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Abstract: Numerical simulations based on the large eddy simulation approach were conducted with
the aim to explore vaneless diffuser rotating stall instability in a centrifugal compressor. The effect
of the impeller blade passage was included as an inlet boundary condition with sufficiently low
flow angle relative to the tangent to provoke the instability and cause circulation in the diffuser core
flow. Flow quantities, velocity and pressure, were extracted to accumulate statistics for calculating
mean velocity and mean Reynolds stresses in the wall-to-wall direction. The paper focuses on the
assessment of the complex response of the system to the velocity perturbations imposed, the resulting
pressure gradient and flow curvature effects.
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1. Introduction

Ideally, for an efficient design the centrifugal compressor provides a steady fluid flow at
an elevated pressure with minimal losses. However, the performance of the centrifugal compressor is
harmed under the off-design operating conditions occurring at low flow rates. In such circumstances
flow instabilities are developed through the compressor, which may cause large fluctuations in the
flow variables and even introduce vibrations with high structural stress levels into the machine. This is
an unwanted situation and the aim is therefore to understand the physical mechanisms responsible for
the developed flow instabilities. Through linear stability analysis, see e.g., [1], the diffuser rotating
stall is said to occur when the local return flow angle relative the meridional exceeds 90◦. However,
a diffuser instability generally develops earlier than 90◦, i.e., prior to purely tangential flow. There exist
some correlations that indicate the instability angle to be around 75◦–85◦ with respect to the radial
direction depending on the operating conditions, see e.g., [2]. The theory [1] also states that it occurs
with steady, uniform inflow and outflow conditions and thus independent of the interaction with the
rotating impeller. A criticism is that inflow periodic unsteadiness may trigger a diffuser instability, see
e.g., [3]. Another criticism is that the theory assumes diffuser flow as inviscid. This implies that the
dynamic character of diffuser rotating stall depends on the inviscid core flow and is independent of
viscous effects, dominating in the boundary layer. It is important to acknowledge some observations
where the periodic unsteadiness may be delaying stall, see e.g., [4] where low pressure turbine suction
side boundary layer stall, and axial compressor stall were investigated.
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For the actual evolution of the dynamic character and thus prediction of the number of rotating
stall cells and their propagation speed around the annulus, different research groups have considered
a time-evolving calculation assuming 2D-unsteady, inviscid and incompressible flow, see e.g., [5–7].
The effect of the blades on the flow is fed at the diffuser inlet boundary and a Dirichlet condition
with static pressure is considered on the outlet surface. One observation is that the evolution of the
rotating stall cells depends on the specified outlet boundary condition; see e.g., [8]. Specification of
a Dirichlet boundary condition at the outlet was seen to result in strong gradients of the velocity field.
This is in contrast to the linear stability analysis where the Neumann boundary condition is used,
which assumes zero pressure gradients in both the radial and tangential directions. In scenarios with
reversing flow at the outlet boundary special consideration is needed for an appropriate specification
of the backflow direction. This could be extrapolated or it could be treated as normal to the face
elements on the outlet surface. In the ideal case, the outlet boundary would be extended further
downstream to prevent recirculation. In the linear stability analysis work of [1], extrapolating the
backflow direction was seen to be in agreement with experimental results of [9] for a wide vaneless
diffuser with uniform inflow. The rotating stall feature was illustrated as two high static pressure
cells at low velocity with reversing flow and two lower pressure cells at higher outgoing velocity.
This was later confirmed in the 2D linear stability analysis by [5]. These cells were reported to be
rotating at sub-synchronous rotational speed. In a real diffuser design the channel width is narrow
where viscous effects in the boundary layer cannot be neglected. This is due to the growth of the
displacement thickness that may be different on the wall boundaries, depending on the quality of
the flow delivered by the impeller, see e.g., [10]. Additionally, the rotation of the impeller with high
blade tip speed results in a high Reynolds number flow that enters the diffuser. Therefore the flow is
thus turbulent with large fluctuations in the flow quantities, and subsequently with high shear rate,
which may become unstable. Typically, the fluctuations are amplified at off-design conditions, as
documented by [11]. These effects are not taken into account with the 2D inviscid approach. In the
work by [12] the Navier–Stokes equations were averaged with the Reynolds decomposition resulting
in the need for turbulence closure modeling. They employed a two equation isotropic turbulence
model. The numerical result was found in good agreement with observed pressure fluctuations and
number of rotating stall cells as compared with particle imaging velocimety (PIV), see [13]. However,
it was concluded that the numerical result using isotropic turbulence modeling underestimates the
strength of the rotating stall vortex as compared with PIV measurements. This may be explained
by excessive turbulent diffusion, a known issue of linear turbulence models in presence of adverse
pressure gradients, and issues associated with predicting accurately features such as boundary layer
separation. Many different closure models exist for calculating turbulent flow. In the case of the diffuser
flow there is evidently some argument for including curvature effects in the modeling approach, since
curvature requires discerning turbulence anisotropy. Consequently, it is clear that the turbulence model
should take anisotropic effects into consideration on top of considering an approach able to resolve the
large, energy containing flow structures. Streamline-curvature is possible to include in the framework
of eddy-viscosity turbulence modeling. For this, a correction factor is introduced to the turbulent
production term in the turbulent kinetic energy equation, see e.g., [14]. This factor depends on the
strain-rate as well as the rotation-rate tensor including several proposed modeling constants. Due to
the large freedom in choosing the modeling constants a small variation to proposed default values
may potentially yield significant differences in the predicted turbulence production. Nevertheless,
eddy-viscosity modeling with curvature correction showed good predictive quality compared to
experimental data for a vaneless diffuser application during rotating stall conditions, as shown in [15].

