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Abstract: This paper presents a gradient-based design optimization of a turbocharger radial turbine
for automotive applications. The aim is to improve both the total-to-static efficiency and the moment
of inertia of the turbine wheel. The search for the optimal designs is accomplished by a high-fidelity
adjoint-based optimization framework using a fast sequential quadratic programming algorithm.
The proposed method is able to produce improved Pareto-optimal designs, which are trade-offs
between the two competing objectives, in only a few iterations. This is realized by redesigning the
blade shape and the meridional flow channel for the respective target while satisfying imposed
aerodynamic constraints. Furthermore, a comparative study with an evolutionary algorithm suggests
that the gradient-based method has found the global Pareto front at a computational cost which is
about one order of magnitude lower.

Keywords: adjoint; multi-objective optimization; computational fluid dynamics; inertia; radial
turbines

1. Introduction

The use of the adjoint method [1,2] is nowadays well established for design optimization
problems in Computational Fluid Dynamics (CFD). The advantage of the adjoint approach is the
efficient computation of sensitivity derivatives of a given objective function at a cost which is
essentially independent of the number of design variables. This feature makes the adjoint method
attractive to tackle large-scale complex design problems by gradient-based optimization methods.
For turbomachinery applications, one of the pioneering works was conducted by Giles et al. [3].
Later on, adjoint-based optimization methods have been developed by other research groups to
optimize mainly axial turbomachines with various degrees of complexity, ranging from single blade
rows [4,5], including hub endwall contouring [6,7] to multi-row and multi-stage architectures [8–10].

Recently, we developed an adjoint-based optimization framework which was successfully used
to optimize a turbocharger radial turbine wheel at multiple operating points [11]. In that study,
the geometry was parameterized with radial-fibred blades to avoid bending stresses in the blades due
to centrifugal forces. While this approach can limit mechanical stresses, it does not take into account
the moment of inertia of the wheel. However, the turbine wheel plays a key role in the moment of
inertia of the turbocharger assembly. This is due to the high density of the materials that are commonly
employed, such as InconelTM 713c, which can withstand the high temperatures of the exhaust gases.
Therefore, minimizing the moment of inertia is critical for improving the transient response of the
whole turbocharger. Including the moment of inertia in the design process results in a multi-objective
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design problem where one objective cannot be improved without penalizing the other, which is shown
in this paper using a gradient-based optimization method.

The presence of multiple local optima in the design space is a common argument against the
use of gradient-based methods [12]. This is because gradient-based algorithms may converge to
a point which is significantly worse than the global optimum. However, the existence of multiple
local optima for practical applications based on the Euler or Navier–Stokes equations is problem
dependent [13]. For example, Zingg et al. [14] performed a comparative evaluation of a genetic
algorithm and a gradient-based algorithm for two-dimensional airfoil sections, including single-point,
multi-point, and multi-objective optimization problems. Using different examples with different
numbers of design variables and constraint convergence criteria, they show that both algorithms
reliably converge to the same optimum, but the gradient-based method converges about 5 to 200 times
faster. Yu et al. [15] investigated the influence of the initial design on wing aerodynamic shape
optimization using the Reynolds-Averaged Navier–Stokes equations. They concluded that the wing
geometry of the AIAA Common Research Model [16] is unimodel with a very flat plateau around the
optimum using 730 design variables. Similar findings were reported by Koo and Zingg [17] for the
same test case by starting from various initial geometries, and they confirm that, unlike previously
assumed [18], this design space is not multimodal. On the contrary, Buckley et al. [19] show evidence
of two local optima for practical multi-point airfoil design problems. To investigate this point for
a realistic turbomachinery design problem, we compare the results of the gradient-based optimization
with the outcome of a stochastic evolutionary optimization strategy which has a higher probability to
locate the global optimum, but at much larger computational cost.

The remainder of this paper is structured as follows. First, we briefly describe the gradient-based
optimization framework. Then, we present the optimization problem and discuss the results. Finally,
we draw conclusions from this study.

