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Abstract: Flow measurement using a linear compressor or turbine cascade is a well-established
technique to characterize the flow in turbomachines with a certain degree of abstraction. A common
way to obtain a general characterization of the flow is to measure the flow downstream of the cascade
with a five-hole probe, obtaining, e.g., total pressure losses and flow turning. Pneumatic five-hole
probes are used to capture steady or time-averaged flow quantities, if not specified otherwise.
In dependency of probe geometry, measurement set-up and flow properties, such measurements can
be very time-consuming. Various techniques, in order to decrease the measurement time, are proposed
in literature but for certain applications the efforts required to implement such techniques can
outweigh the enhanced measurement speed. In this paper, methods proposed by other authors are
combined and extended to allow for fast or transient five-hole probe measurements at strongly varying
flow conditions. The effectiveness of this method is presented for flow measurements downstream of
a compressor cascade with attached and stalled flow (by varying the Reynolds number) as well as with
steady and periodically unsteady inflow. The new method allows to reduce the measurement time by
up to 90 percent without compromising measurement accuracy. In fact, due to higher spatial resolution,
the flow downstream of the cascade can be better resolved with the new method.

Keywords: five-hole probe; pneumatic measurements; linear cascade

1. Introduction

Pneumatic probes have been widely used in fluid mechanics research and are still a valuable
measurement device for obtaining localized flow quantities such as total pressure, Mach number or
flow angle. In turbomachinery research, pneumatic probes with two, three, five or even more holes
are used to measure the flow properties in annular as well as linear cascades or even rotating rigs.
The pressure at each of the holes is measured and the relation between the individual pressures allows
to obtain the flow properties according to the values from a prior calibration.

For a standard pneumatic multi-hole probe, the pressure is not measured directly at the holes.
The hole is connected via small diameter tubes and hoses to the actual pressure transducer. At steady
conditions, the pressure inside the cavity of the pressure transducer is the same as at the hole. For a
pressure change at the hole, it takes a certain time to equalize the pressure difference between hole and
pressure sensor. For accurate measurements, one has to take this time lag into account when traversing
a probe in a non-homogeneous flow. Depending on the kind of flow and the measurement set-up, this
time lag can be responsible for most of the time needed to measure a flow field. In order to reduce
measurement time and hence the costs, it is important to find solutions which allow to minimize the
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settling time of the pressure changes. One way to shorten the measurement time is to use highly
time-resolving pneumatic probes, where the pressure sensors are placed more or less directly at the
probe tip. As drawbacks, these probes are usually more expensive than standard probes, are more
difficult to handle and have larger dimensions. The latter is due to the need to incorporate the sensors
inside the probe, either at the tip or shortly downstream. Additionally, the operating range of the probe
may be limited to the sensors’ operating range if the design does not allow to change them easily.

If one wants to use a standard probe, one can optimize the measurement set-up, as carried out,
e.g., in Grimshaw and Taylor [1]. The authors use an electric circuit analogy to model the complete
pressure lines and are able to estimate the pressure settling time and to derive optimized geometries
or configurations. Nevertheless, such an optimization will face restrictions such as the size of the
probe already in use and the minimum tube length from the probe to the sensor. Another or an
additional way to reduce measurement time is to by-pass the pressure settling time by applying a
transfer function to the pressure record as in Paniagua and Dénos [2]. For their method, they traverse
the probe continuously through the flow field and measure the pressure throughout the traverse.
The pressure at the sensor is not allowed to settle down and is therefore not equal to the pressure at
the probe tip. Since they made a prior calibration acquiring the response of the measurement set-up
to a step change in pressure at the probe tip, they are able to reconstruct the actual pressure at the
tip applying a transfer function on the pressure history of the sensor. This method allows to reduce
the measurement time considerably, but requires a calibration of the system to obtain the transfer
function. Such a calibration has to be done not only for different measurement set-ups individually
but also for different flow conditions. The absolute pressure level at which the system is working has
a huge influence on the response of the system; therefore, measurements at different pressure levels
require individual calibrations. Such additional efforts may outweigh the advantages of a continuous
measurement and hence are not suitable for measurements under strongly varying pressure levels.

