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Abstract: Objective: This study aimed to improve dengue fever predictions in Singapore using
a machine learning model that incorporates meteorological data, addressing the current method-
ological limitations by examining the intricate relationships between weather changes and dengue
transmission. Method: Using weekly dengue case and meteorological data from 2012 to 2022, the
data was preprocessed and analyzed using various machine learning algorithms, including General
Linear Model (GLM), Support Vector Machine (SVM), Gradient Boosting Machine (GBM), Decision
Tree (DT), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Performance
metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2)
were employed. Results: From 2012 to 2022, there was a total of 164,333 cases of dengue fever.
Singapore witnessed a fluctuating number of dengue cases, peaking notably in 2020 and revealing a
strong seasonality between March and July. An analysis of meteorological data points highlighted
connections between certain climate variables and dengue fever outbreaks. The correlation analyses
suggested significant associations between dengue cases and specific weather factors such as solar
radiation, solar energy, and UV index. For disease predictions, the XGBoost model showed the best
performance with an MAE = 89.12, RMSE = 156.07, and R2 = 0.83, identifying time as the primary
factor, while 19 key predictors showed non-linear associations with dengue transmission. This
underscores the significant role of environmental conditions, including cloud cover and rainfall,
in dengue propagation. Conclusion: In the last decade, meteorological factors have significantly
influenced dengue transmission in Singapore. This research, using the XGBoost model, highlights
the key predictors like time and cloud cover in understanding dengue’s complex dynamics. By
employing advanced algorithms, our study offers insights into dengue predictive models and the
importance of careful model selection. These results can inform public health strategies, aiming to
improve dengue control in Singapore and comparable regions.

Keywords: prediction; dengue fever; machine learning; meteorological data

1. Introduction

Dengue fever (DF) is an acute infectious disease caused by dengue viruses, and is
mainly transmitted by Aedes mosquitoes [1]. The virus has five distinct types [2], and
infection with one type does not provide long-term immunity against the other types [3].
There is no specific treatment for dengue fever, and while a vaccine is available, its use is
not universally recommended due to varying efficacy rates among different populations
and the potential for severe outcomes if given to individuals who have never been infected
with dengue [4]. According to WHO reports, the disease is currently prevalent in more
than 100 countries in Africa, the Americas, the Eastern Mediterranean, Southeast Asia, and
the Western Pacific, with the Americas, Southeast Asia, and the Western Pacific being the
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most severely affected [1]. It is predicted that by 2085, DF will have a wider impact, posing
a threat for 50% to 60% of the global human population [5], and will become a significant
public health concern [6].

In the tropical city-state of Singapore, despite ongoing rigorous vector control measures
and public health interventions, DF continues to be a persistent issue. The existing measures
to combat dengue, including vector control, public education, and vaccination (CYD-TDV,
Dengvaxia), have shown limitations [7], highlighting the need for innovative and effective
strategies. Therefore, there is a pressing need to develop more precise and robust prediction
models for DF. Presently, Singapore ought to embark upon research endeavors aimed at
constructing more precise and robust prediction models that can anticipate dengue risk
and potential outbreak areas.

While the relationship between meteorological factors and the transmission dynamics
of DF is well recognized [8], the existing models often utilize traditional statistical methods
that may not fully capture the complex, non-linear relationships between these variables.
Traditional epidemiological models often rely on assumptions that do not sufficiently account
for the intricacies of dengue transmission, thus limiting the accuracy of their predictions.
Traditional epidemiology tends to concentrate on identifying individual risk factors, which can
be challenging for elucidating the complete etiological network and may present significant
limitations when studying complex diseases. This approach imposes constraints on the types
of data that can be effectively utilized for etiological inference [9]. In contrast, machine learning
offers a promising avenue for addressing nonlinearity and interactions among variables [10],
while also adeptly handling multi-dimensional datasets. Furthermore, the current prediction
models for DF primarily rely on historical dengue case data. These models might not fully
capture the impact of fluctuations in meteorological conditions on dengue transmission.
Consequently, they may fail to predict unexpected outbreaks driven by changes in weather
patterns. Many existing models do not sufficiently account for the time-lagged effects of
weather variables on dengue transmission. The lifecycle of the Aedes aegypti mosquito and the
incubation period of the dengue virus mean that changes in weather can have effects that are
not immediately apparent [11]. Models that do not take these lags into account might miss
crucial aspects of dengue transmission dynamics.

