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Abstract: The aim of this study was to assess the capabilities of different simulation approaches
to predict the flutter stability of a steam turbine rotor. The focus here was on linear and nonlinear
frequency domain solvers in combination with the energy method, which is widely used for the
prediction of flutter onset. Whereas a GMRES solver was used for the linear problem, the nonlinear
methods employed a time-marching procedure. The solvers were applied to the flutter analysis
of the first rotor bending mode of the open Durham Steam Turbine test case. This test case is
representative of the last stage of modern industrial steam turbines. We compared our results to
those published by other researchers in terms of aerodynamic damping and local work per cycle
coefficients. Time-domain, harmonic balance, and time-linearised methods were compared to each
other in terms of CPU efficiency and accuracy.
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1. Introduction

The efficient and accurate prediction of turbine flutter during the design phase is vital since
flutter stability and aerodynamic efficiency are often competing goals. As the onset of flutter is
a phenomenon which is explained by the instability of the fluid-structure system at rest, flutter
predictions are often performed with linearised solvers in the frequency domain. There is, however,
still a need for aeroeleastic analysis tools with higher accuracy and the capability to resolve nonlinear
unsteady flow phenomena. Firstly, nonlinearities may be important for forced response applications
or interactions with flow instabilities, i.e., situations where the vibration amplitude can no longer be
considered as infinitesimal. Secondly, for transonic test cases, shock boundary layer interactions may
result in local nonlinear responses of the unsteady flow, even if the overall work per cycle depends
almost linearly on the vibration amplitude. Here, unsteady turbulence modelling can be crucial to
obtain physically meaningful results [1]. For cases with periodic shock oscillations, linear solvers may
produce unphysically high pressure amplitudes which depend strongly on the mesh resolution and
the spatial discretisation. Although, in this case, the CFD result can be a good approximation in terms
of the overall aerodynamic damping [2], it is very difficult to compare local unsteady pressures with
experimental data, for instance from pressure transducers [3,4].

For applications where the unsteadiness is aperiodic or where the frequency is unknown, it is
important to have an efficient and accurate time-domain simulation method that can handle blade
vibrations. One of the difficulties with time-domain simulations is that they often rely on less accurate
inlet and outlet boundary conditions than their frequency domain counterparts. Since numerical
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reflections can be particularly detrimental for aeroelastic simulations, the authors made great efforts to
develop robust frequency-domain nonreflecting boundary conditions for the time-domain solver [5].

In this study, the methods above were applied to the flutter analysis of an open access steam
turbine [6] established by Qi et al. [7] as an open flutter test case. We demonstrated the applicability
of the approaches and compared the results to each other and to results obtained by Qi et al. [7] and
Sun et al. [8] with other flow solvers. Note that Fuhrer and Vogt [9] also applied a variety of simulation
approaches to predict the aerodynamic damping of this turbine rotor. Their setup, however, differs
from ours in the reduced frequency (ours is that suggested by Qi et al.). Moreover, Fuhrer and Vogt
modified the blade count to match the vane count.

2. Numerical Methods

The methods described below are integrated into the DLR flow solver TRACE. They can be
viewed as different numerical approaches to solve the semi-discrete equations

∂

∂t
(Vq) + VR(q, x, ẋ) = 0. (1)

Since we compared unsteady flows on moving meshes, we stressed the dependency of the
residual R on the grid coordinates x and their velocities ẋ. q, V, and R denote the conservative flow
vector, the time-dependent cell volume, and the flow residual, respectively. The underlying spatial
discretisation employed in this study was based on the finite volume approach. The study in this work
was carried out with structured grids, on which we used Roe’s upwind scheme [10] in combination
with a MUSCL extrapolation to achieve second-order accuracy [11]. A van Albada type limiter was
employed to smoothen the solutions in the vicinity of shocks [12]. Harten’s entropy fix [13] with a
parameter of ε = 5 × 10−4 was used.