At the High-Speed Cascade Wind Tunnel of the Institute of Jet Propulsion of the Armed Forces
University Munich, flow measurements with pneumatic probes using linear turbine and compressor
cascades are often carried out for different operating points with a large variation of pressure level.
A dynamic calibration for every measurement would represent an effort as high or even higher than
a standard measurement of a traverse at mid-span waiting for the pressure settling time for each
measurement point. In order to improve the overall time needed for the measurement, a transfer
function based on the method of Paniagua and Dénos [2] is applied to the measurement using the
values of the measurement itself to obtain the transfer function.

2. Settling Time and Transfer Function Method

The determination of the settling time for pressure measurement systems has been the focus
of study since quite early on in the history of wind tunnel testing. The settling time is important
whenever there is a noticeable time lag between pressure changes at the measurement location and
the actual measurement device. Sinclair and Robins [3] developed an equation for the determination
of settling time for laminar, incompressible flow measured by a manometer. The measured pressure
at the measurement device—in the case of this reference, a manometer, but it can also be a pressure
gauge—is a function of time p = f (t). At t = 0, the system is in equilibrium at p = p0. After a step
change at the orifice of the measurement system (e.g., a probe tip) from p0 to p1, the measured value
will change. The settling time can be defined as time needed for the measured pressure to level 99.9%
of the initial pressure difference p1 − p0, i.e.,

ps = 0.999 · p1 + 0.001 · p0. (1)

In [3], the settling time tp is given as

tp =
128µle

πd4

[
V
p1

ln
(p0 − p1) (ps + p1)

(ps − p1) (p0 + p1)
+

3Vd
p0 − p1

ln
p0 + p1
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+

Vd
p0 − p1
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p0 − p1
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]
, (2)
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with the natural logarithm ln, the total volume of the system V and the displacement volume due to
fluid level change in the manometer Vd. The equivalent length le is determined for a combination of
different tube diameters di by

le = l1 + l2
d4

d4
2
+ l3

d4

d4
3
+ . . . + ln

d4

d4
n

. (3)

Larcombe and Peto [4] derive the settling time for slip flow as

tp =
128µ (V + kv) l

πd4 (p1 + K)

[
ln

p1 + ps

p1 − ps
− ln

p1 + p0

p1 − p0
+ ln

1 + 2K
p1+ps

1 + 2K
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]
, (4)

with

K = 8
(π

2

)0.5
(

2
f
− 1
)

µ

d
(

ρ
p

)0.5 (5)

where kv is equivalent to Vd in Equation (2) and f is the fraction of gas molecules diffusely reflected.
In the reference, f is suggested to be equal to 0.8 for air at 20 ◦C. The equivalent length for a
combination of various diameters is given as

le = l +
n

∑
i=1

lid4 (p1 + K)
d4

i (p1 + Ki)

ln 199p1+p0+200Ki
p1+p0+2Ki

ln 199p1+p0+200K
p1+p0+2K

. (6)

In a recent publication, Grimshaw and Taylor [1] use an electric circuit analogy to derive the set of
differential equations for the determination of the pressure history. Though the results in their absolute
values might differ from each other, altogether they show a strong dependency of the settling time from
the absolute pressure level. Figure 1 shows the settling time dependency on the overall pressure level
p0 for a typical measurement configuration in a wind tunnel, applying the theories discussed so far.
The strong increase of the settling time with decreasing pressure level seems evident. The configuration
of the measurement set-up for a single pressure hole of the five-hole probe is explained in Table 1,
while the applied pressures are given in Table 2. Overall, the probe head has a diameter of 2.5 mm.
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Figure 1. Settling time as a function of the initial pressure p0.
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Table 1. Typical probe and connecting tube dimensions for the five-hole probe set-up.

l d

probe tip 5 mm 0.4 mm
probe stem 230 mm 0.55 mm

connecting tube 1000 mm 1.5 mm
transducer tube 100 mm 1 mm

Table 2. Pressure boundary conditions for evaluation of the settling time.

p0 p1 − p0

80,200 Pa 1100 Pa
60,500 Pa 750 Pa
40,170 Pa 670 Pa
20,080 Pa 540 Pa
10,080 Pa 460 Pa
6260 Pa 590 Pa

Some validation measurements were carried out with a simple set-up and a manual valve to
produce a sudden pressure increase from p0 to p1 at the five-hole probe tip. A Kulite (Leonia, NJ, USA)
pressure sensor placed close to the probe tip is used as a reference signal to capture the actual pressure
increase. The fast reacting pressure sensor is of the type XCQ-062 and has a natural frequency of
150 kHz with a differential pressure range of 350 hPa. Overall, the measurements confirm the trend
predicted by the cited authors as shown in Figure 1. Viscous effects might be responsible for the slight
increase in settling time in the experiments.

