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Abstract: The blood-sucking bug Triatoma infestans is the main Chagas disease vector in the Southern
Cone of Latin America. Populations resistant to pyrethroid insecticides have been detected in
the early 2000s and then expanded to the endemic area of northern Salta province, Argentina. In
this context, the entomopathogenic fungus Beauveria bassiana has been shown to be pathogenic to
pyrethroid-resistant T. infestans. In this study, both the bioinsecticidal activity and the residual effect
of an alginate-based microencapsulation of a native strain of B. bassiana (Bb-C001) were tested under
semi-field conditions against pyrethroid-resistant T. infestans nymphs. Fungal microencapsulated
formulation caused higher nymph mortality than the unmicroencapsulated fungus and contributed
to maintaining the conidial viability throughout the period evaluated under the tested conditions.
These results suggest that alginate microencapsulation is an effective, simple, low-cost method that
could be incorporated into the formulation of a bioinsecticide as a strategy to reduce the vector
transmission of Chagas disease.

Keywords: Chagas disease; resistant triatomines; entomopathogenic fungi; microencapsulated;
bioinsecticide

1. Introduction

The blood-sucking insect Triatoma infestans (Hemiptera: Reduviidae), the main Chagas
disease vector in the Southern Cone of Latin America, has been the target of continuous
control programs to reduce the risk of disease transmission. The control strategy used has
been the indoor application of pyrethroid insecticides [1]. However, it is recognized that this
strategy has limited efficacy, mainly in the Gran Chaco area shared by Argentina, Bolivia
and Paraguay [2]. Moreover, in the last years, several foci of pyrethroid-resistant T. infestans
have been documented in wide regions of Bolivia and Argentina [3–5]. These difficulties
highlight the need to search for new tools to control this vector. The entomopathogenic
fungus Beauveria bassiana (Ascomycota: Hypocreales) has proven to be useful in field trials,
showing successful results after its application in houses infested with pyrethroid-resistant
T. infestans [6,7], and is therefore a promising alternative for the vector control of Chagas
disease in areas with a high degree of resistance to pyrethroids.

The success of a biopesticide of microbial origin lies in a suitable formulation, which
depends on the characteristics of the microorganism and the target insect, its relationship
with the formulation components, storage conditions and the surface or place of applica-
tion [8]. In recent years, most research has been focused mainly on the selection of more
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virulent strains, mass production and field experimentation, leaving aside the search and
development of more stable and effective formulations during storage and after application,
respectively [9].

In this regard, microencapsulation with biopolymers is among the most innovative
tools to improve biological formulations. Microbial microencapsulation is a process by
which microorganisms are coated or entrapped within a matrix to protect them from
adverse environmental conditions [10–12]. Alginate (an anionic polysaccharide extracted
from some algae and bacteria) is one of the most natural polymers used in the encapsulation
of microorganisms, since it can form gel matrices (in the presence of calcium) around the
microorganism [13]. In the case of entomopathogenic fungi, microencapsulation allows
them to withstand factors such as solar radiation, temperature and relative humidity that
degrade their viability, reducing the dose and number of applications [14–17].

In this study, the bioinsecticide and residual effect of a microencapsulated formu-
lation based on alginate and conidia of B. bassiana were tested on pyrethroid-resistant
T. infestans under semi-field conditions. This contribution might help substantially improve
biological formulations, prolonging their effect and optimizing their effectiveness under
field conditions.

2. Materials and Methods
2.1. Fungus Source and Culture

Beauveria bassiana strain Bb-C001 was used in this study. The fungus was isolated from
a T. infestans cadaver in the Gran Chaco region, Salta province, Argentina (22◦16′52.78′′ S;
62◦42′5.60′′ W) [18], and is kept in the Mycological Culture Collection of the School of
Natural Sciences, National University of Salta, Argentina.