TRACE has three approaches to simulate the unsteady Reynolds-averaged Navier–Stokes
(URANS) equations: the time-domain, the harmonic balance, and the time-linearised solver [14,15].
The time-domain solver uses dual-time stepping in combination with a backward differencing or
implicit Runge–Kutta schemes [16] to integrate Equation (1). The harmonic balance solver solves the
URANS equations, cast in the frequency domain,

iω(̂Vq)ω + ̂(VR(q))ω = 0. (2)

The Fourier harmonic of the residual is computed in an alternating-frequency-time domain (AFT)
framework [15,17], i.e., ̂(VR(q)) = F (VR(F−1q)),

where F and F−1 denote the discrete Fourier transform and its inverse. In the linearised solver [14],
this expression above is approximated by

̂(VR(q))ω ≈ V̂0R̂(q)ω ≈ V̂0

(
∂R
∂q

∣∣∣
q̂0

q̂ω +
∂R
∂x

x̂ + iω
∂R
∂ẋ

x̂
)

, (3)

where one assumes that the amplitude of the disturbance x̂ is small and that the mean flow q̂0 solves
the steady equations R(q̂0) = 0. Whereas both the time-domain and harmonic balance solvers use
pseudo-time stepping, the linear solver employs a preconditioned GMRES method. In this work,
the multi-step SSOR preconditioner with seven steps and a relaxation factor of 0.3 was used.

In this work, the steady and time-domain solvers were run in combination with Wilcox’ two-
equation turbulence model [18]. In the harmonic balance solver, resolving the unsteadiness of
turbulence quantities by higher harmonics is optional [19]. The linearised solver is always based
on the frozen turbulence assumption, i.e., the eddy viscosity is simply taken as the one from the
steady solution.
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It is well known that, in numerical flutter and forced response analyses, modal forces are
highly susceptible to spurious reflections at inlet and outlet boundaries. Therefore, the time-domain
boundary conditions in TRACE were extended to a two-dimensional nonreflecting frequency-domain
formulation, which is consistent with the implementations in the HB and linearised solvers [20].
In a recent effort, the authors improved the robustness and convergence speed of the nonreflecting
boundary conditions (NRBCs) in the time-domain solver [5]. It should be emphasised that this
formulation is also consistent with the steady flow boundary conditions. More precisely, it is
guaranteed that the time mean of a converged periodic flow satisfies the steady NRBCs [21].

3. Test Case

The test case studied here is the design of a last stage steam turbine. The geometry is due to
Burton [6] and comprises a turbine stage along with an exhaust hood. The rotor blade count was 65
with a blade length of 0.92 m. The rotational speed was 3000 min−1. In this work, the rotor tip gap
height was 2.1 mm (approximately 0.25% blade height), which was half the tip gap size in [6] but
similar to the tip gap height of 2.3 mm that was used by Qi et al. [7] and Sun et al. [8].

The boundary conditions for the configuration including stator and exhaust hood were taken
from [7]. The stator inlet total pressure and temperature were set to 26.7 kPa and 339.5 K, respectively.
At the outlet, a pressure distribution satisfying the radial equilibrium equation with circumferentially
mixed-out static pressure of 8.8 kPa at midspan was used. The average isentropic exit Mach number
was about 1.12.

The test case was run with an ideal gas with the parameters listed in Table 1. For a justification of
the use of ideal gas for the flutter analysis of steam turbines, the reader is referred to [22].

Table 1. Ideal gas parameters used for the steam turbine.

R 461.52 J · kg−1 · K−1

γ 1.12 -
µ 1.032 × 10−5 N · s · m−2

For the flutter analysis, the computational domain consisted of the rotor only, i.e., both the
stator and the exhaust were neglected (see Figure 1). Where necessary (time-domain and harmonic
balance simulations), the radial distributions of inlet and outlet boundary values for the rotor domain
were extracted from the steady simulation of the whole configuration. The block structured mesh
was generated with an in-house mesh generator [23] and consisted of 4 million cells for the whole
configuration and 2.1 million cells for the rotor domain alone. Blade wall boundary layers were
resolved with y+ ≈ 1, whereas wall functions were used for the hub and casing wall. The mesh
had 88 cells from hub to casing. The tip clearance region was resolved with 10 cells in the radial
direction. Mesh details are depicted in Figure 2. The relative channel height definition is adopted
from [8] (see Figure 1).

The shock system predicted by the steady solver is shown in Figure 3. The comparison with
results obtained with the flow solver LUFT [24] is shown for the blade pressure at 50% and 90% height
in Figure 4. The TRACE results show a stronger leading edge suction peak and subsequent shock.
The same holds for the pressure rise at about half chord. The authors suspect that these differences
stem from the fact that the mesh used in this work was slightly finer (roughly twice as many cells in
the rotor domain) than that used for LUFT. The rotor outflow was transonic almost over the whole
channel height with maximal Mach numbers of about 1.5 near the casing. The Reynolds number, based
on midspan chord length and the mean flow at the rotor outlet, was about 415,000.