One may try to reduce the settling time as carried out, e.g., in [3] or [1] by optimizing the tube
diameters, but physical limitations and constraints to the set-up will always lead to considerable time
consumption of measurements with standard pneumatic probes, especially at low pressure levels.

2.1. Continuous Traverse Using Transfer Function

Paniagua and Dénos [2] present a method using a transfer function to obtain the true pressure at
the probe tip. Simplifying and neglecting any time delay between step change and pressure rise at the
transducer, one can reconstruct the true pressure from the time history of the true pressure and the
measured pressure. For a measurement at a sampling time instance j, the true pressure u is obtained by

uj = −b1 · uj−1 − . . .− bm · uj−m + a0 · yj + a1 · yj−1 + . . . + am · yj−m (7)

with the order of the function m and the measured pressure y. A probe might then be traversed
continuously through an inhomogeneous flow field and the actual pressure at each of the holes
reconstructed by the measured pressure. For such an operation, one must know the coefficients b1 . . . bm

and a0 . . . am, which can be obtained by prior calibration, as shown by the same authors. However,
if one is carrying out measurements at different pressure levels, this would imply a calibration for each
pressure level, which would outweigh any time savings by this method.

A more suitable way for measurements under varying pressure conditions is to obtain the
coefficients from the measurement itself, bypassing any calibration. Therefore, a method proposed by
Bartsch et al. [5] for optimization of the measurement point distribution for standard measurements is
used here to determine the coefficients of the transfer function. In the publication from Bartsch et al. [5],
they perform two traverses in opposite directions downstream of an airfoil in order to determine the
wake position and to enhance the measurement point distribution for a standard traverse.

Such a dual traverse can also be used to directly obtain the actual pressure at each measurement
location. In Figure 2a, typical results for a dual traverse are plotted. The dashed line shows the
measured pressure difference between total inlet pressure and the pressure at the centre hole of the
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probe normalized by a random stagnation pressure for a continuous traverse toward higher u/t values.
The dashed–dotted line shows similar readings for a traverse in the same flowfield but moving in the
opposite direction. It is evident that the time delay between actual pressure change and measured
pressure leads to a phase lag of the measured pressure, seen in the different positions of the peak values.
Additionally, the measured pressure difference is expected to be lower than the actual maximum.
The coefficients for the transfer function in Equation (7) can be evaluated iteratively and the function
applied to both traverses must give the same result, or more precisely

u f − us = Ψ f ·ϕ−Ψs ·ϕ = ξ (8)

with the vectors of the measured pressures u = [um, · · · , un]
T for n measurement points

and with the subscripts f and s for the first respectively second traverse. The vector
ϕ = [−b1, · · · , −bm, a0, · · · , am]

T holds the coefficients of the transfer function while the matrix
Ψ is defined as

Ψ =

um−1 · · · u1 ym · · · y1
...

...
un−1 · · · un−m yn · · · yn−m

 . (9)

The coefficients of the vector ϕ in Equation (8) are iteratively searched to minimize the root mean
square of the error vector ξ using the MatLab (MathWorks, Natick, MA, USA) function fminsearch.
The order of the function m can be individually set for each experiment, but in our measurements an
order higher than m = 3 did not change the results significantly.

Since the number of coefficients for ϕ is in general higher than two, additional constraints are put
into the algorithm for the iterative search: the resulting actual pressure history as a function of u/t has
to cross all measured pressure difference peaks, i.e., maximum and minimum values, if this is the case.
This is true, since the traversing velocity is moderate which results in macroscopic pressure changes,
like the peaks in Figure 2a, far below one Hertz. According to the works of Bergh and Tijdeman [6] or
Carolus [7] at such low frequencies and since the system is overdamped, no noticeable phase lag is
perceived for the pressure reverse at the tip of the probe. The resulting pressure line for the curves
shown in Figure 2a is plotted in Figure 2b together with the measured curves.
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Figure 2. Measured pressure difference between total inlet pressure and centre bore of the probe
normalized by stagnation pressure and resulting normalized pressure difference as an outcome of the
transfer function. (a) Measured pressures; (b) Measured and reconstructed pressures.
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Such an iterative search can be done for all the holes or measured pressure differences of the
five-hole probe and the actual flow values can be computed. Additional smoothing of the obtained
values by a moving average filter of window size equal to the order of the transfer function allows to
decrease the wiggles due to overestimation of random variations in the pressure measurement.