Given these limitations, there is a clear need for a more comprehensive, data-driven
approach to predict the risk of DF in Singapore. Machine learning models have the
potential to uncover complex, non-linear relationships and patterns within data that are not
readily apparent using traditional statistical methods [12,13]. The proposed study aims to
address these gaps by developing a precision model for risk prediction based on machine
learning algorithms using meteorological data. The integration of diverse meteorological
datasets into machine learning frameworks, coupled with algorithm selection for optimal
model performance, has the potential to enhance the accuracy and timeliness of dengue
fever (DF) predictions. This could allow for more effective and proactive public health
interventions, ultimately contributing to the mitigation of dengue fever’s public health
burden in Singapore.

2. Method

Data collection. The weekly DF case data in Singapore from 2012 to 2022 came
from the public data website (https://data.gov.sg/) (accessed on 15 January 2023). The
meteorological data of Singapore’s weekly temperature, humidity, rainfall, wind speed, sea
level pressure, solar radiation, and other factors from 2012 to 2022 were from the weather
data service website (https://www.visualcrossing.com/) (accessed on 16 January 2023).
The following describes our approach in handling the week time-series of 583 datasets,
with each dataset representing a unique combination of meteorological parameters and the
corresponding dengue incidence data.

Data processing. Each dataset was thoroughly inspected for missing, inconsistent,
and anomalous data. Any missing values were imputed using appropriate techniques
with mean imputation or multiple imputations depending on the nature and extent of
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the missing data. All datasets were standardized to ensure consistency and comparability
across different measurement scales.

Feature Engineering. Feature engineering was carried out to create meaningful vari-
ables that could potentially enhance the model’s predictive performance. This includes
creating lag variables to account for the delayed impact of meteorological conditions on
dengue transmission.

Data Splitting. The datasets were randomly split into a training set (80%) and a testing set
(20%). The training set was used to build the machine learning models, while the testing set was
reserved for final model validation to assess how well the model generalizes to unseen data.

Model Development. Various machine learning algorithms were employed, including
General Linear Model (GLM), Support Vector Machine (SVM), Gradient Boosting Machine
(GBM), Decision Tree (DT), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)
algorithms. For each algorithm, a range of model parameters was tested using a grid search
approach coupled with cross-validation on the training data to identify the most effective
model configuration.

Model Evaluation and Selection. Each model’s performance was evaluated using
the appropriate metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and R-squared (R2). The models were compared based on these metrics, and the best
performing model was selected for further validation.

Model Validation. The final step involved validating the selected model using the
testing set. This step provides an unbiased assessment of how the model is likely to perform
in real-world scenarios, as the testing set represents unseen data.

The flowchart of the machine learning method is shown in Supplementary Figure S1.
Statistics. The analysis and model development in this study were performed using the

open-source software R (version 4.0.3), renowned for its robustness in statistical computing
and graphics. Several packages were used for the different stages of data preprocessing,
analysis, and model development. The ‘tidyverse’ package facilitated data manipulation
and visualization. ‘mice’ was used for handling missing data, while ‘caret’ facilitated data
partitioning, model training, and performance assessment. The machine learning-specific
packages ‘glmnet’, ‘e1071’, ‘gbm’, ‘rpart’, ‘randomForest’, and ‘xgboost’ were employed for
implementing the General Linear Model (GLM), Support Vector Machine (SVM), Gradient
Boosting Machine (GBM), Decision Tree (DT), Random Forest (RF), and eXtreme Gradient
Boosting (XGBoost) algorithms, respectively.