The blade eigenmode studied here is taken from [7]. Unless otherwise stated, the maximum
amplitude of the blade vibration was set to 1.5 mm. The frequency was 132.08 Hz, corresponding to
a reduced frequency ω∗ = ωcm/vout of 0.3.
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Figure 1. Sketch of the configuration in S2 plane (left) and first rotor bending mode (right).

(a) Hub (b) Casing

Figure 2. Mesh resolution near hub and casing. Every other grid line is shown.

(a) 50% (b) 90%

Figure 3. Steady solution (numerical Schlieren) in the rotor domain at 50% and 90% channel height.
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Figure 4. Blade pressure along 50% and 90% channel height.

4. Results

4.1. Linear Solver Set-Up and Results

The linear solver was used to compute the aerodynamic damping coefficient for all 65
nodal diameters.

First, a termination criterion was determined by comparing the residual drop to the relative
variation of the aerodynamic work per cycle for the interblade phase angle σ = 0◦ (see Figure 5).
In this plot, the relative error was computed with respect to the reference solution after a residual
drop of 10−4. Since the relative error in aerodynamic damping was below 10−3 when the L2 residual
was below 10−3, this was taken as a convergence criterion for the damping curve. For all but three
interblade phase angles, the convergence speed was comparable with a total time to convergence
between 77 and 140 CPUh. Exceptionally long run times (up to 622 CPUh) were observed for the
interblade phase angles near −16.6◦. An acoustic cut-on/cut-off analysis showed that, for a large range
of radii, this value was close to an acoustic resonance as predicted by a 2D modal analysis. Note that
all solvers used a regularised modal decomposition to stabilise the nonreflecting boundary conditions
near acoustic resonance [25].

GMRES iteration
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Figure 5. Relative error of work coefficient and L2 residual over GMRES iteration for σ = 0◦.
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The linear solver results are plotted in Figure 6 in terms of the aerodynamic work coefficient

Ξ = −
Re Wcyc

πbα2c2
m pdyn,in

where α = dmax/cm is the non-dimensionalised amplitude and Re Wcyc is the active aerodynamic
work [14]. The dynamic pressure was computed from the mass-averaged relative stagnation and static
pressures at the stator-rotor interface, which yielded pdyn,in = 2127.7 Pa. The results were compared
with those obtained by Sun et al. [8] with the linearised solver LUFT [26] and the commercial software
ANSYS CFX. Note that the reference data computed with LUFT and the results termed “CFX (no tip
gap)” were obtained on a configuration without tip gap. As mentioned above, the configuration “CFX
(tip gap)” had a tip gap size which was comparable to ours. The CFX simulations were performed in
the time-domain on multi-passage grids to circumvent non-zero interblade phase angles at the perodic
boundaries of the domain. The overall agreement between the linearised method in TRACE and
LUFT was satisfactory. Discrepancies, however, can be seen for higher nodal diameters, in particular
for interblade phase angles above +80◦. Acoustic resonance could be discerned near −16.6◦ and in
the vicinity of +22.2◦, where for the latter region no reduction in convergence speed was observed.
The location of the minimal damping predicted by linearTRACE was near σ = −72◦, which was very
close to the minimum predicted by LUFT. The remainder of this section focuses on this interblade
phase angle and compares the results with those obtained with the other simulation approaches.
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Figure 6. Aerodynamic work coefficient predicted by linearTRACE in comparison with results
published by Sun et al. [8].

4.2. Harmonic Balance and Time-Domain Results

Figure 7 shows results for the harmonic balance simulations and a time-domain simulation.
The time-domain solver was run with the BDF2 integration scheme and 128 time steps per period.
The agreement between harmonic balance and unsteady results is very good. To analyse the
discrepancies between the time-linearised and the nonlinear methods, a further time-lineariseed
simulation was run, which is marked “mod bcs” in the plot, and where the 2D NRBCs were applied to
the rotational surface spanned by the interface normals. The standard option, which was used for the
damping curve, was to use the circumferential average velocity to define a stream surface, in which the
2D NRBCs were applied. Since this option turned out to be less robust for setups where the radial flow
angle was part of the solution, this was not the default in the HB and time-domain solvers. The results
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with consistent boundary conditions explain the apparent offset between the flutter curve and the
nonlinear solver results.
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Figure 7. Aerodynamic work coefficient predicted by different harmonic balance set-ups σ = −72◦.