Aerial conidia were produced by fermentation in solid substrate, using white rice
as substrate. Polypropylene bags containing 200 g of rice with 100 mL of distilled water
(2:1) were prepared and sterilized in an autoclave at 121 ◦C at 1 atm of overpressure for
20 min. The bags were inoculated with 20 mL of a conidia suspension with a concentration
of 1 × 108 conidia mL−1, incubated at 27 ◦C for a period of 10 to 15 days and dried in an
oven at 25 ◦C for 3 days to reduce humidity to below 5%. Conidia were harvested using
a 50-mesh analytical sieve (pore diameter = 297 µm). The concentration per g of material
and the initial viability were determined by using a hemocytometer. For viability assay,
5 µL of a conidial suspension was punctually seeded into 15 plates with PDA medium and
incubated at 27 ◦C. Twenty-four hours later, two different areas per plate were observed
under a microscope (40×). Germination percentage was calculated as the number of
germinated conidia/total number of conidia × 100 [19,20]. Finally, the conidia obtained
were packed in 50 mL caramel-colored glass bottles and kept at −4 ◦C until use. The whole
procedure (from sowing to obtaining conidia) was performed in a laminar flow cabinet to
avoid contamination.

2.2. Fungal Microencapsulation

Conidial encapsulation was performed by ionic gelation, using sodium alginate as en-
capsulating matrix and 0.2 M calcium chloride (CaCl2), following the procedure described
by Carrillo and Bashan with some modifications [21]. One gram of the active ingredient
(1 × 1012 conidia/g) was mixed with 60 mL of 1% sodium alginate and then stirred up for
30 min. The mixture was sprayed in CaCl2 (300 mL) for the formation of microcapsules and
allowed to consolidate under constant stirring for 1 h. The microcapsules were filtered and
washed three times with sterile distilled water to remove CaCl2 residues. They were placed
on sterile filter paper in a Petri dish and dried at 35 ◦C for 72 h. Subsequently, they were
observed under scanning electron microscopy (SEM) to observe their structure (Figure 1) and
stored in a hermetically sealed container with silica gel until use.
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Figure 1. Scanning electron micrograph (SEM) of an alginate microcapsule with B. bassiana conidia,
scale 50 µm.

2.3. Insects

Fifth instar male nymphs of pyrethroid-resistant T. infestans were used. This insect
colony comes from insects captured in Salvador Mazza locality, Salta province, Argentina
(22◦3′0′′ S; 63◦42′0′′ W), and it is maintained in the Insectarium of the School of Natural
Sciences, National University of Salta, at 30 ◦C, 50–60% relative humidity and a photoperiod
of 12:12 h (light:dark). The insects were sexed following the procedure described by
Brewer et al. [22] and fed with rat blood anesthetized with ketamine. All animal care
and experimental laboratory protocols were carried out following the Regulations of the
Institutional Committee for the Care and Use of Laboratory Animals and Field Studies
(CICUALEC) of the Universidad Nacional de Salta.

2.4. Experimental Formulations

Two oil-based fungal formulations of 1 × 1012 conidia/g (initial viability of 99%) were
prepared: one based on bare conidia (BbC) and the other based on microencapsulated
conidia (MicBbC). An oily control without fungus was also prepared. Sunflower oil (Peng
and Xia, 2011) was used as an oily vehicle [23], and the polymer Poloxamer 407 (P407)
was incorporated into the mixture as a structured vehicle to obtain stable and easily
redispersible formulations [24], and finally, diatomaceous earth (DE) was added as a
thickener and adjuvant [25]. The proportions of each of the components in formulation are
described in Table 1.

Table 1. Proportion of components in formulation.