Previously it was demonstrated that the angular momentum instability associated with curvature
plays a key role in provoking large effects on the turbulent boundary layer, see work by [16].
The boundary layer is affected by the radial pressure gradient, radial curvature near the inlet and
tangential straining as the flow cross section area increases. Since the flow is swirling it is, therefore,
necessary to include 3D effects and the destabilizing tangential curvature.
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The present paper aims to capture the evolution of the rotating stall cells and their propagation
around the annulus by employing the large eddy simulation (LES)-based approach to a 3D annular
vaneless diffuser configuration with a turnaround outlet. The possibility of capturing anisotropic
turbulence effect in the boundary layer will help elucidate the variation of velocities and Reynolds
stresses in the swirling diffuser flow. Especially in key areas close to separation and recirculation
in order to investigate the effect on fluctuation levels. For a statistical assessment the flow field
is quantified by means of flow mode decomposition techniques. A sensitivity study to the outlet
boundary conditions imposed will be carried out. The numerical methodology is described in the
next section, which is followed by presentation of results. The relevance of the obtained results to the
scientific and designer community is included in a concluding summary section.

2. Numerical Methodology

The narrow annular vaneless diffuser with a turnaround outlet, shown in Figure 1, contains
a converging section close to the impeller blades. The overall extent before the turnaround in the
radial direction is ≈ 1.5R2. The curvature of the turnaround is approximately 0.2R2 and the outlet is
extruded to a location at 0.82R2.
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Figure 1. (a) An isometric view of the vaneless diffuser geometry with a cut-out to depict the side view
profile; (b) side section view depicting inlet and outlet stations.

The effect of the impeller blade passing is provided as meridional and tangential velocity profiles,
respectively. The 3D time-dependent large-scale turbulent motion responsible for the fluid mixing in
the vaneless diffuser is computed using the LES approach. The computational domain is discretized
with a curvilinear grid which constitutes the elements of the finite volume methodology employed.
Via Taylor series expansion an approximate representation is obtained for the transient, convective and
diffusive terms respectively. The temporal term is discretized with a second order scheme, which uses
the solution from the current time step and from the previous two time levels. A hybrid second order
upwind/central differencing scheme is used for the convective term. The diffusive flux term is treated
with a second-order expression, which involves the cell center value, the neighboring cell center value,
and including the diffusion flux at the interior face. The introduced dissipative truncation error is
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known to mimic Smagorinsky-type SubGrid scale (SGS) modeling, see works by [17,18]. As the grid
size is refined the filter size for SGS modeling subsequently decreases. Hence, the contribution from
SGS may therefore become very small as compared to other entities in the momentum balance equation.
One may therefore disregard from the SGS term by setting it to zero, which is attributed as implicit
LES with no explicit SGS. The validity of an implicit LES approach can be verified by evaluating the
energy decay slope for a point exhibiting isotropic turbulence in the inertial subrange, i.e., −5/3 for a
velocity fluctuating component. However, such condition is not expected for a narrow channel flow
under pressure gradient and strong flow curvature yielding significant effect on the boundary layer
development and with associated separation. Therefore, code validation is assessed alternatively by
means of a grid dependency study, which is presented further below. Nevertheless, the solver has
been used previously for calculating flow scenarios associated with centrifugal compressors at low
mass flow rates and validations against experimental data were carried out, see [19–21].