2.1.1. Error Estimation

An error estimation is more difficult to conduct using the transfer function since every
computed pressure difference relies on the history of the measured and reconstructed pressure values
uj = f (uj−1, . . . , uj−m, yj, . . . , yj−m). This means that every error in previous samples propagates to
the following pressures. Using the linear error propagation technique, which is the more conservative
approach, without any further analysis would very soon increase the uncertainty towards infinity, since

∆uj = | − b1| · ∆uj−1 + . . . + | − bm| · ∆uj−m + |a0| · ∆yj + . . . + |am| · ∆yj−m, (10)

with ∆y as the uncertainty of the pressure gauge, i.e., ∆yj = ∆yj−1 = . . . = ∆y. However, one can
overcome this problem if one separates the systematic from the random error with

∆yj = ∆y + ∆y′j, with
∞

∑
j=1

∆y′j = 0. (11)

The systematic error is constant for all samples; therefore, Equation (10) can be rewritten as

∆uj =| − b1| · ∆uj−1 + . . . + | − bm| · ∆uj−m+

|a0 + . . . + am| · ∆y + |a0| · ∆y′j + . . . + |am| · ∆y′j−m.
(12)

The effect of such a method can be seen exemplary for a case of the order m = 1 for simplification.
The first transformation is at the second sample

u2 = −b1 · u1 + a0 · y2 + a1 · y1 (13)

∆u2 = |a1 − b1| · ∆y1 + |a0| · ∆y2 (14)

= |a0 + a1 − b1| · ∆y + |a1 − b1| · ∆y′1 + |a0| · ∆y′2,

since at the first sample the probe is not in motion and the measured pressure can be seen as the actual
pressure at the probe tip u1 = y1. For the third reading, the result from Equation (15) is set into the
error estimation of Equation (12)

∆u3 = | − b1| · ∆u2 + |a0|∆y3 + |a1| · ∆y2

= |(a0 + a1) · (1 + b1)− b2
1| · ∆y + (15)

|b1(a1 − b1)| · ∆y′1 + (|b1a0|+ |a1|) · ∆y′2 + |a0| · ∆y′3.

Applying the same method into the fourth reading gives

∆u4 =|(a0 + a1) · (1 + b1 + b2
1)− b3

1| · ∆y+

+ |b2
1(a1 − b1)| · ∆y′1 + (|b2

1a0|+ |b1a1|) · ∆y′2+

+ (|b1a0|+ |a1|) · ∆y′3 + |a0| · ∆y′4.

(16)



Int. J. Turbomach. Propuls. Power 2018, 3, 6 7 of 13

Continuing the row, one can easily find the relation

∆uj =∆y

∣∣∣∣∣ j−2

∑
n=0

(a0 + a1) bn
1 − bj−1

1

∣∣∣∣∣+
j−1

∑
n=2

∆y′n
(
|a0 · b

j−n
1 |+ |a1 · b

j−n−1
1 |

)
+ ∆y′0|a1 · b

j−2
1 − bj−1

1 |.

(17)

The first summand of Equation (17) can be brought to a geometric series for b1 6= 1 with

∆y

∣∣∣∣∣ j−2

∑
n=0

(a0 + a1) bn
1 − bj−1

1

∣∣∣∣∣ = ∆y

∣∣∣∣∣(a0 + a1)
bj−1

1 − 1
b1 − 1

− bj−1
1

∣∣∣∣∣ . (18)

Equation (18) does not converge for |b1| > 1. It is therefore mandatory to find coefficients bn where
the sum of the absolute values is smaller than unity in order to maintain mathematically correctly
the uncertainty at low levels. Otherwise, the uncertainty grows exponentially with the number of
data points.

The fluctuating random error (second and third summand in Equation (17)) is essentially due to
noise and can, in general, be neglected for the average values, since the sum of the errors is equal to
zero, see Equation (11).

Doing so, the measurement accuracy for standard and new measurement techniques is 0.01 for
the Mach number measured by the five-hole probe, 0.1◦ for the swirl β and approximately 10% of the
total pressure loss coefficient ζ defined in Equation (20).