Components BbC 1 MicBbC 2 Control

Fungus (conidia/g) 1 × 1012 - -
Microencapsulated (conidia/g) - 1 × 1012 -

Sunflower oil (mL) 30 30 30
P407 (g) 0.59 0.59 0.59
DE (g) 10 10 10

1 Fungal unmicroencapsulated formulation; 2 Fungal microencapsulated formulation.

2.5. Semi-Field Assays

For the semi-field assays, adobe (sun-dried mudbricks) blocks of 8 × 38 × 19 cm
(height, length and width, respectively) were used in order to simulate the interior walls of
a house built with this material, typical of some native communities living in northern Salta
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province, Argentina. On the internal face of each adobe block, a surface area of 190 cm2 was
waterproofed with liquid roofing membrane (SIKA®, Buenos Aires, Argentina) and allowed
to dry for 24 h. Treatments were randomly assigned in triplicate. The formulations were
applied with a brush on the membrane surface, constituting the “entomopathogenic band”
(Figure 2B). The treated blocks were placed inside a gazebo for protection from rain, wind
and UV radiation, which was located in a sector within the Laboratorio de Investigación y
Producción de Biocontroladores (LIPBioc-MSPS, Ministerio de Salud Pública de la provincia
de Salta, Argentina) facilities (Figure 2A). The tests were carried out at different times (day
0, 15, 30, 45 and 60) post-application of the entomopathogenic band.
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Figure 2. (A) Bioassay prototype for triatomine exposure to bioinsecticidal formulations. (B) Tri-
atomines were exposed for 1 min on the entomopathogenic band for follow-up post-exposure.

To evaluate the entomopathogenic effect of the formulations, three replicates of 10 in-
sects per treatment were used. The insects were placed on the entomopathogenic band
and left in contact for 1 min; this procedure was performed with one insect at a time
(Figure 2B). They were then transferred to plastic flasks and incubated at 27 ◦C, 50–60%
RH and a photoperiod of 12:12 h, without feeding. Mortality was registered daily, and the
mean mortality percentage and the time for 50% mortality (LT50) of insects treated with the
formulations were calculated. Dead insects were put in a humid chamber to confirm that
death was caused by fungal infection.

For viability and residual effect, samples of the different formulations were taken
on the membrane band at the different times tested. Samples of the microencapsulated
formulation (MicBbC) were placed in 10 mL of 0.2 M phosphate buffer (pH 7) with constant
stirring for complete dissolution of the microcapsules, and the samples of the unmicroen-
capsulated fungus were placed in 10 mL of a 0.1% Tween 80 solution. Five aliquots (10 µL
each) were taken from the suspension of each formulation and seeded in Petri dishes with
selective medium (PDA mixed with copper oxychloride, cyproconazole, chloramphenicol
and lactic acid to prevent the proliferation of other microorganisms) for triplicate and
incubated at 27 ◦C for 24 h. Germination percentage was determined as described in
Section 2.1.

2.6. Statistical Analyses

Statistical significance was used for mortality, which was assessed using ANOVA
followed by Tukey’s multiple comparison test. LT50 was determined by constructing
Kaplan and Meier survival curves. To find out if viability was affected by time, the data
were arranged in a linear regression model. Graph Pad Prism v.8.0.1 GraphPad Software,
San Diego, CA, USA) was used, with a significance level of 0.05 for statistical analyses.
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3. Results
3.1. Entomopathogenic Effect of Both Bare and Microencapsulated Conidia on T. infestans Nymphs

Statistically significant differences in mortality were observed between the evaluated
formulations and the different post-application times (p < 0.0001). The MicBbC formulation
caused, on average, higher nymph mortality than BbC at the end of the bioassays (Tukey,
p < 0.05). During the first post-application month, high mortality was recorded for both
BbC and MicBbC. From the second month onward, the mortality caused by BbC was
significantly lower compared to MicBbC, which registered mortalities of about 50% (Tukey,
p < 0.05) (Figure 3).
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Figure 3. Mean mortality (%) of the T. infestans nymphs treated with the B. bassiana formulations
(BbC and MicBbC) at different post-application time periods. Different lowercase letters indicate
significant differences between the different treatments at each time period and of each treatment
over time (Tukey, p < 0.05). No mortality was observed in controls.

In relation to the LT50, statistically significant differences were observed according
to the Kaplan and Meier tests between the formulations and the post-application times
tested (p < 0.05). For the BbC formulation in the first month, the LT50 ranged between 5
and 10.5 days and were shorter than those observed for MicBbC which varied between 8.5
and 12.5 days. However, in the second month, the LT50 could only be calculated for the
MicBbC formulation, and it varied between 26 and 28 days (Table 2).

Table 2. Median lethal time (LT50) of the MicBbC and BbC formulations at different post-application
time periods.