A constant-density turbulent flow is assumed with a Reynolds number Reb ≈ 1× 105 and inlet
reference Mach number Mre f = 0.2. The reference flow angle at the inlet boundary is relative to the
tangential. It is computed in a point between the blades (i.e., θ/χ = 0.5) and at the diffuser channel
midpoint between the shroud and hub side (i.e., n = 0.5):

αIN = arctan(Um/Uθ) (1)

At the inlet boundary Um and Uθ have variable distributions in both axial and tangential directions,
with purpose to mimic a real velocity distribution from an upstream impeller. Figure 2 shows the
meridional and tangential velocity profile distributions scaled with Utip for two different reference
inlet flow angle cases αIN = 9.5◦ and αIN = 5.5◦.

For each blade tip width segment circumferentially around the inlet diffuser plane, Uθ = Utip and
Um = 0. This has the effect of modeling the blade blockage effect, which is presented as tangential
distributions for two blade passages, see last row in Figure 2 for orientation purposes. In addition, the
velocity distribution is made to rotate at the impeller angular velocity f IMP. Comparing peak values in
Figure 2 it can be seen that the amplitude of the flow distortion entering the domain is in the order of
0.1Utip at the distinct blade passing frequency fBPF. Additional stochastic fluctuation is not considered,
due to the overwhelming effect of the periodic unsteady incoming wakes described in Figure 2. At the
outlet boundary, the pressure is fixed when the flow is outgoing. In case of backflow the pressure
and flow direction is extrapolated from the outlet boundary. At the inlet the velocity components are
specified and pressure is allowed to float. Therefore, the pressure is fixed in the scenario with pure
outflow at the pressure outlet cell faces.

For validity of the numerical result a grid dependency study is performed on three different grids
named; coarse, medium and fine (see also Figure 3). A grid refinement factor of two is used between
grids. The wall resolution for the fine grid considered is: ∆n+ = 0.5, ∆m+ = 30, and ∆θ+ = 30.
The normalized wall distances are computed as the surface average of the hub and shroud walls,
respectively, between meridional stations m = 0 and m = 1. For a fair comparison the time-step size is
adjusted between grids so that the time averaged convective Courant number is unity. Approximately
30 through flow times were simulated for each case. Five through flow times were needed to establish
a suitable initial turbulent flow field. Therefore, data corresponding to 25 through flow times are used
for statistical analysis of the flow field, which is adequate to capture a low frequency instability in the
order of 0.02 fBPF. The integrated pressure rise ∆Cp is computed as the difference in area averaged
pressure coefficient at meridional stations m = 0 and m = 0.8, respectively. This parameter is evaluated
with respect to the grid resolution in the meridional direction ∆m+. Figure 3 indicates that the solution
(i.e., ∆Cp) approach an asymptotic limit value as the grid is refined. The Richardson 2nd order
extrapolation shows that the fine grid resolution is marginally different compared to a hypothetical
infinite grid resolution. It is also evident that the relative error with respect to the infinite grid solution
drops monotonically two orders of magnitude for each refinement order. This result correlates with
the chosen second order scheme and an expected truncation error of O(∆m+2).
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Figure 2. Scaled meridional and tangential velocity profiles applied at the diffuser inlet boundary
condition for the two different flow angle cases considered. The graphs on the top row of the figure are
for a station between the blades (i.e., θ/χ = 0.5). The graphs on the bottow row of the figure are for the
midpoint between the hub and the shroud (i.e., n = 0.5). The small sketch to the right illustrates that
the flow angle α is defined with respect to the tangent.
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Figure 3. Grid dependency assessment based the on ∆Cp between m = 0 and m = 0.8 for three different
spatial resolutions. The Richardson second order extrapolation indicates the hypothetical infinite grid
solution. The relative error is seen to reduce two orders magnitude with respect to the grid size ∆m+.