Ethical Approval. Given the nature of this study, which relies exclusively on the sec-
ondary analysis of anonymized meteorological and public health data, ethical approval was
not required. The datasets used were collected and made available by public health agencies
and meteorological departments and did not contain any identifiable personal information.

3. Results
3.1. Descriptive Analysis
3.1.1. Epidemic of Dengue in Singapore

Within the temporal scope of 2012 to 2022, there was a total of 164,333 cases of dengue
fever. The incidence of DF in Singapore exhibited significant fluctuations with discernible
epidemic trends. Notably, an ascending trend was observed from 2012 to 2013, followed
by a declining trajectory from 2013 to 2018. This was succeeded by a resurgence in cases
from 2018 to 2020, culminating in a zenith of incidence in 2020, which denotes the most
substantial outbreak in recent years. A contraction was observed in 2021, succeeded by
a resurgence in DF cases in 2022. Over the duration of the previous eleven years, a total
of 164,333 instances of DF was recorded. The annual incidence of DF cases manifested
considerable variability, with the year 2017 recording the minimum number of cases at
2767. Conversely, the year 2020 marked a peak in this epidemiological trend, witnessing
the maximum case count of 35,315.

Examination of the weekly incidence data for DF reveals a distinct seasonal pattern in
its prevalence. Commencing from the 10th week of the year, an escalating trend was evident,
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aligning with the transition from March to July. The incidence apex was discernible between
May and mid-July, encompassing the 20th to 30th weeks. Subsequent to the 30th week, a gradual
decrement in case counts was observed, indicating a decline in DF prevalence (Figure 1A,B).
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Figure 1. Trends of DF infections in Singapore from 2012 to 2022. (A) Annual number of DF cases in
Singapore from 2012 to 2022. (B) Weekly number of DF cases in Singapore from 2012 to 2022.

Over the course of the study period, the case fatality rate (CFR) associated with DF
demonstrated variability. The year 2018 recorded the highest CFR at 1.52 per thousand
cases, underlining the severity of that year’s outbreak. In contrast, the year 2017 witnessed
an optimal scenario with a CFR of zero, signifying no mortality attributed to DF for that
year. From 2012 to 2022, there was a statistically significant variance in dengue CFR
(χ² = 32.62, p < 0.001) (Supplementary Table S1).

3.1.2. Temporal Sequence of Climatological Variables

Statistical computations were executed on a dataset comprising 583 distinct meteorological
observations, with key metrics such as mean, median, and standard deviation calculated for a
set of 19 climatological variables including Tempmax, Tempmin, Temp, and Feelslikemax. The
derived statistics are tabulated in Supplementary Table S2. Supplementary Figure S2 shows the
chronological trajectories of these meteorological variables.

3.1.3. Correlation Analysis among Variables

We investigate the associations among our predictor variables, employing Spearman’s
rank correlation coefficient to quantify the statistical interdependencies. Figure 2 presents
the correlation matrix delineating the relationships between the continuous predictors
within our dataset.
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An examination of the correlation coefficients among the variables presented in
Supplementary Table S3 reveals that the variables Solarradiation, Solarenergy, and Uvindex
exhibited substantial correlation coefficients (0.22, 0.22, 0.21, greater than 0.1) with DF cases.
The relatively low magnitudes of these coefficients may imply that the prevalence of DF is
potentially associated with certain delayed meteorological factors.

3.2. Machine Learning Prediction of Dengue in Singapore

Considering the delayed influence of meteorological determinants on DF transmission
and the cyclical periodicity inherent to the disease’s propagation, we integrated lagged
values ranging from 1 to 12 weeks for each of the 19 meteorological parameters, culminating
in the formulation of four distinct modes.