2. Optimization Framework

A brief summary of the optimization framework is presented below. A more detailed description
of the individual components, in particular the geometry parameterization, mesh generation, and the
CFD and adjoint solvers can be found in Mueller and Verstraete [11].

2.1. Optimization Algorithm

In this work, the software package SNOPT [20,21] is used. The algorithm employs a Sequential
Quadratic Programming (SQP) method in which constraints are directly handled by forming a smooth
augmented Lagrangian function [22]. The quadratic subproblem is solved for the optimal point that
satisfies the Karush–Kuhn–Tucker optimality condition by a line search procedure. The Hessian of
the Lagrangian is approximated by the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno method.
SNOPT supports both derivative line search and non-derivative line search techniques. In the present
work, the second approach is used which requires only function evaluations to find an appropriate
step length based on a quadratic interpolation to solve the optimization problem [21].

2.2. Geometry Parameterization

The geometry parameterization of the radial turbine is accomplished using B-Spline curves and
surfaces. The three-dimensional geometry is defined by (1) the meridional flow channel; (2) the camber
line surface; (3) a blade thickness distribution which is added normal to the camber line surface to
construct the pressure and suction side surfaces; and (4) the number of blades. In particular, the camber
line surface is defined by a wrap-angle distribution to enforce a radial blading, which is a common
approach in radial turbine design in order to avoid bending stresses in the blades due to centrifugal
forces. The position of the B-Spline control points is the design variable which can be modified by the
optimizer in a predefined range.
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2.3. Mesh Generation

Two different approaches are employed for the discretization of the fluid and solid domains,
as shown in Figure 1. For the fluid domain, a three-dimensional multiblock structured grid is used,
which is created by stacking annular surface grids. Each surface grid is generated using conformal
mapping [23] and two-dimensional elliptic grid generation [24] where source terms are introduced
to meet common grid quality standards, e.g., first cell spacing and orthogonality, cell skewness and
expansion ratio. The computational cost is reduced by modeling only one blade pitch and using
periodic boundary conditions in circumferential direction. In total, 84 layers of cells are used in the
span-wise direction, including 20 cells to model the tip clearance. The total number of cells is about
1.1 million. The average wall-spacing is y+ ≈ 1 and the maximum cell expansion ratio is limited to
1.2 for 20 cells in the O-grid around the blade.

The solid domain is discretized by an unstructured grid using Delaunay triangulation, which is
described in more detail by Verstraete et al. [25].

Tip clearance

Outlet

Inlet

Figure 1. Discretized fluid domain (orange) and solid domain (grey). Coarse meshes for
better visualization.

2.4. Analysis Methods

2.4.1. CFD and Adjoint Solver

The governing equations are the compressible Reynolds-Averaged Navier–Stokes (RANS)
equations discretized using a cell-centered finite volume formulation on multiblock structured grids.
The inviscid fluxes are evaluated by a Roe-type upwind scheme [26] with the entropy correction
of Harten and Hyman [27] and a MUSCL reconstruction [28] for second-order spatial accuracy.
A van-Albada type limiter [29] is used to suppress oscillations. Viscous fluxes are centrally discretized
and the negative Spalart–Allmaras turbulence model [30] is used for the turbulence closure problem
assuming a fully turbulent flow from the inlet (Reinlet ≈ 250,000 based on the turbine wheel diameter).
For pseudo-time integration, the JT-KIRK scheme proposed by Xu et al. [31] is used. The developed
discrete adjoint solver employs the same time-stepping scheme as the flow solver and features
similar performance characteristics in terms of run-time and memory footprint. To simplify the
implementation, the constant eddy viscosity (CEV) assumption has been adopted in the adjoint solver.
The influence of this approximation has been assessed for the present application by comparing the
adjoint-based gradients with gradients computed with the complex-step method [32,33], and a good
agreement was observed [11]. A complete description of the CFD and adjoint solvers, including
validation, can be found in Ref. [34].
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2.4.2. Moment of Inertia Computation

The moment of inertia of the turbine wheel with respect to the axis of rotation is computed
with an algorithm proposed by Tonon [35]. It employs explicit formulas using the coordinates of the
tetrahedral elements of the solid unstructured mesh. The algorithm provides the exact moment of
inertia of the discretized geometry at low computational cost.