3. LES Data Analysis

Based on the grid dependency assessment, the solution obtained with the fine grid resolution
is chosen for further analysis. Figure 4 shows distributions on the side view of the time-averaged
pressure, velocity components, and Reynolds stress levels, respectively, for the flow angle αIN = 9.5◦.
The Reynolds stresses are scaled as a fluctuation intensity with respect to the mean local velocity. This
velocity is obtained at the midway distance between the shroud and the hub and along the meridional
coordinate. A characteristic pressure increase with a relatively steep gradient is seen until the top
of the turnaround. After the top of the turnaround the cross section area decreases. This leads to a
flow acceleration and thus to a static pressure decrease (see Cp scalar distribution in Figure 4). At the
turnaround bend a small pressure gradient is present in the wall-to-wall normal direction with slightly
lower pressure on the hub side compared to the shroud side.
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Figure 4. Time-averaged scalar contour distributions for αIN = 9.5◦, colored on the side view.
Flow quantities of interest are indicated in the text annotations.

The time-averaged meridional and tangential velocity profiles, respectively, show a strong shear
layer close to the inlet, which is due to the jet-like shape of the imposed inlet boundary profile.
In the straight section the velocity components gradually approach the shape of a fully turbulent
developed flow profile with high fluctuation levels close to the walls. To help see this more clearly
the time-averaged meridional and tangential velocity profiles, respectively, are plotted in Figure 5
for different stations along the meridional direction, between m = 0.05 and m = 0.8. At meridional
m = 0.6, just prior the turnaround, the profiles approach an approximate self-similar solution.
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Figure 5. Profiles of the time-averaged meridional and tangential velocity components for flow
angle αIN = 9.5◦ for different locations along the meridional indicated in the figure. Profiles of mean
meridional and tangential velocity fluctuation intensity are shown in the bottom row. Profiles are
scaled with the mean local velocity.
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Beyond m = 0.6 both profiles are seen to tilt with reduced through flow close to the hub wall,
an effect caused by the turnaround bend. Note that the time-averaged meridional velocity has a more
extreme slope and indicates tendency of an inflection point between m = 0.7 and m = 0.8. This leads
to increased fluctuations (root mean square) of this component (u′m). The steepness close to the shroud
and hub at m = 0.6 is compatible with the law of the wall. Therefore, wall modeling with lower
resolution near the wall may lead to acceptable predictions. However, in the vicinity of the developing
inflection point of the meridional velocity component there is evidence that wall modeling would not
be acceptable and compromise prediction of potential boundary layer separation.

The fluctuation components of velocity in the meridional, the tangential as well as the
co-variant direction, respectively, are depicted in Figure 4. A more detailed distribution of the
fluctuation intensities is also depicted in Figure 5 for different meridional stations. Close to the inlet,
peak fluctuation intensity is located close to the wall. In the middle of the channel, the peak values
reduce and approach self-similarity. One explanation for this is the shape of the imposed boundary
condition with the blades passing by creating high stress levels in the wake flow. Further downstream
however, the intensity of the fluctuation reduces, which indicates turbulence decay. It is noted that
the Reynolds stress anisotropy component exhibits a sudden growth at m = 0.7 close to the hub
wall (see Figure 4). However, this follows by a rapid recovery when the flow enters the area of
favorable pressure gradient towards the outlet. In general the tangential stress level is dominant but
the meridional and anisotropic stress components are not insignificant. This clarifies the importance of
employing a numerical approach that can capture anisotropic features in diffuser flow.

Assessment of the level of curvature requires a determination of the flow angle with respect to
the tangent. This is presented in Figure 6 at different meridional stations.
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Figure 6. Profiles of the time-averaged flow angle relative the tangent for reference inlet flow angle
αIN = 9.5◦ for different locations along the meridional indicated in the figure.