Mode 1. Incorporating both lag effects and temporal factors;
Mode 2. Considering only the lag effects;
Mode 3. Focusing solely on temporal factors;
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Mode 4. Neglecting both lag effects and temporal factors.

3.3. Evaluation of the Efficacy of Various Predictive Models

The predictive efficacy of six distinct models was assessed in relation to their capacity
to forecast DF cases. The specific performance metrics for each model of Modes 1–4 are
delineated in Supplementary Tables S4–S7. As shown in Table 1, based on the model
evaluation metrics, the best-performing model among the four modes was the XGBoost
model in Mode 1, with an MAE of 89.12, RMSE of 156.07, and R2 of 0.83. In the other
three modes, the highest R2 observed was only 0.50; Supplementary Figure S3 presents a
scatter plot of Mode 1 illustrating the observed versus predicted dengue cases in Singapore
utilizing the GLM, SVM, GBM, DT, RF, and XGBoost models. Upon examination of the
plots and associated metrics, it can be inferred that the XGBoost model outperformed the
remaining five models in Modes 1, 3, and 4, while in Mode 2, the SVM model performed
the best. In Mode 1, the predictions produced by the XGBoost model closely aligned with
the observed cases, as depicted in Supplementary Figure S3. The figures corresponding to
Modes 2, 3, and 4 can be found in Supplementary Figures S4, S5 and S6, respectively.

Table 1. Comparison of optimal model performance across different modes.

Metrics
Mode 1 Mode 2 Mode 3 Mode 4

XGBoost SVM XGBoost XGBoost

MAE 89.12 160.73 160.65 175.49
RMSE 156.07 268.83 232.58 247.86

R2 0.83 0.5 0.49 0.42

Mode 1: incorporating both lag effects and temporal factors; Mode 2: considering only the lag effects;
Mode 3: focusing solely on temporal factors; Mode 4: neglecting both lag effects and temporal factors. Mean
Absolute Error = MAE, Root Mean Square Error = RMSE, and the coefficient of determination R-squared = R2.

3.4. Model Interpretation

We conducted an in-depth analysis of the most optimal model, XGBoost, in Mode 1,
Table 2. The relative significance of each variable was normalized, with a maximum value
of 1, where elevated scores denote a greater variable influence. Within this model, we iden-
tified the top 10 salient variables, with Week (0.54), Cloudcoverlag1 (0.10), Cloudcoverlag5
(0.07), Preciplag5 (0.03), Cloudcover (0.02), Dewlag7 (0.02), Tempmax (0.02), Cloudcover-
lag7 (0.01), Cloudcoverlag3 (0.01), and Dewlag3 (0.01) being the foremost contributors.

Table 2. Importance scores of top 10 variables from the XGBoost model in Mode 1.

Sequence Feature Importance Cover Frequency

1 Week 0.54 0.08 0.04
2 Cloudcoverlag1 0.10 0.01 0.01
3 Cloudcoverlag5 0.07 0.01 0.01
4 Preciplag5 0.03 0.01 0.01
5 Cloudcover 0.02 0.00 0.01
6 Dewlag7 0.02 0.00 0.00
7 Tempmax 0.02 0.01 0.08
8 Cloudcoverlag7 0.01 0.00 0.00
9 Cloudcoverlag3 0.01 0.00 0.01
10 Dewlag3 0.01 0.01 0.01