2.5. Gradient Evaluation

In this work, the gradient of an aerodynamic cost function J with respect to the design variables
α is evaluated by a two-step approach which decouples the adjoint solver from the geometry and
grid generation:

dJ
dα

=
dJ
dX

dX
dα

. (1)

The sensitivity of the cost function with respect to the grid point coordinates (dJ/dX) is computed
by the adjoint solver for each objective and constraint. The complementary sensitivity information of
the grid to the design variables (dX/dα) is computed with the complex-step method. Although the
computational cost of the complex-step method is proportional to the number of design variables, it is
considered feasible due to the limited number of design variables used in this study, as is shown later.
Additionally, because the moment of inertia is evaluated by explicit formulas, its gradient with respect
to the design variables is obtained at negligible costs using the complex-step method.

3. Problem Statement

The objective of this study is to maximize the total-to-static efficiency of the turbine wheel at
two operating points while minimizing its moment of inertia. Additionally, aerodynamic constraints
are imposed such that the optimized wheel delivers the required output power and the swallowing
capacity. The operating points are indicated in the performance map of the turbine in Figure 2 and the
corresponding boundary conditions are listed in Table 1. Note that at the operating points OP1 and
OP2 the mass flow is directly imposed at the inlet in order to maintain the performance characteristics
at these conditions during the optimization process. Additionally, concerning the efficiency, a higher
priority is placed on the operating point OP1 because the turbine is expected to operate mostly under
this condition. At operating point OP3, the total-to-static pressure ratio is prescribed and the computed
mass flow should not be smaller than the baseline design value. The resulting optimization problem
may be written as follows:

Maximize: Obj ≡ ωJ

(
2
3

ηTS,OP1

ηTS,OP1,ref
+

1
3

ηTS,OP2

ηTS,OP2,ref

)
︸ ︷︷ ︸

ObjEfficiency

+
(
1−ωJ

) (
1− Ixx

Ixx,ref

)
︸ ︷︷ ︸

ObjInertia

, (2)

Subject to: Constr1 ≡
∣∣∣ ẆOP1

ẆOP1,ref
− 1
∣∣∣ ≤ 0.5 %,

Constr2 ≡
∣∣∣ ẆOP2

ẆOP2,ref
− 1
∣∣∣ ≤ 0.5 %, (3)

Constr3 ≡ ṁOP3

ṁOP3,ref
− 1 ≥ 0,

where ηTS, Ẇ, ṁ are respectively the total-to-static isentropic efficiency, the power, and the mass flow.
The optimization problem is solved with respect to 40 design parameters (Mueller and Verstraete [11]).

The weighting coefficient ωJ ∈ [0, 1] in Equation (2) is a blending factor between the moment of
inertia and efficiency term. Setting ωJ = 1 defines an optimization problem which only maximizes the
efficiency, whereas the other extreme would result in a formulation that solely focuses on the inertia
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without taking into account the aerodynamic performance. Its choice is crucial, since it ultimately
determines the outcome of the optimization process.
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Figure 2. Performance map of the baseline turbine wheel.

Table 1. Definition of boundary conditions shown in Figure 2.

Parameter Symbol Unit OP1 OP2 OP3

Inlet flow angle 1 α1 [◦] 62
Inlet total pressure P01 [bar] - - 3.0

Inlet mass flow ṁ [g/s] 100 130 -
Inlet total temperature T01 [K] 1050
Exit static pressure 2 P2 [bar] 1.013

Rotational speed RPM [min−1] 140,000
1 With respect to the radial direction; 2 Specified at the hub.

