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Abstract: Incidence of COVID-19 has been associated with sociodemographic factors. We investigated
variations in SARS-CoV-2 seroprevalence at sub-national levels in the Dominican Republic and
assessed potential factors influencing variation in regional-level seroprevalence. Data were collected
in a three-stage cross-sectional national serosurvey from June to October 2021. Seroprevalence of
antibodies against the SARS-CoV-2 spike protein (anti-S) was estimated and adjusted for selection
probability, age, and sex. Multilevel logistic regression was used to estimate the effect of covariates
on seropositivity for anti-S and correlates of 80% protection (PT80) against symptomatic infection for
the ancestral and Delta strains. A total of 6683 participants from 134 clusters in all 10 regions were
enrolled. Anti-S, PT80 for the ancestral and Delta strains odds ratio varied across regions, Enriquillo
presented significant higher odds for all outcomes compared with Yuma. Compared to being
unvaccinated, receiving ≥2 doses of COVID-19 vaccine was associated with a significantly higher
odds of anti-S positivity (OR 85.94, [10.95–674.33]) and PT80 for the ancestral (OR 4.78, [2.15–10.62])
and Delta strains (OR 3.08, [1.57–9.65]) nationally and also for each region. Our results can help
inform regional-level public health response, such as strategies to increase vaccination coverage in
areas with low population immunity against currently circulating strains.

Keywords: SARS-CoV-2; seroprevalence; vaccine; spatial distribution

1. Introduction

Latin America and the Caribbean Islands have been heavily affected by COVID-19
(SARS-CoV-2) [1]. The region was at times identified as the epicentre of the pandemic, and
in mid-2022, accounted for 27% of COVID-19 deaths worldwide [2]. Among the Caribbean
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Islands, the Dominican Republic (DR) had reported 647,205 cases (24 October 2022), one of
the highest cumulative numbers of COVID-19 cases at the time, second only to Cuba [3].
In the DR, the first cases of COVID-19 were reported in March 2020. The Delta strain was
first detected in December 2020 and had become the dominant strain by August 2021. In
December 2021, the Omicron strain was first detected and was dominant until February
2022 [4].

Modelled estimates suggested that by the end of 2020, 41.9% (95% CI 38.0–46.1%) of
the population in the Americas had been infected with SARS-CoV-2 [5]. We previously
reported findings from a national serological survey conducted in the DR between June
and October 2021 and estimated that 77.5% of the population had been infected with
SARS-CoV-2, and 89.5% of the population over 5 years of age had been immunologically
exposed via infection, vaccination, or both [6].

Serological surveys have generated key data on the epidemiology and transmission
of SARS-CoV-2 during the pandemic [6,7]. These studies have contributed to overcoming
some of the challenges faced in COVID-19 surveillance, such as providing estimates for the
proportion of mild or asymptomatic cases [8], lack of consistent diagnostic tests, and inaccu-
rate case reporting due to overloaded health systems [9]. However, these studies are limited
by uncertainties about the long-term immune protection against SARS-CoV-2 [10], the in-
ability of simple serological tests to determine whether anti-S resulted from vaccination or
infection [11], and the continuing emergence of new strains [12].

Infectious disease transmission is frequently spatially heterogeneous, even within
the same country [13]. Geographical variations in the reported incidence of COVID-19
have been found to be influenced by sociodemographic factors such as urban settings [14],
living in socioeconomically disadvantaged neighbourhoods [15], ethnic minority status [16],
access to SARS-CoV-2 testing and hospitalization [15], shared accommodation [16], and
number of household members [17]. Non-pharmaceutical interventions (NPIs) and vacci-
nation campaigns are key strategies to control transmission [18]. However, vaccine uptake
and the impact of non-pharmaceutical measures may vary as a result of cultural, political,
and economic differences between affected areas, which make disease distribution even
more varied. Therefore, a better understanding of the drivers of infection at different spatial
scales could contribute to the identification of high-risk areas and provide information for
more targeted implementation of control measures.

From March 2020, the DR implemented NPIs such as sanitary and epidemiological
controls, restriction of mobility and social activities, closure of borders and ports, suspen-
sion of classes, and limitation of productive activities and public transport [19]. A national
COVID-19 vaccination campaign was launched in February 2021 [19], and by August 2021,
52.3% of the population had received at least one dose of vaccine, 36.2% had received two
doses, and 5.3% had received three doses [6]. In the DR, the inactivated vaccine CoronaVac®

(Sinovac Biotech, Beijing, China) was the primary vaccine adopted, representing almost
90% of all doses administrated through August 2021 [6].