Interdependencies between predictors and dengue incidences. Based on the variable
significance scores extracted from the XGBoost algorithm, the top 18 predictors exhibited
associations with dengue incidences (refer to Supplementary Figure S7). However, the
magnitude and nature of these associations varied, with each displaying a non-linear
correlation (Figure 3).
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The epidemiology of DF exhibits cyclical oscillations. A surge in cases was noted from
2012 to 2013, succeeded by a descending trend from 2013 to 2018. Thereafter, an uptick
in incidences was observed from 2018 to 2020, reaching a peak in 2020, signifying the
most pronounced outbreak in contemporary years. A decrease was documented in 2021,
subsequently followed by a re-escalation of DF cases in 2022. When the cloud cover lag
values at the first and fifth weeks, namely Cloudcoverlag1 and Cloudcoverlag5, exceeded
60, a pronounced reduction in DF cases was observed, which was maintained at a subdued
level. This suggests a potential association between DF incidence and the cloud cover
rate and its delayed effects. When the fifth-week lag value for precipitation, Preciplag5,
exceeded 10, there was a sharp incline in the number of DF cases, which then persisted at
elevated levels, implying that the DF incidence might be correlated with the rain volume
with a delay of five weeks. The DF incidences exhibited a stepwise elevation in correlation
with Dewlag7, initiating an increase at 23.2 and peaking at 24.7, indicating that DF incidence
might be associated with the dew point temperature with a lag of seven weeks.
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Figure 3. Dependence plots of the top six variables based on XGBoost model in Mode 1.
(A) Dependence plot of the week and cases based on XGBoost model in Mode 1. (B) Dependence
plot of the Cloudcoverlag1 and cases based on XGBoost model in Mode 1. (C) Dependence plot
of the Cloudcoverlag5 and cases based on XGBoost model in Mode 1. (D) Dependence plot of the
Preciplag5 and cases based on XGBoost model in Mode 1. (E) Dependence plot of the Cloudcover
and cases based on XGBoost model in Mode 1. (F) Dependence plot of the Dewlag7 and cases based
on XGBoost model in Mode 1.
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4. Discussion

From 2012 to 2022, Singapore’s DF incidence showed varied epidemic trends, with
notable peaks in 2013 and 2020, the latter being the most significant outbreak with 35,315 re-
ported cases [14]. In 2013, Singapore used the gravitrap for Aedes sentinel surveillance [15],
and in 2016, the country carried out a phased testing approach of releasing Wolbachia-
infected male Aedes mosquitoes to control dengue in Tampines, Yishun, and Braddell
Heights [16], and thus a declining trajectory from 2013 to 2018 was observed. The largest
documented dengue outbreak in 2020, consisting of 31,315 reported cases, occurred si-
multaneously with the implementation of COVID-19 control measures [17]. Singapore’s
consistently warm and humid climate creates ideal circumstances for the proliferation
and persistence of Aedes aegypti mosquitoes. There exists a robust seasonal pattern in the
temporal distribution of dengue infections, characterized by a peak occurring typically
in the vicinity of the mid-year period. The weekly incidence also showcased a palpable
seasonality, amplifying during the transition from March to July, reminiscent of earlier
findings linking meteorological variations to dengue transmission [8]. Detailed visual
representations of these trends are shown in Supplementary Table S1 and Figure 1.

In the examination of the dataset comprising 583 distinct meteorological recordings,
several salient statistical features related to the 19 climatological variables emerged. Com-
putation of central tendencies, particularly the mean and median values, paired with
measures of dispersion such as standard deviation provide an in-depth overview of the
data distribution and variability [18]. Among the studied variables, Tempmax, Tempmin,
Temp, and Feelslikemax were of particular significance, with their respective statistics
meticulously illustrated in Supplementary Table S2. The visualization in Supplementary
Figure S2, which illustrates the chronological progression of the variables, serves as a vital
tool for discerning temporal patterns, potential cyclical behaviors, or anomalies [19]. In
light of the data presented, the correlation coefficients between DF cases and the vari-
ables Visibility, Solarradiation, Solarenergy, and Uvindex deserve particular attention. The
observed Spearman’s rank correlation coefficients, although greater than 0.1, were still
relatively modest in magnitude (Figure 2). Such coefficients suggest a potential link, albeit a
weak one, between these meteorological parameters and the DF incidence. The connection
between meteorological factors and vector-borne diseases, particularly dengue fever, has
been a topic of interest in prior studies. For instance, Takuya Iwamura et al. [20] indicated
that weather conditions could influence the life cycle of Aedes mosquitos, the primary vec-
tor for DF. In particular, elevated solar radiation, temperature, and UV index could either
speed up the mosquito’s development or increase its breeding rates [21]. The delayed effect
alluded to in our findings might be due to a time lag between the change in meteorological
conditions and observable effects on the mosquito populations and, subsequently, dengue
transmission [22]. Hence, while our correlation coefficients may seem low at first glance,
they are consistent with the complex interplay of environmental and biological factors
driving the dengue incidence.