Time (Days) 1 BbC MicBbC

LT50 (Days) LT50 (Days)

0 2 5 8
15 10 11.5
30 10.5 12.5
45 ND 3 26
60 ND 3 28

1 Time post-application of the formulations on the membrane; 2 24 h after applying the membrane on the adobe
blocks; 3 ND: not determined because it did not reach 50% mortality.
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3.2. Viability and Residual Effect of Formulations

Conidia viability (calculated as germination percentage) showed significant differences
between the formulations for the different post-application times evaluated (p < 0.0001).
The differences were observed from day 15 post-application, and the highest viabilities
were recorded for the formulated MicBbC, with values that ranged between 90 and 99%,
while BbC showed a range between 61 and 90% for the different times tested. Regression
analysis showed that there is a significant loss of viability over time that is different for each
treatment, MicBbC (b = −0.15% viability day-1; p < 0.0001) and BbC (b = −0.63% viability
day-1; p < 0.0001) (Figure 4).
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4. Discussion

The effectivity of the chemical control of the Chagas disease vector T. infestans based on
indoor insecticide spraying as the sole tool is threatened by growing incidents of pyrethroid-
resistant population detection [3–5]. A successful alternative for T. infestans indoor control
is the use of the entomopathogenic fungus B. bassiana, which has shown good indoor
biopesticide performance in field assays and has minimal risk to the environment and other
organisms [6,7]. However, the adverse effects potentially caused by environmental condi-
tions to which the fungus may be subjected as a living organism may be an inconvenience
for its use in the long term. In this study, we formulated B. bassiana conidia in an alginate-
based microencapsulation and tested its biopesticide activity against T. infestans nymphs
on adobe blocks to simulate the interior walls of a typical house of this endemic area.

We found that the microencapsulated formulation (MicBbC) caused, on average,
higher mortality in T. infestans nymphs than the unmicroencapsulated fungus (BbC) at
all post-application times tested. During the first month, no differences were observed
between both treatments, which caused high insect mortality. This might be due to that an
active initial inoculum, with a high concentration and high viability (1 × 1012 conidia/g
and 99%, respectively), was used in both treatments. It is well-known that the addition of
oil to the fungal formulations as an adjuvant allows one to protect bare conidia, increasing
stability and persistence in the conditions tested [23] without affecting their activity or
interfering with the infection process [26,27] or the microencapsulation formation process.
In the second month, there was an abrupt decrease in mortality in the nymphs treated
with the BbC formulated compared to the MicBbC. Bare conidia (BbC formulation) were
more exposed to adverse environmental conditions (low humidity and high temperatures),
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which caused a decrease in conidia survival in the short term and a loss of pathogenicity,
in agreement with previous reports in other insects [28–30]. Conversely, in the MicBbC
formulation, the conidia were protected by the gel matrix that contributed to maintaining
their pathogenic capacity for longer periods. These results are also consistent with those
reported by other authors [15,31,32].

It was also observed that the LT50 were higher for the MicBbC formulation throughout
the evaluated period; however, this delay in the development of mycosis due to the slow
and gradual release of the encapsulated microorganism did not affect total mortality, in
concordance with previous reports [11,17]. On the contrary, the “slow-kill” bioinsecticide
effect of the microencapsulated formulation may be advantageous for disease vector control,
not only for the obvious extension of the useful life as a pathogen on the action surface but
also by reducing the survival of the host without instant killing, which allows the fungus
long-term control with lower possibilities of developing resistance [33].

Regarding viability, a greater loss was observed in the BbC compared with the MicBbC
formulation for all the times tested. Other studies reported that the encapsulated conidia
remain viable during storage, ensuring their persistence over time [16,34,35]. On the other
hand, the incorporation of the pharmaceutical excipient P407 as a polymeric vehicle to
improve the physical properties of the formulations allowed obtaining stable, homoge-
neous and redispersible formulations by simple agitation, facilitating its application as a
bioinsecticide [36].

5. Conclusions

Microencapsulation with alginate proved to be an effective, simple and low-cost
method that allows the biological control agent to carry out the infective process on the
host more efficiently. These preliminary tests will serve to develop an optimal formulation,
which allows maintaining the viability and virulence of B. bassiana conidia during storage
and after application, which will contribute to a more effective infection of T. infestans in
the field. Thus, the use of this microencapsulated entomopathogenic fungus in control
programs is a promising alternative to reduce the vector transmission of Chagas disease.
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