4. Results

4.1. Optimization History

In order to find different trade-off solutions of this design problem, seven optimization runs
have been performed using different weights in the objective function between ωJ = 1.0 and ωJ = 0.5.
Figure 3 (bottom) shows the evolution of the weighted objective for each individual run. All final
geometries after 16 iterations satisfy the imposed aerodynamic constraints. The computed mass flow
at operating point OP3 was always larger than the baseline value, therefore the mass flow constraint
was not active throughout the entire optimization process. The power constraints, on the other hand,
were active, in particular at the operating point OP2 where the value has reached the upper limit of the
imposed bounds in most of the cases, as shown in Figure 3 (top). From Figure 3 (bottom), we can see
that giving a higher priority to the moment of inertia (lower ωJ) leads to overall larger improvements
of the weighted objective function, from 3.5% to almost 10%, compared to the baseline geometry.
These results were obtained after almost ten iterations (or even earlier) for each optimization run with
minor improvements in the subsequent iterations.

To identify the different trade-offs between low moment of inertia and high efficiency, we further
plot the two-dimensional objective space in Figure 4 with the individual components of the weighted
objective function. This figure summarizes the results of all optimization runs, including the final
designs as well as their search histories in the objective space during the optimization.

As can be seen, depending on the chosen weight, the final design is a trade-off solution between
the low moment of inertia and high total-to-static efficiency, establishing a Pareto front towards the
lower left hand corner. Once this front is reached, one objective cannot be improved without penalizing
the other. The highest aerodynamic performance is obtained when the moment of inertia is excluded
during the optimization (ωJ = 1.0). Even for this design, however, the moment of inertia could be
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reduced, i.e., improved by about 10% compared to the baseline design. This is mainly due to the
modified hub shape, as is shown later, which has a low impact on the efficiency, but large contribution
to the reduced moment of inertia. When reducing the weight, the inertia is further improved at the
expense of lower efficiency. For the intermediate case with a weight of ωJ = 0.65, the moment of
inertia has improved by approximately 16%, but the total-to-static efficiency is still more than 3%
higher compared to the datum geometry. Reducing the weight further diminishes the efficiency gains
more rapidly, and for the last optimization run in which an equal weight was given to both objectives,
the efficiency improvements have reduced considerably to about 0.9%. In this case, the moment of
inertia has improved by about 19%. However, further improvements of the moment of inertia are
difficult to realize within the imposed design space, and would eventually come at the price of lower
efficiency compared to the baseline design.
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The Pareto front shown in Figure 4 has two distinct shapes: one convex part between
ωJ ≈ 1.0− 0.65 and one part in which efficiency and the moment of inertia are almost linearly
connected (ωJ ≈ 0.65− 0.5). The search histories of the two optimization runs using a weight of
ωJ = 0.55 and ωJ = 0.5 are particularly interesting. Once the optimization algorithm had identified
a solution on the Pareto front, the further quest involved marching along the Pareto front in order to
find the desired Pareto optimal point that corresponds to the specific weight.

The influence of the weight coefficient on the optimization results is further discussed below.
In particular, three values are considered: the minimal and maximal values, ωJ = 0.5 and ωJ = 1.0,
respectively, as well as an intermediate case with ωJ = 0.75.

4.2. Influence of the Weight Coefficient

4.2.1. Performance Map

Figure 5 compares the performance map of the baseline and the three optimized geometries with
a weight coefficient ωJ of 1.0, 0.75, and 0.5, respectively. In general, in each optimization run the
total-to-static efficiency could be increased over the entire investigated operating range compared to
the baseline turbine wheel. Due to the scale used in this plot, the performance curves of the optimized
designs using a weight coefficient ωJ of 1.0 and 0.75 are almost indistinguishable. In both cases,
the total-to-static efficiency is more than three percent points higher compared to the baseline geometry.
The efficiency curve of the third optimal geometry (ωJ = 0.5), is lower than for the previous two designs.
For this particular design, it is noticeable that the total-to-static efficiency has increased at higher mass
flow rates relative to the reference geometry while being almost equally efficient at low mass flow
rates. Although the objective did not explicitly take into account the efficiency at operating point OP3,
it has increased due to lower kinetic energy losses, resulting from an increased exit width which is
discussed below.
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Figure 5. Performance map of the baseline and the optimized designs by using different weights ωJ in
the weighted objective function.