The wall is said to be in a collateral state if the flow angle α = arctan(Um/Uθ) is independent of
the wall normal direction n. In other words, there would be a linear relationship between tangential
and meridional velocities. It appears that this may hold in the straight diffuser section. A collateral
state does not seem to hold past the turnaround at m = 0.7. The figure shows evidence of a change in
the flow angle as moving downstream with two different flow angles at the hub and shroud walls,
respectively. In other words a smaller flow angle holds on the hub side as compared to the shroud
side, and presenting a moderate gradient in between. This could be due to the concerted action of
the turnaround bending effect and viscous effect near the wall, affecting the swirling motion of the
core flow differently in the near wall regions associated with the hub and the shroud, respectively.
In addition to this, the flow angle is seen to increase gradually towards the turnaround, which therefore
gives a stabilizing effect. The increasing flow angle can also be linked with a loss of angular momentum
due to viscous effect. In the area of the turnaround the flow angle decreases close to the hub side,
which is associated with reduced through flow. This clearly leads to a destabilizing effect of the flow.
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The presented results so far have only exposed statistics of the flow variables. A further assessment
is carried out analyzing the power spectral density (PSD) of a monitored flow quantity of interest.
Figure 7a shows PSD for the tangential velocity at m = 0.1 in the mid of the diffuser channel, i.e.,
n = 0.5. A combination of broadband and narrowband content is observed in the spectra. The tonality
of the blade passing frequency including several higher harmonics is correctly captured with the
numerical approach. In the low frequency end of the spectra for both inlet reference flow angles
considered significant tonalities are revealed. For the larger flow angle case αIN=9.5◦, one notable
peak is observed at 0.04 fBPF. For the lower flow angle case αIN = 5.5◦ two significant low frequency
tonalities can be observed, one at 0.03 fBPF and the other at 0.07 fBPF. The low frequency tonalities
(i.e., 0.04 fBPF for the large flow angle case and 0.03 fBPF and 0.07 fBPF for the smaller flow angle case),
correspond to flow modes with a periodic wave-like character. For the lower flow angle case the
intensity level in the low to middle frequency range is seen to amplify. Moreover, the peak of the
dominant narrowband feature, i.e., 0.07 fBPF for αIN = 5.5◦ as compared to 0.04 fBPF for αIN = 9.5◦,
is shifted to a higher frequency relative to the shaft speed. It should be noted that the sample length
corresponds to approximately 25 cycles of the low frequency tonality. Therefore, these features appear
as broad peaks rather than sharp peaks in the point spectra. However, this could be improved with
a more generous sampling length and hence simulation elapsed time. Although, if a harmonic signal
is Gaussian shaped, the variation is not exactly sinusoidal.

Up to this point the numerical data elucidate two possible mechanisms for onset of the low
frequency instability, i.e., one shear layer close to the inlet and a tendency of an inflection point in
the turnaround section. To correlate these mechanisms with the rotating instability the point-to-point
cross power spectral density (CPSD) of the tangential velocity fluctuation is presented in Figure 7b.
The signals in the two different points show strong correlation at the rotating instability (i.e., 0.04 fBPF
for αIN = 9.5◦) as well as at the blade passing frequency. The phase shift at the rotating instability
frequency is approximately −χ. This means that the signal closer to inlet is ahead approximately one
blade-to-blade passage. For the smaller flow angle case αIN = 5.5◦ spatial coherency is also found in the
low frequency range. There, the peak at 0.07 fBPF is seen to be more dominant over the peak at 0.03 fBPF.
Since their frequency ratio is not a whole number integer they are not harmonics of each other.
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Figure 7. (a) Power spectral density of the tangential velocity component in a probe point located at
m = 0.1 in the mid of the diffuser channel n = 0.5. Data is compared for the two different flow angles
considered. (b) Cross power spectral density of the tangential velocity component between probe
points located at m = 0.1 and m = 0.7 in the mid of the diffuser channel n = 0.5. Data is for the two
flow angle case considered.
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For a statistical characterization of the flow mode associated with the interesting narrowband
instability a Fourier surface spectra analysis is performed of the velocity fluctuations u′r and u′θ for
every point distributed on a meridional surface located midway between the hub and the shroud,
which follows the diffuser channel curvature. The number of cycles of the low frequency mode shape
included in the surface spectra computation is limited to four and the result is presented in Figure 8
for the two different flow angles considered.