In the realm of predictive modeling for DF in Singapore, the integration of meteorological
determinants and their lag effects has proven to be pivotal. The delayed repercussions of
these meteorological factors and the inherent cyclical trends of dengue propagation informed
our decision to embed lagged values spanning from 1 to 12 weeks for the 19 meteorological
variables, leading to the development of four diverse modeling approaches. The strategies
ranged from a comprehensive incorporation of both lag and temporal factors to a model that
bypassed both these elements. Mode 1, which melds both lag effects and temporal aspects,
offers a comprehensive perspective on dengue forecasting. The scatter plot representation
in Supplementary Figure S3 of observed versus predicted cases provides a visual overview
of the model’s accuracy using several different machine learning algorithms, namely GLM,
SVM, GBM, DT, RF, and XGBoost. Among these algorithms, the XGBoost model emerged as
the most proficient, particularly in Modes 1, 3, and 4, as substantiated by its close alignment
with observed cases. Intriguingly, in Mode 2, which solely focused on lag effects, SVM was
the best performer, underscoring the dynamic nature of dengue prediction and the nuanced
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influence of input parameters. Supplementary Figures S4–S6, corresponding to Modes 2, 3,
and 4, further demonstrate the models’ performances across different configurations. The
robust performance of the XGBoost model in three out of four modes aligns with its known
efficiency in handling complex datasets and non-linear relationships, a feature often seen in
epidemiological data [23]. Conversely, the superior performance of SVM in Mode 2 might be
attributed to its capacity to discern patterns in high-dimensional spaces, making it particularly
adept at capturing the nuances of lag effects.

Our detailed analysis of predictive modeling effectiveness clearly shows that the
choice of model significantly influences the accuracy of DF predictions. We used rigorous
metrics like MAE, RMSE, and R-squared to examine the six different models. Interestingly,
while many performance indicators showed similar results across models, the R-squared
values exhibited distinct variations. These differences highlight the various capabilities of
these models in explaining the variations in recorded dengue cases based on the provided
predictors. Notably, the XGBoost model in Mode 4 stood out with an impressive R-squared
value of 0.83, surpassing the other models. It demonstrated both minimal prediction errors
and a significant ability to account for the variance in observed cases [24].

In the endeavor to elucidate the intricacies of our predictive models, we zeroed in on
the XGBoost model under Mode 1 for a comprehensive dissection, given its commendable
performance in the prior evaluations. By normalizing the relative significance of each
meteorological determinant to a ceiling of 1, we obtained a quantitative measure of their
influence, where higher scores are emblematic of augmented impact [25]. Our analysis
identified the top 10 variables that predominantly affected the model’s predictions. Re-
markably, the variable ‘Week’ emerged as a dominant factor with a score of 0.54, followed
by Cloudcoverlag1, Cloudcoverlag5, and Preciplag5. Probing into the intricate web of
associations between the predictors and dengue occurrence revealed compelling insights.
Drawing from the significance scores derived from the XGBoost algorithm, 19 cardinal
predictors manifested discernible affiliations with the dengue incidence, as illustrated in
Supplementary Figure S7. Nonetheless, these affiliations were far from monolithic; rather,
they exhibited non-linear correlations, as portrayed in Figure 3. The temporal dynamics
of DF further amplify its complexity. Noteworthy is the cyclical pattern observed in its
epidemiology, with discernible peaks and troughs over the past decade [26].