4.2.2. Meridional Shape

Figure 6 compares the meridional shapes of the three optimized geometries with the baseline
design. The following conclusions can be drawn: First, the hub shape has been lowered as much
as possible when the moment of inertia is included in the weighted objective function (ωJ < 1.0).
For the weight coefficient of ωJ = 0.75, and consequently for ωJ = 0.5 as well, the hub curve is located
at the minimum possible radius inside the imposed design space. Even when a higher weight of
ωJ = 0.95 is used, which is not included in this figure, the same hub shape is obtained. Secondly,
the optimal shroud curve depending on the chosen weight coefficient is less predictable due to the
conflicting aerodynamic and structural objectives. The final design by using a weight of ωJ = 0.75
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has the same, i.e., maximum possible exit width as the best efficiency design (ωJ = 1.0). The only
noticeable difference between these two designs is in the front part of the blade where the design
resulting from ωJ = 0.75 has slightly shorter blades in favor of a lower moment of inertia. The final
design using a weight coefficient of ωJ = 0.5 has a smaller exit width compared to the other two
optimized geometries. However, it is still higher than for the baseline geometry in order to reduce
the exit kinetic energy losses, and thus to increase the total-to-static efficiency. On the other hand,
this design has shorter blades in the front part, which leads to a lower moment of inertia due to less
material at higher radius.

Baseline

Opt. (ωJ = 1.0)

Opt. (ωJ = 0.75)

Opt. (ωJ = 0.5)

Trailing edge

Leading edge

R

X Hub

Shroud

Figure 6. Comparison of the optimized meridional contours using different weights ωJ in the weighted
objective function.

4.2.3. Blade Shape

Finally, the influence of the weighting coefficient on the blade shape is discussed. For this purpose,
the three-dimensional geometries of the three optimized designs are shown in Figure 7. A clear
trend can be observed that, starting from the left to the right of this figure, the blade bending has
been reduced by the optimizer as the weight coefficient is being reduced from ωJ = 1.0 to ωJ = 0.5.
As a consequence, the blade chord length is reduced, which results in overall shorter blades with a
lower moment of inertia. This is especially true in the front part, where the optimized blade becomes
more straight when the weight coefficient is reduced. However, in the rear part of the blade, the blade
bending, and thus the exit blade metal angle has been reduced less in order to provide enough flow
turning to generate the required output power.

Baseline
Optimized

Baseline
Optimized

ωJ = 0.75ωJ = 1.0

Baseline
Optimized

ωJ = 0.5

Figure 7. Blade shapes of three optimization runs compared to the baseline geometry. In each
optimization, a different weight ωJ was given to the moment of inertia and total-to-static efficiency
term of the weighted objective function.
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The loss generation inside the baseline and the optimized turbine wheels is shown in Figure 8
by means of the normalized entropy generation at 80% span height and downstream of the blade.
Compared to the baseline design, the lower losses in the optimized wheel using a weight coefficient of
ωJ = 1.0 are mainly due to a redistributed blade loading and weaker tip leakage vortex. This results in
an attenuated wake downstream of the blade visible in Figure 8b near the shroud endwall. A similar
flow structure can be observed for the second optimized design (ωJ = 0.75), which is almost equally
efficient as the first optimized design from an aerodynamic perspective, but has about 5% lower
moment of inertia. However, for the third optimized design (ωJ = 0.5) shown in Figure 8d, there are
additional losses accumulated on the suction-side surface due to a small separation bubble at the blade
leading edge. The separation bubble is caused by too large positive incidence, which is a result of
having radial blade leading edges in combination with a meridional flow channel discussed earlier.