Analysis of serological data at different spatial scales can help us characterise and un-
derstand the transmission dynamics and burden of SARS-CoV-2 [20]. Precise information
on local seroprevalence and associated determinants can identify areas of low popula-
tion immunity and highlight locations that are more vulnerable to future outbreaks and
where public health interventions should be prioritized [20] However, evidence on spatial
variation of SARS-CoV-2 seroprevalence at subnational levels has so far been limited.

Previously, we presented national-level seroprevalence and protective immunity
against SARS-CoV-2 in the DR and identified risk factors associated with anti-S prevalence
and correlates of protection at the country level [6]. Here we aim to investigate if anti-S
seroprevalence is heterogeneously distributed among the regions, explore regional differ-
ences in anti-S prevalence and protective immunity, and identify regional variations in
factors associated with anti-S prevalence and correlates of protection.
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2. Materials and Methods
2.1. Setting

The DR is a Latin American country located in the Caribbean that shares the is-
land of Hispaniola with Haiti. With ~10.5 million residents [21], it is the second most
populous country in the Caribbean. The country is divided into 31 provinces plus the
Santo Domingo National District, 155 municipalities, 386 district municipalities, 1565 sec-
tions, and 12,565 barrios/parajes. Provinces are aggregated into 10 administrative regions
(Figure 1): Cibao Norte, Cibao Sur, Cibao Nordeste, Cibao Noroeste, Valdesia, Enriquillo,
El Valle, Yuma, Higuamo, and Metropolitana [22]. The country’s division into regions
reflects characteristics beyond the administrative reasons, as regions share environmen-
tal, sociodemographic, and historical characteristics. National data regarding population,
economics, education, and health events are generally reported by region [22].
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Figure 1. Administrative regions of the Dominican Republic. The stars are showing Santiago
Province (North) and Santo Domingo Capital district (Southeast). Base map downloaded from:
Esri, HERE, Garmin, ©OpenStreetMap contributors, and the GIS user community (available on:
https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer, accessed
on 28 October 2023).

In the DR, 80% of the population live in urban and semi-urban areas, yet only about
20% of the total barrios/parajes are classified as urban setting. The metropolitan area of
the capital, the Santo Domingo National District, is home to a population of 3.3 million
people and is situated in the region of Metropolitana. Over the last two decades, the DR
has experienced consistent economic growth, with an overall reduction in poverty [23].
However, social inequities remain, with higher levels of poverty in urban slums and rural
areas, particularly in provinces close to the Haitian border [23].

https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer
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2.2. Data Source, Study Design, and Study Procedures

National and provincial demographic data and cluster population and classification
(urban versus rural) were obtained from the Dominican Republic National Statistics Office
and the United National Statistics Division [21,24].

Individual level data used in this study were obtained from a three-stage cross-
sectional national serosurvey conducted between 30 June and 12 October 2021 in 134 clusters
(barrio/paraje) across the DR. A full description of sampling methods and national-level
results have been described previously [6]. In summary, the 31 provinces plus the Santo
Domingo National District were divided into 5 areas for logistical reasons, and within
each area, a predefined number of urban and rural clusters were selected using a spatially
representative sampling method [6]. In the selected urban clusters, a grid method was
implemented for household selection [24]. In rural clusters, households were selected
using a spatially representative sampling method that maximised spatial dispersion of
sampling locations to ensure that we did not oversample both more populous areas and
more sparsely populated areas [25]. A total of 23 households per cluster were selected
in 132 clusters. Because the two remaining clusters were linked to a study of clinical
surveillance of acute febrile illnesses [26], they were oversampled with 60 households per
cluster. All household members aged ≥ 5 years were invited to participate.