For a physical interpretation the intensities of the flow modes should be observed as
a superposition on the mean flow (Ui) where the subscript i is a direction index. The real part of
the flow mode spectra for the larger flow angle reveals two areas with negative intensity and two
areas with positive intensity respectively, and distributed on opposing sides of each other. A positive
radial intensity level is interpreted as outgoing flow and a negative level is a local inversion of the
radial velocity component. The imaginary part (not included in the figure) is a phase shifted 90◦

representation of the real part in the rotation direction of the shaft (clockwise in the figure). With the
real and imaginary parts added together u′i = <{u′i} cos(2π f t)−={u′i} sin(2π f t) the shape of the
mode is seen to rotate in the same direction as the impeller rotation. In other words, the flow mode can
be described as a rotating instability consisting of two counter-rotating flow cells relative to each other.
This qualitative description is in agreement with results of other research groups, e.g., [5,9]. The same
feature can be attributed also to the lower flow angle (second and third columns) but with a larger
number of rotating cells distributed evenly around the circumferential. The tonality at 0.03 fBPF for
αIN = 5.5◦ (see Figure 7a) shows three disturbances (second column in Figure 8), whereas the other
peak at 0.07 fBPF shows five rotating cells (third column in Figure 8).

-2 (%) 2 -3 (%) 3 -4 (%) 4 -2 (%) 2

αIN = 9.5o, 0.04fBPF αIN = 5.5o, 0.03fBPF αIN = 5.5o, 0.07fBPF αIN = 9.5o, fBPF

u′
r

Utip

u′
θ

Utip

Figure 8. Fourier surface spectra flow mode decomposition. Narrowband radial (top row) and
tangential (bottom row) velocity fluctuation intensity colored on a midway-section between hub
and shroud which follows the diffuser curvature. In detail, this correspond to n = 0.5, ∀m ∈ [0, 0.8],
∀θ ∈ [0, 2π]. In the figure this is presented in a frontal view, which means that points for meridional
positions at the top of the domain and beyond towards the outlet are not seen. Rotating stall modes at
different flow angles, αIN = 9.5◦ (first column) and αIN = 5.5◦ (second and third columns). Last column
shows the blade passing frequency flow mode for αIN = 9.5◦.

One notable difference with the larger flow angle αIN = 9.5◦ as compared to the lower flow angle
αIN = 5.5◦, can be seen in terms of their most dominant low frequency tonalities, respectively. That is
0.04 fBPF (first column in Figure 8) as compared to f = 0.07 fBPF (second column in Figure 8). For
the coherent mode shape at 0.04 fBPF the intensity of the tangential fluctuating mode shape is more
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dominant compared to the radial fluctuating mode shape, which is rather weak in intensity. For
peak 0.04 fBPF in the lower flow angle case, this is reversed, i.e., the radial fluctuation dominates
over the tangential. The reason to this can be attributed to type and location of the outlet boundary
condition for flow case αIN = 5.5◦. For this case a fraction of the cell face elements on the outlet were
subjected to reversed flow, which means that those face elements can no longer be considered as a real
outlet boundary. Under such situation the numerical solution may not be unique. Therefore, for the
lower flow angle case there is a fraction of the outlet that violates the well-posedness criteria, see [22].
Strictly speaking, a solution to a problem that is not well-posed does not make sense, and so the
numerical result for the lower flow angle case cannot be fully trusted. The remedy to this is to consider
a repositioning of the outlet where the flow is purely outgoing. However, a common result is that
the intensity level of the rotating disturbance reaches a peak at the top of the turnaround and with
a growth point location prior to the turnaround.

The propagation speed of the rotating stall cells can be analyzed using a space-time cross
correlation. For this the tangential velocity fluctuating component u′θ is considered for all grid points,
equidistant arranged along the circumferential direction at meridional m = 0.6, between the hub and
shroud midway in the diffuser channel. Among these points one is chosen as a reference located at
twelve o’clock. Subsequently, the space-time cross correlation is computed as:

R(ri, ∆t) =
< u′(xi, t)u′(xi + ri, t + ∆t) >√

< u′(xi, t) >2
√
< u′(xi + ri, t + ∆t) >2

(2)

The cross-correlation is then normalized and the result for flow angle cases α = 9.5◦ and α = 5.5◦

are presented in Figure 9.
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Figure 9. Space-time cross correlation of the tangential velocity fluctuating component along the azimutal
direction at m = 0.6 and in the middle of the diffuser section at n = 0.5. (a) Flow angle αIN = 9.5◦,
tangential velocity fluctuation reconstructed from Fourier surface spectra modes at 0.04 fBPF and fBPF,
respectively; (b) flow angle αIN = 5.5◦, tangential velocity fluctuation reconstructed from modes at
0.03 fBPF, 0.07 fBPF and fBPF. The correlation is normalized, and the scale range is from −1 to 1.

