnation pressure at inlet is used, i.e., pt,in is set at the inlet. As ṁ might change as the design changes
with these boundary conditions, it is now handled as a constraint.

The runtime of this setup changes compared to the gradient-free setup: The primal CFD run now
takes approximately twice as long as going down to machine precision is advisable in the context of the
subsequent adjoint calculation. The adjoint run takes approximately three times as long as the primal
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run accounting for two cost functions and the chosen GMRES solver. However, neither a temperature
field nor stresses are calculated in this gradient-based setup.

3.2. Design Velocity

Tesselated surface descriptions, i.e., STL files, Figure 11, are used to calculate the design velocities
∂X
∂si

with a first order finite differencing scheme, where X are the centers of the STL triangles and
si, i ∈ {1, ..., ngb} is a CAD parameter. To calculate the sensitivity, two geometries are necessary:
The baseline geometry X based on the parameter set s = {s1, ..., sngb} and Xi, which is varied in one
parameter {s1, ..., si−1, si + hi, si+1, ..., sngb} by a small distance hi. The derivative is calculated pointwise

∂x
∂si
≈ xi − x

hi
, (11)

where x ∈ X, xi ∈ Xi. Care must be taken as to which xi the point x is compared to for the difference
calculation in Equation (11). The nearest neighbor algorithm from PYTHONs SCIPY library is used
to find the point xi which is located closest to x. The design velocity is calculated as in Equation (11)
(depicted in blue in Figure 12).

Figure 11. Tesselated surface mesh.

▪ Baseline surface
▪ Varied surface
▪ Design velocity based

on nearest neighbor
search

Figure 12. Design velocity calculation.
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3.3. Surface Sensitivity

The surface mesh sensitivity
∂ f j
∂X must be determined for every response function f j. The applied

methods differ for the various responses:
The mesh sensitivities of both ηtt and ṁ are determined with the adjoint method, implemented

in STAR-CCM+, which allows for an efficient calculation of the gradients. Applying this method
requires the solution of one additional system of equations per response, which are solved with a
Krylov subspace scheme. The code implements the discrete adjoint approach, i.e., the derivation of
the adjoint equations is based on the discretized Navier–Stokes Equations. The frozen turbulence
assumption is used, i.e., the turbulent viscosity is assumed constant during the adjoint simulation.
After calculation of the volume mesh sensitivities, only the sensitivities on the surface are used in the
optimization. The values of the inner nodes are assumed negligible. Consequently, the sensitivity of
the volume mesh regarding to the surface mesh neglected. For a general outline on this and related
methods, see [13]. The total-to-static efficiency ηts is no longer regarded: Gradient-based schemes in a
multidisciplinary setting require compromise functions that weight individual objectives against each
other, e.g., a weighted linear combination a1 · ηts + a2 · ηtt. In the following, however, we neglect ηts s.t.
(a1, a2) = (0, 1).

The first eigenfrequency fe and its mesh sensitivity are calculated with the open-source code
KRATOS [14]. After the eigenvalue λe = (2π fe)2 and its eigenvector Φe have been determined,
the calculation of the sensitivity with respect to a mesh node position x ∈ X can be found by
differentiating the undamped eigenvalue equation to get

∂λe

∂x
= Φ>e

(
−λe

∂M
∂x

+
∂K
∂x

)
Φe, (12)

where M, K are the finite element mass and stiffness matrix, i.e., no further linear system must be
solved. In KRATOS, first order finite differences are used to determine both ∂M

∂x and ∂K
∂x . The mesh

sensitivity of nodes not lying on the surface is neglected and assumed zero. For a derivation of
Equation (12), see e.g., [15].

The surface sensitivity of Jz, m, and zg can be determined analytically based on the tesselated
surface. Take a triangle of the triangulated surface and let ∆a be its area. Assume this triangle being
translated by ∆s in surface normal direction n. Then, the surface sensitivity of e.g., the inertia J is

1
ρ

∂Jz

∂n
= lim

∆s→0

∫
V=∆s·∆a(x2 + y2) dv

∆s
≈ ∆a(x̄2 + ȳ2) (13)

In total, the optimization problem may be summarized as follows:

maximize ηtt such that


fe > fe,1

Jz < Jz,1

m < m1

zg < zg,1

(14)

Please note that the subscript 1 refers to the values of design iteration 1, i.e., the chosen design at the
end of the gradient-free optimization.

3.4. Gradient Calculation

Figure 13 exemplarily summarizes the steps described above. On the left, the surface sensitivity
of the eigenfrequency fe is shown. In the middle, the design velocity of one parameter si describing
the blade thickness at shroud is presented. On the right, the pointwise product of these two is
visualized, which is calculated using another nearest neighbor search. Integration along the surface

finally delivers
∂ f j
∂si

.
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Figure 13. Eigenfrequency sensitivity
∥∥∥ ∂ fe

∂x

∥∥∥ (left), design velocity
∥∥∥ ∂x

∂si

∥∥∥ (mid) and pointwise product∥∥∥ ∂ fe
∂x ·

∂x
∂si

∥∥∥ (right).