A trained field team interviewed participants and collected questionnaire data using
the Kobo Toolbox software (version 2.021.21, accessed from October 2020 to October 2021 -
www.kobotoolbox.org). Global positioning system (GPS) coordinates of each household
were captured using smartphones. Venous blood was collected from participants, pro-
cessed as sera, and frozen at −80 ◦C. The samples were tested for anti-S antibodies using
Roche Elecsys SARS-CoV-2 electrochemiluminescence immunoassays (Roche Diagnostics,
Indianapolis, IN, USA). Previous studies have indicated robust assay performance, speci-
ficity of 99.8% (CI 99.3–100), and sensitivity of 98.2% (CI 96.5–99.2) [27,28]. Pseudoviral
neutralization titres (PVNT) were used to estimate correlates of protective immunity against
symptomatic infection for the ancestral and Delta strains. A PVNT of approximately 20%
and 80% of mean convalescent titre is estimated to provide 50% and 80% protection against
symptomatic infection, respectively, as previously described [6]. Individual-level PVNT
was estimated by random forest binary classification.

Written consent was obtained from all participants. For children < 18 years old, except
emancipated minors, consent was obtained from the legal guardian. Written assent was
provided by adolescents 14–17 years old, and verbal assent was provided by children
7–13 years old. The study protocol was approved by the National Council of Bioethics in
Health, Santo Domingo (013-2019), the Institutional Review Board of Pedro Henríquez
Ureña National University in Santo Domingo, and the Mass General Brigham Human
Research Committee, Boston, USA (2019P000094). The study was registered at the Human
Research Ethics Committee of the University of Queensland (2022/HE001475). Study proce-
dures and reporting adhered to the ROSES-S statement on reporting of sero-epidemiologic
studies for SARS-CoV-2 [29].

2.3. Statistical Analysis

The statistical programming language R (R version 4.1.3, 2022-03-10) [30] was used to
estimate prevalence accounting for sampling design (survey package) and for visualization
of the data (ggplot2 and ComplexHeatmap). The national and regional multilevel survey-
weighted mixed effects logistic regression models (accounting for the sampling design
and weights) were run in Stata [31], using the generalized linear latent and mixed models
(GLLAMM) package [32], to estimate the association of key determinants of antibody
status. Prevalence distribution and kernel density maps were generated using Esri® ArcGIS
software v 10.8 (Esri® ArcMap 10.8.0.12790. Redlands, CA, USA) [33].

www.kobotoolbox.org
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2.3.1. Anti-S Prevalence

Seroprevalence of anti-S was estimated at regional and cluster levels (134 clusters).
Due to sample size, Cibao Sur was combined with Cibao Nordeste, and El Valle with
Cibao Noroeste, resulting in 8 final regions used for analysis). At the regional level,
anti-S seroprevalence was adjusted for selection probability and sampling design and
post-stratified by age and sex. At the cluster level, seroprevalence was post-stratified by
sex and age. The weights were corrected for finite population. For a full description, see
Supplementary Materials.

2.3.2. Correlates of Protective Immunity against Symptomatic Infection

The results of the individual-level PVNTs were used to estimate the population’s
immunological 80% protection against symptomatic infection (PT80) at the regional and
cluster levels. At the regional level, PT80 was adjusted for selection probability and sam-
pling design and post-stratified by age and sex. At the cluster level, PT80 was post-stratified
by sex and age. The weights were corrected for finite population, as described above.

2.3.3. Logistic Regression

Logistic regression analyses were conducted to assess the association between co-
variates and three outcomes of interest at national and regional scales: anti-S prevalence,
PT80 for the ancestral strain, and PT80 for the Delta strain of SARS-CoV-2. Associations
between outcomes and covariates were considered statistically significant if the 95% con-
fidence interval (95% CI) of the estimated odds ratio (OR) excluded one. The covariates
considered for the analyses included gender (male, female, other), age (categorized into
5–17, 18–54, ≥55 years old), educational level (categorized into technical/university level
and none/primary/secondary level; for participants without educational level reported,
the highest educational level in the household was assumed; in cases where no members
of the household reported their educational level, educational level was assumed to be
non-tertiary for the binary classification), socioeconomic score (categorized into zero or one,
based on the access to city water, home toilet, household insect screens, air conditioning,
and vehicle ownership; participants scored one point for any positive response and zero in
the absence of a positive response), area of residence (rural or urban), number of household
members (categorized into 1–2, 3–4, ≥5 people per household), work environment (outdoor,
indoor, mix of indoor/outdoor combined, not active worker), smoking status (non-smoker,
current smoker), comorbidities/risk factors (none and one or more of the following chronic
diseases were considered risk factors: blood pressure, coronary heart disease, diabetes,
cancer, kidney disease, previous stroke, chronic obstructive pulmonary disease, immunod-
eficiency), and doses of COVID-19 vaccines received (0, 1, ≥2). The variables included in
the model were tested for multicollinearity using the variance inflation factor (VIF) with a
cut-off value of <3.