The fluctuating tangential velocity component utilized in the space-time correlation is obtained
by reconstruction of the most energetic Fourier surface spectra flow modes. The most energetic
modes are determined from Figure 7. Thus, for flow angle case αIN = 9.5◦ the contributions from
tonalities at 0.04 fBPF and fBPF, respectively, are used. For the lower flow angle case αIN = 5.5◦,
the contributions from 0.03 fBPF, 0.07 fBPF and fBPF are used. A coherent pattern is observed with
several inclined lines exhibiting strong correlation. This is directly linked with the propagation of the
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rotating cells. The slopes of the inclined lines are approximately constant and correspond to the local
convection speed. For the large flow angle case, there are two disturbances along the circumference,
which correlates with the two rotating stall cell structures in Figure 8, (i.e., 0.04 fBPF for αIN = 9.5◦).
For the smaller flow angle case there are thus five disturbances, since there are five dominant rotating
stall cell structures. For αIN = 9.5◦ the local convection speed is approximately 50% of the impeller
speed. Now, the slope of the characteristic is different for αIN = 5.5◦, which is approximately 30% of the
impeller speed. From Figure 7b and flow angle case αIN = 9.5◦ the tonality 0.04 fBPF is approximately
one order larger than the fBPF tonality. Similarly, for flow angle case αIN = 5.5◦, the tonality at
0.07 fBPF is the most relevant. Therefore, only one set of inclined lines are appearing in each two-point
cross-correlations (Figure 9).

Another interesting observation in Figure 8 is that the radial and tangential velocity fluctuation
distributions elucidate streaky elongated flow features, which propagate with the rotating stall mode.
The length scale of the streaks is in the order of the diffuser channel width. Close to the inlet these
features are located in the viscous sublayer rather in the core flow, which correlate with the amplified
Reynolds stress levels close to the wall as shown in Figure 5. They can be identified as features carrying
turbulent energy, which is an important characteristic of wall-bounded turbulence. Further out in the
radial direction these stream-wise streaks grow with increased interaction and mixing with the core
flow, see Figure 10. This partially motivates why the Reynolds stress distribution in the tangential
direction becomes fuller in the mid of the diffuser channel.

m = 0.3 m = 0.4

−1 0 1

u′n/Utip[%]

αIN = 9.5o

0.04fBPF

αIN = 5.5o

0.07fBPF

Figure 10. Fourier surface spectra decomposition of the wall normal velocity fluctuation colored on
the side view plane, between meridional stations m = 0.3 and m = 0.4. Constrained streamlines are
overlayed for the corresponding to the flow modes αIN = 9.5◦ and αIN = 5.5◦, respectively.

Qualitatively, there is a resemblance with the stream-wise streaks found in the turbulent boundary
layer in curved channel flow. However, in this case there is the added complication of an interaction
with a rotating stall mode feature and an adverse pressure gradient. It is known that secondary flow
instability can appear in a turbulent boundary layer over a curved channel wall. An important factor
is when the boundary layer thickness is comparable to the radius of curvature. In such scenario,
a centrifugal action creates a pressure variation across the boundary layer. This is said to lead to
formation of longitudinal vortices [23]. In Figure 10, for the selected meridional section, for the
larger flow angle case αIN = 9.5◦, two major rotating secondary flow structures are seen with counter
clockwise rotation. These are located closer to the shroud wall. The other major vortex in between have
a clockwise rotation and is located closer to the hub wall. Consequently, just ahead of the clockwise
rotating vortex u′n is positive and just behind it u′n is negative. A similar sequence of updraft and
downdraft of the wall normal velocity component between the hub and shroud walls can also be seen
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for the small flow angle case αIN = = 5.5◦. The onset of the instability can be estimated with the Görtler
number, which is the ratio of centrifugal to viscous forces in the boundary layer. It is defined as:

G =
Uθ

ν

(
θ

R

)1/2
(3)

where U-bulk flow velocity, θ-momentum thickness, ν-kinematic viscosity, and R-curvature radius of
the wall. For the considered diffuser geometry this number exceeds 0.3, which is the critical limit for
occurrence of the Görtler instability. This is one possible explanation for the coherent streaky features
found superimposed on the rotating stall mode (see Figure 8).