The result corresponding to “HB” was obtained with the zeroth and first harmonics but with
turbulence quantities modelled as steady, i.e., without higher harmonics. Simulations without the
zeroth harmonic turned out to be unstable. The results show a high agreement with the time-linearised
solver. The second and third HB simulations correspond to setups with three higher harmonics for both
the flow solution and the turbulence quantities k and ω. These results, in turn, were very close to the
time-domain results. To analyse whether this was due to nonlinearities, the displacement amplitude
was reduced by a factor of 4. However, the offset between the results with and without harmonics
for the turbulence model did not depend greatly on the displacement amplitudes. It was therefore
concluded that the difference is mainly due to the unsteadiness in the turbulence model being taken
into account.

Figures 8 and 9 show the local work coefficient, i.e., the non-dimensionalised aerodynamic work
per cycle and area

w =
Re dWcyc/dA
πα2cm pdyn,in

on the upper part of the suction and pressure sides for the three approaches. Here, the HB result is that
with the original displacement amplitude but with harmonics for the turbulence quantities. The plot
shows that, for σ = −72◦, the shock oscillations were responsible for the negative damping. In fact,
the local excitation was very strong in the area near 50% chord on the suction side, where one of the
trailing shocks impinges (cf. Figure 3). Note that a different colour map was used for the pressure side
since the overall level in aerodynamic work per cycle was much smaller there. The time-linearised
result agrees well with the nonlinear results, although greater discrepancies could be observed on
the suction side near the leading edge. This was confirmed by Figure 10 where the local damping
coefficient is plotted along blade sections at midspan and 90% channel height. Here, the HB results
with steady turbulence modelling are included. At midspan, near 0.65 relative chord, one can see that
the turbulence model had an impact on the pressure amplitudes. The HB results coincide either with
the time-linearised results or the time-domain results, depending on how the turbulence model was
treated. At 90%, in particular near the leading edge, large discrepancies between linear and non-linear
results are visible.
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Figure 8. Local work coefficient for σ = −72◦ on the upper half of the suction side, predicted by
time-domain, harmonic balance, and time-linearised solvers. Black lines mark the boundaries between
stable and unstable areas.

Figure 9. Local work coefficient for σ = −72◦ on the upper half of the pressure side, predicted by
time-domain, harmonic balance, and time-linearised solvers. Black lines mark the boundaries between
stable and unstable areas.

In Figure 11, the convergence of the relative error, again based on current and final values,
are plotted for the nonlinear methods. To achieve values within a tolerance of 10−3, it took about
3500 pseudo time steps for the harmonic balance setups, whereas the time-domain solver had to be
run for about 80 periods. This corresponded to about 7700 CPUh for the time-domain simulations,
compared to 116 CPUh for the HB simulation with one higher harmonic and 421 CPUh for the HB
setup with three harmonics and higher harmonics for the turbulence model. For the −72◦ interblade
phase angle, the linear solver took roughly 61 CPUh. It should be noted that in practice a significantly
higher error tolerance which would result in smaller CPU times may be acceptable.
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5. Conclusions

In this work, time-linearised, harmonic balance and time-integration methods were applied to
the flutter analysis of a steam turbine rotor. Since the computational domains, the meshes, and the
spatial discretisations were identical, differences in the results can be attributed to the modelling
approaches. The results show very good agreement among each other. Differences could be observed
that stem from a slight difference in the formulation of the non-reflecting boundary condition and,
to a lesser degree though, from the treatment of the turbulence model. Due to the relatively small
computational times, the harmonic balance solver is particularly appropriate to study the impact of
different modelling approaches. In terms of the overall aerodynamic damping, all results are in good
agreement with those obtained by researchers from KTH with the flow solver LUFT.
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Abbreviations

The following abbreviations are used in this manuscript:

HB Harmonic Balance
NRBC Nonreflecting Boundary Conditions

Nomenclature

b rotor blade height
cm chord at midspan
dmax maximal displacement amplitude
vout velocity magnitude at outlet
i square root of −1
pdyn dynamic pressure at rotor inlet
q vector of conservative flow variables
q̂ω Fourier coefficient of q with respect to the angular frequency ω

F Fourier transform
R flow residual
V cell volume
x, ẋ grid coordinates and velocities
α non-dimensionalised amplitude
σ interblade phase angle
ω angular frequency
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