We previously reported results of standard multivariable logistic regression models
for anti-S, and for the PT80 for the ancestral and Delta strains, incorporating gender, age,
area of residence, number of household members, work environment, smoking status, and
number of COVID-19 vaccine doses as covariates [5]. In this study, we built on the previous
analyses by examining regional differences in potential drivers of prevalence distribution
and additional sociodemographic factors listed earlier. Two different models were built
as follows:

1. A national multivariable model that includes the ten regions (administrative divisions)
as a covariate, as well as the sociodemographic covariates indicated above. The
weights, calculated based on the survey design, were incorporated into the regression.
This model was built to assess differences in ORs between regions.

2. Multilevel survey-weighted mixed effects logistic regression model fitted at national
and regional levels:

2.1 The national level included region, cluster, and household as random effects,
gender, age, area of residence, number of household members, work envi-
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ronment, smoking status, educational level, socioeconomic score, comorbidi-
ties/risk factors, and number of vaccine doses as fixed effects. To account for
the sampling design, the weights of the selection probability were calculated in
three stages. First, the probability of a cluster being selected (pc) was calculated
based on the total number of clusters in each category and the weight (wc)
was the inverse of the probability of selection for each category (wc = 1/pc).
Second, the probability of a household being selected (ph) was calculated
based on the total number of households in each cluster and the weight (wh)
was the inverse of the probability of household selection (wh = 1/ph). Third,
the weights (wf) from the first two steps were multiplied (wf = wc × wp) and
corrected for a finite population. The full description of the weight calculation
can be found in the Supplementary Materials.

2.2 The regional level included cluster and household as random effects, gender,
age, area of residence, number of household members, work environment,
smoking status, educational level, socioeconomic score, comorbidities/risk
factors, and number of vaccine doses as fixed effects, and incorporated level-
specific sampling weights to account for sampling design. This model was
built to identify variations in strength and significance of association across
regions. Due to sample size, Cibao Sur was combined with Cibao Nordeste,
and El Valle with Cibao Noroeste.

2.3.4. Kernel Density Maps

Cluster-level prevalence of anti-S and PT80 for the ancestral and Delta strains were
used to calculate a magnitude-per-unit area, and via a non-parametric estimation technique,
a smoothed surface was fit to the original data to generate kernel density maps. We used
the outcome with the greatest variation in prevalence to determine the categories used
in the intervals of distribution. Those values were adopted as a reference when building
maps of the other outcomes, to allow comparison between the distribution of the different
outcomes. Kernel density maps were used to estimate the distribution of outcomes in
unsampled areas and visualise spatial variation in outcome distribution.

3. Results
3.1. Participants and Demographics

This study included data from 6683 participants (84.4% of the 7916 eligible individuals
present at the time of household visit) from 3832 households in 134 clusters across all
10 regions of the DR. A total of 4171 (62.4%) of the participants were female, and 4959 (74.2%)
were aged 15–64 years (mean 41.4 years, standard deviation [SD] 20.5 years). Within each
region, the gender and age distributions reflect national census data (Table 1). Participants
living in urban areas were 53.8% of the total included in this study, varying from 40.3% to
67.5% across regions. The number of households with 3–6 members varied from 65.5% to
71.8% among regions.

Overall, 7.0% of all participants were current smokers (10.1% among males and 4.9%
among females). The prevalence of current smokers varied between regions, from 5.7% in
Higuamo to 11.8% in Cibao Noroeste/El Valle.

3.2. Anti-S Seroprevalence and PT80 for the Ancestral and Delta Strains

The adjusted anti-S prevalence at the national level is shown in Supplementary Ma-
terials Table S3. At the national level, the overall adjusted anti-S prevalence was 85.4%
(95% CI 81.9–88.0%), with the lowest prevalence (69.9%, 95% CI 65.9–73.7%) in the age-
group 5–17 years, and the highest prevalence in participants who had received two or more
doses (98.9%, 95% CI 97.9–99.5%) of COVID-19 vaccine.
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Table 1. Demographic characteristics and COVID-19 vaccination status of study participants by region and nationally, Dominican Republic, June–October 2021.