 

High
Normalized Entropy [-]

Low

Baseline ωJ = 1.0 ωJ = 0.75 ωJ = 0.5a) b) c) d)
Figure 8. Comparison of normalized entropy generation between the baseline and the three optimized
geometries with different weights of ωJ = 1.0, ωJ = 0.75, ωJ = 0.5.

4.3. Comparison with the Gradient-Free Optimization Algorithm

As already mentioned in the introduction, gradient-based optimization algorithms can get trapped
in a local optimum rather than finding the best possible design in a given design space. To verify this
for the current design problem, the results from the previous section are compared with the outcome of
a global optimization strategy. For this purpose, the Differential Evolution (DE) algorithm developed
by Storn and Price [36] is used, which is implemented in the VKI optimization framework CADO [37].
Like all evolutionary methods, DE algorithms explore the search space by evolving the population
by mechanisms such as mutation, crossover, and selection. Thus, at each generation, the algorithm
requires the evaluation of the entire population of designs. The DE algorithm simultaneously optimizes
both objectives by employing the non-dominating sorting genetic algorithm [38]. In the present study,
a constant population size of 30 individuals was chosen, resulting in an overall computational cost of
90 CFD calculations per generation (30 designs x 3 operating points). Due to the tight convergence
criteria of the power constraints at the first and second operating point (cf. Equation 3), no surrogate
models were used during the optimization.

4.3.1. Results after 80 Generations

Figure 9 (left) shows the two-dimensional objective space after 80 generations of the DE algorithm
together with the baseline design and the Pareto front established by the gradient-based optimization
strategy. The circle symbols represent all designs generated by the DE algorithm, labeled Gradient-free.
Moreover, designs which satisfy the aerodynamic constraints are indicated by diamond symbols
(Gradient-free + constr. satisfied). In total, the DE algorithm evaluated 2400 geometries of which
about 1000 individuals are violating at least one of the constraints. In particular, in the early stage
of the optimization process, many invalid designs with poor objective function values were tested,
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which led to the large scatter of samples in the objective space shown in Figure 9 (left). However,
as the optimization progressed, more and more improved designs were generated which satisfy the
aerodynamic constraints and have higher total-to-static efficiency and a lower moment of inertia than
the baseline geometry. Figure 9 (right) is a close-up of the objective space that provides a better view
on the Pareto front. The main conclusions are as follows: The DE algorithm was able to capture the left
branch of the Pareto front computed by the gradient-based algorithm. In this region, the efficiency
objective is about 3.3% higher compared to the baseline design. Given the close agreement between the
gradient-based and the gradient-free algorithms, and the fact that the DE algorithm hardly improved
the efficiency any further in the last ten generations, this already indicates that the left part of the
Pareto front found by the gradient-based algorithm corresponds to the global Pareto front of this
optimization problem. On the other hand, a lack of convergence of the DE algorithm is particularly
noticeable towards the right branch of the Pareto front, where more emphasis is placed on lowering
the moment of inertia. As shown in Figure 9 (right), the moment of inertia improvements stagnate
at about 14% relative to the baseline geometry after 80 generations. These improvements are mainly
realized by lowering the hub shape, which has a large impact on the moment of inertia.

ObjInertia = 1 - 
Ixx 

Ixx,ref 

ObjEfficiency =                 +  
3
ηTS,OP1  

ηTS,OP1,ref  3
ηTS,OP2  

ηTS,OP2,ref  

2 1
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Figure 9. Objective space after 80 generations of the moment of inertia and total-to-static efficiency
(left) with a close-up on the Pareto front (right).