The nexus between cloud cover lag values for specific weeks and the subsequent
decline in dengue cases illustrates the complex, multifaceted relationship between atmo-
spheric conditions and disease propagation. Indeed, cloud cover can modulate the local
microclimate, potentially affecting the lifecycle and breeding behavior of the Aedes aegypti
mosquito, the primary vector for dengue transmission [27]. The surge in dengue cases
observed with a precipitation lag for the fifth week exceeding 10 is noteworthy. Rainfall,
especially when it accumulates in small, stagnant pools, provides ideal breeding grounds
for the Aedes mosquito [28]. This relationship underscores the importance of considering
not just the immediate effects of rainfall but also its lagged impact on dengue transmission,
particularly in urban settings where water accumulation is common. Moreover, the rise in
dengue cases corresponding with Dewlag7 is intriguing. Dew point temperature, a measure
of atmospheric moisture, can influence mosquito behavior and survival. Elevated dew
point temperatures might facilitate longer mosquito lifespans and enhance their ability to
transmit the dengue virus [29]. The significance of meteorological predictors in determining
DF transmission patterns is increasingly apparent, a notion corroborated by numerous
epidemiological studies [30].

The application of machine learning in vector-borne disease epidemic risk prediction
holds immense promise. Machine learning algorithms have the capacity to leverage vast
datasets comprising environmental, epidemiological, and entomological variables, allow-
ing for the development of robust predictive models [6]. These models can capture complex
non-linear relationships and interactions among various factors that influence vector-borne
disease transmission dynamics. Recent studies have exemplified the effectiveness of ma-
chine learning in studying vector-borne diseases like malaria [31], Zika virus infections [32],
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and Chagas disease [33]. Nonetheless, challenges remain in data quality, interpretability,
and the need for continuous model validation. As machine learning methodologies con-
tinue to advance and data availability improves, they are poised to play a pivotal role in
informing public health strategies, resource allocation, and outbreak preparedness in the
context of vector-borne disease epidemics.

5. Conclusions

The last decade has showcased a tumultuous landscape of DF in Singapore, under-
pinning the multifarious factors at play in the transmission dynamics of this vector-borne
ailment. Notably, meteorological determinants have emerged as pivotal contributors, high-
lighting the quintessential role of environmental parameters such as cloud cover, rainfall,
and dew point temperatures in shaping the epidemiological trajectory of dengue. This
research underscores the profound interplay between meteorological predictors and their
lagged effects in determining the incidence rates, with distinct patterns elucidated through
the adept XGBoost model. Among the predictors, temporal aspects, such as specific ‘Week’
and meteorological parameters like Cloudcoverlag1, Cloudcoverlag5, and Preciplag5, show-
cased significant influences. The non-linear associations between these predictors and the
dengue incidence, vividly portrayed in our analyses, reiterate the complexity inherent in
dengue’s transmission dynamics. Drawing from extensive data analytics and leveraging
state-of-the-art machine learning algorithms, our study offers a comprehensive insight
into potential predictive models for dengue fever. Furthermore, our findings accentuate
the indispensable role of astute model selection, meticulous evaluation, and the synthesis
of diverse determinants in crafting robust predictions. This confluence of data-driven
insights and epidemiological understanding provides a foundation upon which targeted
public health interventions can be structured, optimizing strategies for dengue prevention
and control in Singapore and potentially other similar settings. Our research, echoing
findings from seminal works in the realm of dengue research, reinforces the imperative
to continually refine our understanding and leverage evolving data and technologies to
fortify our defenses against such pervasive public health challenges.
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diction of dengue cases in training data and test data of different models in Mode 1; Figure S4:
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in Mode 2; (B). Timeline of observation and prediction of dengue cases in training data and test
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of dengue cases in training data and test data of different models in Mode 3; Figure S6: (A). Obser-
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