4. Conclusions

The computation of the mean velocity components in a narrow vaneless diffuser at low flow
angles suggests a possible connection between the tendency of boundary layer separation in an adverse
pressure gradient and the tendency of flow circulation and propagation into a rotating stall consisting of
counter-rotating flow structures. This is in agreement with published literature on the subject, e.g., [1,5].
For the diffuser geometry considered in this study a tendency of an inflection point was detected in the
time-averaged meridional velocity profile close to the hub wall at the top of the turnaround location.
This correlates with a sudden reduction in the near-wall stress level in the near-wall region, which is
indicative of approaching boundary layer separation.

An emerging feature of the rotating stall instability is the formation of counter-rotating flow
structures. Such features of the flow causes unsteady effects on the turbulence structures residing
in the boundary layer. One important perturbation mechanism is linked with the pressure gradient
developed and the impact of the streamwise curvature. This conclusion is associated with the peak
Reynolds stress level moving closer to the core flow and the response in the near-wall hub region,
where flow blockage occurs. Another interesting feature is the characteristic turbulent streaks found in
the turbulent boundary layer, which are being convected with the rotating stall instability. Those are
turbulent energy carrying features. They were found to form longitudinal vortices with length scale in
the order of the diffuser channel width. These features share resemblance with the secondary flow
instability in turbulent boundary layers subjected to curvature effect.

A strong shear-layer is located close to the inlet, which is due to the considered shape of the
imposed boundary condition. This correlates with high Reynolds stress levels and is another possible
mechanism for the onset of the rotating instability which is seen to grow further downstream in the
diffuser. The point-to-point cross-correlation was computed in order to determine the phase differences
between the dominant flow modes, i.e., the rotating instability mode and the blade passing frequency
mode. This is understood to be a convolution over a finite period with similar notion to a Fourier
transform with assumption of periodicity. Consequently, all notions of causality are lost and one
can no longer refer to driver and response signals, but only signals which are correlated. Therefore,
it is challenging to say which signal drives which. However, the numerical result shows a strong
coherence between the shear-layer instability close to the inlet and the developing instability prior to
the turnaround location.

Acknowledgments: This work was conducted at the Competence Center for Gas Exchange (CCGEx). The Swedish
National Infrastructure for Computing (SNIC) via HPC2N and PDC, the Parallel Computing Center at KTH,
are acknowledged for providing the computing resources.

Author Contributions: E.S. performed all pre-, solve, post-processing. The type of post-processing was agreed
and reviewed with M.M. and V.M.. M.G. and E.B. originally conceived the simplified numerical test set-up. This
is the result of intense numerical testing that was discussed directly with E.S.. M.G. and E.B. also decided the
boundary conditions and directed the team to investigate flow properties already detected in General Electric
proprietary industrial experiments. M.M. and V.M. have a long and consolidated experience in scale-resolved
simulations. They both supervised the runs and the post-processing, and worked with E.S. in the writing of the
paper to make sure it had the necessary scientific rigor and industrial practical relevance.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Turbomach. Propuls. Power 2017, 2, 19 13 of 14

Nomenclature

Cp pressure coefficient 2
γM2

re f
( P

Pre f
− 1)

Pre f reference pressure at the inlet (Pa)
Mre f reference Mach number at the inlet (-)
r, θ, z cylindrical coordinates defined in Figure 1
m, n meridional and wall normal coordinates defined in Figure 1
Ur, Uθ , Um mean radial, tangential and meridional velocities (m/s)
Utip blade tip velocity (m/s)
u′r, u′θ , u′m fluctuating velocities in radial, tangential and meridional directions (m/s)
f IMP, fBPF impeller angular velocity and blade passing frequency (Hz)
N number of rotating flow cells or number of grid points
b diffuser channel width at the inlet radius R2 (m)
R2 diffuser inlet radius (m)
χ blade-to-blade stagger angle (radian)
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