This is more clearly shown in Figure 10, which compares the meridional shapes of three designs
(A, B, C) located on this front with the baseline geometry. The hub shape of all three designs is
located almost at the smallest possible radial position in the design space. At the same time, the
DE algorithm increased the exit width compared to the baseline geometry in order to improve the
total-to-static efficiency. The efficiency differences between the designs A, B, and C are due to small
differences of the shroud curve at the leading edge, but to a larger extent due to different blade shapes.
A further reduction of the moment of inertia beyond the current values after 80 generations requires
a combination of lowering the exit width to shorten the blade length as well as reducing the blade
chord length, as was shown in the previous section. For the DE algorithm, however, this seems to be
difficult, particularly due to the tight convergence criteria of the power constraints at the two operating
points (OP1 and OP2), and thus it requires more iterations to further explore the objective space.
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Figure 10. Comparison of meridional shapes of three designs (A, B, C) with respect to the
baseline geometry.

4.3.2. Results after 200 Generations

Figure 11 shows a close-up on the Pareto-front in the objective space after 200 generations of
the gradient-free algorithm. Compared to the results after 80 generations, the DE algorithm found
significantly more geometries with a lower moment of inertia which also satisfy the aerodynamic
constraints indicated by the blue diamond-shaped symbols. As shown in this figure, the right branch
of the Pareto-front established by the gradient-based method is gradually approached. Additionally,
the left branch of the Pareto-front towards higher efficiency is equally captured by both optimization
strategies. Overall, these results support the conclusion that the Pareto-front computed by the
gradient-based method corresponds to the global one of this optimization problem.
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Figure 11. Close-up on the Pareto front in the objective space after 200 generations.

The computational costs of both optimization strategies are compared in Table 2. They are
measured in terms of the number of CFD and gradient evaluations. The cost of computing the
moment of inertia is negligible. The gradient-free optimizer performed in total 18,000 CFD evaluations
(200 generations × 30 individuals/generation × 3 operating points/individual). The cost of the
gradient-based optimizer includes both CFD evaluations and gradient calculations. As mentioned
before, the cost of one adjoint solution is similar to one CFD run both in terms of run-time and
memory footprint.
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Table 2. Computational cost comparison of the gradient-free (Differential Evolution) algorithm and the
gradient-based (Sequential Quadratic Programming) algorithm.

Optimizer Cost (CFD + Adjoint Evaluations)

Gradient-free 18,000

Gradient-based ωJ = 1.0 143
ωJ = 0.95 146
ωJ = 0.85 140
ωJ = 0.75 137
ωJ = 0.65 143
ωJ = 0.55 155
ωJ = 0.5 158

1022 (in total)

Table 2 lists each optimization run of the gradient-based algorithm separately. In the first case with
ωJ = 1.0, the computational cost is equivalent to 143 CFD evaluations, which corresponds to 16 design
iterations with each three CFD and five adjoint calculations. Additionally, five line-search iterations
were performed with each three CFD evaluations. In total, the computational cost of all gradient-based
optimization runs is equivalent to 1022 CFD evaluations, which is about one order of magnitude lower
than for the gradient-free method. Similar findings were reported by Zingg et al. [14] who concluded
that the cost of gradient-free algorithms dramatically increases with tighter convergence requirements.
In this work, the tight convergence criteria of the power constraints at the two operating points (OP1
and OP2) are one of the main reasons for the large number of required function evaluations by the
gradient-free optimizer.

4.3.3. Influence of Initial Design

The results presented in the previous section show that the gradient-based optimization algorithm
is able to establish the Pareto front at significantly lower computational cost compared to the
gradient-free method. Additionally, the comparison between both optimization strategies suggests that
the Pareto optimal designs computed by the gradient-based method correspond to the global optima
of this design problem. However, since gradient-based methods converge to the optimum which is
closest to the starting point, the question remains whether the Pareto front could only be found due to
the initial geometry. To investigate this point, three different geometries generated by the gradient-free
algorithm were randomly selected as starting geometries. These geometries are labeled A, B, and C in
Figure 12 (left) and are located on the opposite end of the objective space relative to the Pareto front,
and therefore exhibit poor aerodynamic and structural performances. Relative to the baseline geometry,
these designs have an about 20–40% higher moment of inertia and about 2–8% lower total-to-static
efficiency. None of the initial geometries satisfy the aerodynamic constraints. Three independent
gradient-based optimization runs have been performed with a weighting coefficient of ωJ = 0.75 in
the weighted objective function.