Yuma
330 (%)

Nordeste/Sur
533 (%)

Valdesia
489 (%)

Noroeste/El Valle
602 (%)

Norte
1306 (%)

Higuamo
1717 (%)

Metropolitana
999 (%)

Enriquillo
707 (%)

National
6683 (%)

Gender
Female 128 (38.8) 185 (34.7) 188 (38.4) 234 (38.9) 489 (37.4) 602 (35.1) 391 (39.1) 277 (39.2) 2512 (37.6)
Male 198 (60) 347 (65.1) 295 (60.3) 367 (61) 811 (62.1) 1099 (64.0) 598 (59.9) 429 (60.7) 4171 (62.4)
Other 4 (1.2) 1 (0.2) 6 (1.2) 1 (0.2) 6 (0.5) 16 (0.9) 10 (1.0) 1 (0.1) 45 (0.7)
Age

05–17 y 47 (14.2) 25 (4.7) 62 (12.7) 78 (13.0) 120 (9.2) 274 (16.0) 164 (16.4) 142 (20.1) 912 (13.6)
18–54 y 183 (55.5) 295 (55.3) 286 (58.5) 328 (54.5) 745 (57.0) 1007 (58.6) 553 (55.4) 398 (56.3) 3975 (59.5)
>55 y 100 (30.3) 213 (40) 141 (28.8) 196 (32.6) 441 (33.8) 436 (25.4) 282 (28.2) 167 (23.6) 1976 (29.6)

Educational level
None/Primary/Secondary 288 (87.3) 390 (73.2) 343 (70.1) 438 (72.8) 1059 (81.1) 1406 (81.9) 733 (73.4) 539 (76.2) 5196 (77.7)

Tertiary/Technical 42 (12.7) 143 (26.8) 146 (29.9) 164 (27.2) 247 (18.9) 311 (18.1) 266 (26.6) 168 (23.8) 1487 (22.3)
Socioeconomic score

0 pts 33 (10.0) 6 (1.1) 6 (1.2) 18 (3.0) 26 (2.0) 81 (4.7) 37 (3.7) 78 (11.0) 285 (4.3)
1–5 pts 294 (89.1) 521 (97.7) 474 (96.9) 581 (96.5) 1263 (96.7) 1624 (94.6) 952 (95.3) 628 (88.8) 6337 (94.8)

Area of residence
Rural 169 (51.2) 245 (46.0) 259 (53.0) 288 (47.8) 732 (56.0) 729 (42.5) 434 (43.4) 230 (32.5) 3086 (46.2)
Urban 161 (48.8) 288 (54.0) 230 (47.0) 560 (93.0) 574 (44.0) 988 (57.5) 565 (56.6) 477 (67.5) 3597 (53.8)

Household members
1–2p 64 (19.4) 163 (30.6) 57 (11.7) 106 (17.6) 335 (25.7) 373 (21.7) 210 (21.0) 119 (16.8) 1427 (21.4)
3–4p 133 (40.3) 232 (43.5) 206 (42.1) 250 (41.5) 579 (44.3) 716 (41.7) 407 (40.7) 253 (35.8) 2776 (41.5)
>5p 133 (40.3) 138 (25.9) 226 (46.2) 246 (40.9) 392 (30.0) 628 (36.6) 382 (38.2) 335 (47.4) 2480 (37.1)

Work environment
Indoor/Mix 63 (19.1) 167 (31.3) 95 (19.4) 141 (23.4) 382 (29.2) 315 (18.3) 233 (23.3) 135 (19.1) 1531 (22.9)

Outdoor 38 (11.5) 38 (7.1) 53 (10.8) 52 (8.6) 68 (5.2) 123 (7.2) 90 (9.0) 65 (9.2) 527 (7.9)
Smoking status
Current smoker 28 (8.5) 43 (8.1) 45 (9.2) 41 (6.8) 90 (6.9) 98 (5.7) 70 (7.0) 54 (7.6) 469 (7.0)

Non-smoker 302 (91.5) 490 (91.9) 444 (90.8) 561 (93.2) 1216 (93.1) 1619 (94.3) 929 (93.0) 653 (92.4) 6214 (93.0)
Risk factors

None 189 (57.3) 253 (47.5) 278 (56.9) 331 (55.0) 663 (50.8) 1011 (58.9) 578 (57.9) 440 (62.2) 3743 (56.0)
>1 141 (42.7) 280 (52.5) 211 (43.1) 271 (45.0) 643 (49.2) 706 (41.1) 421 (42.1) 267 (37.8) 2940 (44.0)