3. Test Set-Up

The experiments with a linear cascade were performed at the High-Speed Cascade Wind Tunnel
of the Institute of Jet Propulsion at the Armed Forces University Munich. A drawing of the tunnel
is given in Figure 3. The main components of the facility are a six-stage axial compressor, a settling
chamber with laminar coolers and the nozzle. These parts are enclosed inside a pressure chamber
where the static pressure can be changed between 3000 Pa and 120,000 Pa. Controlling the compressor
speed and the cooling of the air, the flow Mach and Reynolds numbers (Ma and Re respectively)
can be varied independently from each other. The Mach number range at the nozzle exit lies within
0.1 ≤ Ma ≤ 1 and the range of the Reynolds number based on nozzle exit conditions divided by the
geometric scale is approximately 2 × 105 m−1≤ Re/l ≤ 16 × 106 m−1.

Figure 3. Drawing of the High-Speed Cascade Wind Tunnel.
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The compressor is driven by a 1.3 MW electric motor and the speed is controlled by a hydraulic
coupling. These components are placed outside of the pressure chamber. Further details on the facility
can be found in Sturm and Fottner [8].

3.1. Periodic Wake Generation

The interaction of the flow around the profile with periodically impinging wakes from an upstream
moving airfoil can be simulated with cylindrical bars. The wake generator is placed at the nozzle
exit and the cascade inside the wake generator. Cylindrical bars are moved linearly upstream of the
cascade and parallel to it. After passing the circumferential end of the cascade, the bars do a 180◦ turn
and move backwards downstream of the cascade at sufficient distance not to interact with the outflow
from the cascade. After a second turn, the cycle reinitializes. The wake generator was run at 40 m/s
with a bar distance of 80 mm resulting in a frequency of 500 Hz of the wake disturbance. Details about
the design can be found in Acton and Fottner [9].

3.2. Data Acquisition and Post Processing

The operating point of the cascade is controlled by the static pressure at the inlet to the cascade
and the local stagnation pressure. The static pressure p1 is measured with pressure taps at the sidewall
of the nozzle, while the stagnation pressure q1 is measured with a pitot probe in the nozzle. With these
two pressures, the Mach number is computed assuming adiabatic isentropic expansion.

The Reynolds number is the second similarity parameter which is controlled using the definition

Re =

√
γ

R
c

Cs

Ma · p1 ·
(

Tt1

1+
(

γ−1
2

)
·Ma2

+ S

)
(

Tt1

1+
(

γ−1
2

)
·Ma2

)2 . (19)

The total temperature of the flow Tt1 is measured with four PT100 resistance thermometers inside
the settling chamber.

The downstream flow is measured with a five-hole pneumatic probe. The pressures at the five
holes give the coefficients which allows to obtain the local Mach number Ma2, the local total pressure
pt2 and the flow angle in circumferential direction β2. The total pressure is used to compute the profile
losses defined by

ζ =
pt1 − pt2

q1
. (20)

Due to confidentiality reasons, the values are normalized by a random reference value or, in the
case of the flow angle, given as difference from a reference value.

The integral values over one complete pitch are computed as mixed out values using the method
of Amecke [10] where the conservation of mass, momentum and energy is fulfilled.

4. Experimental Results

The new method was applied on measurements downstream of a linear compressor cascade with
moderate turning and a Mach number at the outlet of approximately 0.3. A broad range of Reynolds
numbers were investigated but for briefness most of the results presented here are for two Reynolds
numbers: a medium Reynolds number of 150,000 at which low profile loss is generated and a low
Reynolds number of 50,000 where stalled flow is present. The method is shown to work also with
periodically unsteady inflow.

Results from a traverse at the medium Reynolds number and steady inflow conditions are given
in Figure 4. The normalized profile losses, the flow angle difference, and the normalized Mach number
are given as a function of the relative pitchwise position. The results from a standard traverse are given
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as symbols and the ones from a fast traverse are drawn as lines. Each symbol of the standard traverse
curve represents one of the 44 discrete measurement points. It is visible that, at these conditions,
both measurements give very similar results along the pitch and all extreme values; gradients are
also matched.
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Figure 4. Flow properties measured downstream of the cascade with the standard and fast traverse
technique for medium Reynolds number and steady inflow.

The results of the transient measurements shown here are for a traversing velocity of 2 mm/s.
The same operating point was measured with a traversing velocity of 1 mm/s. In the latter case, the
acquired pressures are closer to the actual values but after transformation with Equation (7) the results
are similar for all three cases.