3.5. Optimization Results

The gradient-based optimization is driven with a gradient projection algorithm, which facilitates
the handling of both inequality and equality constraints, see [7], ch. 5: First, the gradient of the
efficiency ηtt is orthogonally mapped into the subspace of all active, linearized constraints to calculate
the projected descent direction. Equality constraints, such as the mass flow constraint, are always
considered active, while inequality constraints including parameter boundaries are inactive as long
as they are not violated. The second step is a damped correction step that copes with the difference
between the target value and the actual value of the respective constraint. Finally, the chosen descent
step is a linear combination of these two, i.e., projection and correction step.

The success of the optimization is tightly linked to the quality of the gradient approximation.
Hence, a study based on forward differences is conducted to judge whether the presented chain of
methods exploiting surface sensitivities and design velocities (SS+DV) delivers reasonable derivatives.
However, determining a gradient via finite differences (FD) is expensive as the baseline design plus
ngb = 47 variations thereof must be evaluated to facilitate a finite difference gradient approximation.
A comparison for a few cost functions is presented in Figure 14, where the dotted lines show the FD
gradients, and the solid lines represent the derivatives based on the SS+DV approach for all ngb = 47

parameters. The gradients ∂Jz
∂s , ∂ fe

∂s and ∂ṁ
∂s match reasonably with only a few deviating parameters.
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Figure 14. ∂ fe
∂s , ∂Jz

∂s , ∂ṁ
∂s each calculated both via finite differences (FD) and via surface sensitivities +

design velocities (SS+DV).

The optimization runs successfully, see Figure 15. Within five iterations, the optimization stagnates.
At this point, an increase in ηtt by 0.34% can be observed. Both the initial design and the design from
iteration 8 are shown in Figure 16 for comparison. Figure 16 shows that the major design change lies
in the θ-distribution. In iteration 4, the eigenfrequency fe drops below its constraint value, and the
projected descent algorithm starts its correction steps. However, ṁ drifts away from its target value.
This behavior indicates either imprecise gradients or a too strongly damped correction. The cost
functions inertia Jz, center of gravity zg, and rotor mass m hardly change throughout the optimization
run, see Figure 15. Even though the stresses σrear and σf illet have no longer been evaluated for the
gradient-based setup, the minimal changes in geometry suggest that no major increase in stress has to
be expected. Furthermore, it is worth mentioning that the total-to-static ηts efficiency is hardly raised
(∼0.1%). This result indicates that the change in ηtt is partly linked to an increased kinetic energy at
the turbine outlet, i.e., the swirl is higher.
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Figure 15. Optimization run.

Figure 16. gradient-free design (iteration 1, red) and gradient-based design (iteration 8, green).

4. Conclusions

Two workflows to optimize a radial turbine with different advantages and disadvantages have
been presented. They have shown to complement each other well: The gradient-free setup can be
used to sample the design space and find a reasonable turbine design. Furthermore, it offers the
possibility to handle discrete variables such as the number of blades. Yet, the designer is obliged to
limit the number of free variables as computational cost becomes an issue, known as the curse of
dimensionality. The gradient-based process allows for an increase in degrees of freedom without
majorly affecting the computational costs. In fact, it is negligible compared to the costs that come
along with the gradient-free setup. Within this study, the runtime of the gradient-based setup turned
out to be two orders of magnitude lower: The runtime is driven by the primal and adjoint CFD
simulations, which are more costly than in the gradient-free setup as mentioned earlier. Neglecting the
CHT calculations, we estimate a ratio of

Primal and adjoint runs in gradient-based workflow
CFD runs in gradient-free workflow

=
(2 + 3) · 10

1697
≈ 0.029

for this specific case. However, one must keep in mind that the gradient-free workflow started from
scratch while the gradient-based workflow was initiated from an optimized design. Hence, no general
conclusions on the runtimes of the workflows may be drawn.
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Future work will focus on three aspects: First, the gradient-free setup will be supplemented with
life-expectancy calculations that necessitate prior stress and temperature field simulations. Second,
the gradient-based setup will be complimented with stress sensitivities to allow for a more holistic and
comparable design chain. Third, the gradient quality of the flow-related sensitivities will be improved
by dropping the frozen turbulence assumption and introducing a more sophisticated derivative of
volume mesh regarding the surface mesh.
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Abbreviations

The following abbreviations are used in this manuscript:

Latin
eext Extrapolated relative error [−]
fe Eigenfrequency [1/s]
f j Cost function j [−]
h Specific enthalpy [J/kg]
J Inertia

[
kg ·m2]

K Stiffness matrix [−]
ṁ Mass flow [kg/s]
m Rotor mass [kg]
M Mass matrix [−]
n Rotation rate [rpm]

p Pressure [Pa]
s Parameter set [−]
T Temperature [K]
v Velocity [m/s]
zg Center of gravity [m]

Greek
κ Isentropic exponent [−]
η Efficiency [−]
σ Stress tensor [MPa]
Subscripts
gb gradient-based
g f gradient-free
s Static quantity
t Stagnation quantity
Abbreviations
CFD Computational Fluid Dynamics
CHT Conjugate Heat Transfer
CSM Computational Structural Mechanics
GA Genetic algorithm
RANS Reynolds-averaged Navier–Stokes
STL Standard Tesselation Language
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