The search histories are shown in Figure 12. In general, the search histories of each run have
similar characteristics: First, starting from the initial geometries (Figure 12, left), the optimizer marches
straight through the objective space towards the region of interest. Then, close to the Pareto front,
shown in Figure 12 (right), the inertia improvements level off at about ∆ObjInertia = 15.5% relative to
the baseline geometry and the optimizer mainly focuses on improving the total-to-static efficiency in
the subsequent iterations. Table 3 summarizes the aerodynamic and structural objective values of the
three final designs A, B, and C shown in Figure 12 (right) relative to the baseline geometry. From an
aerodynamic point of view, these designs are essentially the same, because the efficiency objective
values only differ in the order of O(10−3) percent. Regarding the moment of inertia, the difference
between the three designs is about 0.1%. Here, the discrepancies are likely due to the fact that the
solid unstructured grid is re-meshed for every new iteration, which changes the number of grid
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nodes and their connectivity, and therefore introduces small numerical noise in the moment of inertia
computation. However, from an engineering perspective, these differences are negligible. Moreover,
all final designs A, B, and C satisfy the aerodynamic constraints, suggesting that the design space in
this work is convex with one optimum for which gradient-based algorithms are particularly suited
due to their computational efficiency.
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Figure 12. Objective space of the moment of inertia and total-to-static efficiency (left) with a close-up
on the Pareto front computed by the gradient-based method (right). The three starting designs A, B,
and C are randomly selected.

Table 3. Comparison of the final aerodynamic and structural objective values relative to the baseline
geometry of the three final designs A, B, and C, shown in Figure 12.

Design ∆ObjEfficiency [%] ∆ObjInertia [%]

A 3.277 15.421
B 3.275 15.298
C 3.279 15.374

5. Conclusions

A multi-point and multi-objective gradient-based optimization procedure is proposed and
successfully applied to a turbocharger radial turbine for automotive applications. The aim of this
design study is to improve the total-to-static efficiency and the moment of inertia of the turbine wheel
while maintaining the output power and the swallowing capacity of the machine. The optimization is
accomplished by a fast Sequential Quadratic Programming (SQP) algorithm using adjoint sensitivity
analysis, which allows an efficient computation of the gradients.

The optimization results show a significant improvement of both objectives in only a few iterations.
In particular, the proposed method is able to find Pareto-optimal designs which are trade-offs between
the two competing objectives. This is achieved by modifying the blade shape, as well as the hub
and shroud endwall contours while satisfying the strict aerodynamic constraints. Furthermore,
a comparison with the outcome of a gradient-free evolutionary optimization strategy, in which no
surrogate models were used, suggests that the gradient-based method has found the global optimum
at a computational cost which is about one order of magnitude lower. Thus, the gradient-based
optimization framework proves to be a very efficient design tool.
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Nomenclature

Roman Symbols
Ixx Moment of inertia
J Cost function
ṁ Mass flow
Ẇ Power
X Grid point coordinates
Subscripts
0 Total condition
1 Inlet
2 Outlet
is Isentropic
ref Reference
TS Total-to-static
Greek Symbols
α Absolute flow angle
α Design variables
∆ Difference
η Efficiency
π Pressure ratio
ω Weighting coefficient
Abbrevations
CADO Computer Aided Design Optimization
CEV 7 Constant Eddy Viscosity
Constr Constraint
DE Differential Evolution
JT-KIRK Jacobian Trained Krylov Implicit Runge–Kutta
MUSCL Monotonic Upstream-Centered Scheme for Conservation Laws
Obj Objective
OP Operating Point
RANS Reynolds-Averaged Navier–Stokes
RPM Revolutions per minute
SNOPT Sparse Nonlinear OPTimizer
SQP Sequential Quadratic Programming
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