The method was also applied to measurements with unsteady inflow. Figure 5 depicts the
flow properties downstream of the cascade for the same Reynolds number but with unsteady inflow.
Furthermore, the differences are negligible. One should note that in Figure 5, the total pressure losses
produced by the wake generator are included in the profile loss curve and that the scale of the ordinate
was changed.
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Figure 5. Flow properties measured downstream of the cascade with the standard and fast traverse
technique for medium Reynolds number and periodically unsteady inflow.

The difference in integral values between the standard and fast measurement technique is given
in Table 3. The differences are well below the measurement accuracy. The method described here
therefore seems to be reliable.
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Table 3. Differences of integral values using the standard and fast traverse technique

Flow Property Steady Inflow Unsteady Inflow

δζ/ζ 0.044 0.0021
δβ 0.01◦ 0.01◦

δMa 0.001 0.001

More difficult to measure are operating points with very low Reynolds numbers due to the low
absolute pressures. Nevertheless, the method gives decent results compared to the standard technique
in Figure 6. Only the flow angle is computed considerably differently with an integral offset of 0.25◦.
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Figure 6. Flow properties measured downstream of the cascade with the standard and fast traverse
technique for low Reynolds number and periodically unsteady inflow.

The measurement time decrease is depicted in Figure 7 for low and medium Reynolds number
cases. The total time needed is normalized by the time needed at the low Reynolds number with the
standard technique. One can see that the new technique can decrease the total time needed for one
traverse by up to 90%. For a better estimate of the time saved, the typical overall measurement time
for a standard traverse at low Reynolds number is approximately 45 min.
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Figure 7. Total measurement time needed for a complete traverse.



Int. J. Turbomach. Propuls. Power 2018, 3, 6 11 of 13

With the same technique, it is also possible to measure complete outflows from a cascade
performing multiple traverses at different radial positions. The coefficients of the transfer function
are only computed for the first traverse, since the measurement set-up and the overall pressure level
remain constant for the other traverses. An insight into the quality of such measurements is given in
Figure 8 where the measured total pressure loss along half span of the airfoil is depicted. The vectors
are proportional to the secondary flow velocities. These results were acquired for an intermediate
Reynolds number of Re1 = 75,000 at steady inflow conditions. The mid-span is located at z/h = 0 and
the sidewall at z/h = 0.5. No whole plane measurements using the standard technique for comparison
were performed due to the high time consumption, but at mid-span the results for both techniques
are again similar. Nevertheless, the results of Figure 8 seem plausible with the correct picture of the
secondary flow vortices.
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Figure 8. Normalized total pressure loss coefficient and secondary flow velocity vectors in a plane
downstream of the cascade at Re1 = 75,000 acquired with the fast technique.

The same technique was also applied to measurements downstream of a transonic turbine cascade
and the results are similarly encouraging.

5. Conclusions

This paper presents a new method to measure the flow downstream of a cascade with a standard
five-hole probe. The new method is based on obtaining a transfer function from two traverses with the
direction of probe movement in opposite directions.

The technique presented here has been tested on compressor and turbine cascades and allows to
decrease the total measurement time by up to 90% without noticeable loss in accuracy. In fact, due
to a better spatial resolution of the flow, the accuracy can be increased for specific cases. The latter
can be even more important when measuring complete outflow planes, where this technique was also
applied successfully.

An extensive error analysis on measurements using a transfer function is performed. The analysis
shows the way in which to obtain proper coefficients to reduce the measurement uncertainty. If no
attention is paid to this, the uncertainty will grow exponentially with the increasing number of
data points.
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Abbreviations

The following nomenclature is used in this manuscript:

a, b Transfer function coefficients
c Chord length
Cs Sutherland constant = 1.458 × 10−6 kg/(m·s)
d Diameter
h Vane height
l Tube length
Ma Mach number
p Pressure
q Stagnation pressure
R Ideal gas constant
Re Reynolds number
S Sutherland constant = 110.4 K
T Temperature
t Pitch, time
tp Settling time
u Pitchwise coordinate, actual pressure
V Volume
y Measured pressure
z Coordinate in radial direction
β Flow angle
γ Isentropic coefficient
∆ Uncertainty
δ Difference
ζ Total pressure loss coefficient
µ Dynamic viscosity
ξ Error vector
ρ Density
ϕ Vector of transfer function coefficients
Ψ Matrix of measured and actual pressures
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