Vaccine doses
Unvaccinated 182 (55.2) 186 (34.9) 222 (45.4) 213 (35.4) 398 (30.5) 691 (40.2) 406 (40.6) 278 (39.3) 2576 (38.5)

1 53 (16.1) 123 (23.1) 81 (16.6) 90 (15.0) 176 (13.5) 213 (12.4) 143 (14.3) 73 (10.3) 952 (14.2)
>2 95 (28.8) 224 (42.0) 186 (38.0) 299 (49.7) 732 (56.0) 813 (47.4) 450 (45.0) 356 (50.4) 3155 (47.2)
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Figure 2 provides a geographic summary of the adjusted anti-S prevalence, PT80 for
the ancestral and Delta strains, and COVID-19 vaccine coverage (two or more doses). The
top row presents results at the regional level, and the second row at the cluster level. The
third row shows kernel density maps of each outcome, and the last row shows the density
distribution among clusters.

The adjusted prevalence of anti-S among individuals aged ≥5 years varied between
regions. The lowest prevalence was observed in Yuma, at 78.7% (95% CI 75.0–82.2%), in the
east, and the highest in Enriquillo, 90.4% (95% CI 86.1–93.8%), in the southwest, bordering
Haiti (Supplementary Materials Tables S3 and S4). At the cluster level, anti-S prevalence
varied from 34.3% (95% CI 32.6–36.0%) to 98.9% (95% CI 98.5–99.3%; see Supplementary
Materials Table S5). In 46 clusters (34.3%), anti-S prevalence estimates were above 90%.
Five clusters presented a crude prevalence of 100%, and it was not possible to estimate
adjusted prevalence and 95% CI.

The adjusted proportion of the population aged ≥ 5 years estimated to have at least
80% protection against symptomatic infection (PT80) for the ancestral strain varied among
regions; the lowest estimate was observed in Yuma at 57.7% (95% CI 54.6–60.9%), and the
highest in Enriquillo, at 72.0% (95% CI 70.7–73.3%) (Supplementary Materials Table S4).
Among clusters, PT80 for the ancestral strain varied from 10.5% (95% CI 9.2–11.7%) to 95.5%
(95% CI 94.7–96.23%).

The adjusted proportion of the population aged ≥ 5 years estimated to have PT80
against the Delta strain also varied between regions; the lowest estimate was observed
in Yuma at 30.0% (95% CI 27.8–32.2%), and the highest in Enriquillo at 43.0% (95% CI
37.1–49.0%—Supplementary Materials Table S4). Among clusters, PT80 for the Delta strain
varied from 1.0% (95% CI 0.7–1.3%) to 66.7% (95% CI 65.5—67.8%) (Supplementary Materi-
als Table S5).

The proportion of participants that had received two or more doses of the COVID-19
vaccine varied among regions and clusters. Yuma had the lowest vaccination coverage
at 22.1%, (95% CI 16.7–28.1%), and Higuamo the highest (41.5%, 95% CI 31.0–52.6%)
(Supplementary Materials Table S4).

3.3. Logistic Regression
3.3.1. Multivariable Model for Anti-S, and PT80 for the Ancestral and Delta Strains

No multicollinearity was detected between variables. Results from the multivariable
logistic regression models for the three outcomes of interest (anti-S, PT80 for the ancestral
strain, PT80 for the Delta strain) were used to determine if there were significant differences
in prevalence among the regions. The findings are summarised in Figure 3. Yuma was
used as the reference region for the model, as it had the lowest anti-S prevalence. The
results show that the odds of having an anti-S positive result or PT80 for the ancestral and
Delta strains varied between regions; however, statistically significant differences were not
observed within most regions. The exceptions were Anti-S and PT80 for the ancestral strain
in the Metropolitana region, PT80 for the ancestral and Delta strains in El Valle, and Anti-S,
PT80 for the ancestral and Delta strain in Enriquillo (OR 1.63; 95% CI 1.0–2.64).

Other significant results as described in the Supplementary Materials.

3.3.2. Multilevel Logistic Regression Models
National Models

Results from the national multilevel model for anti-S positivity are shown in Figure 4.
Compared to those aged 18–54 years, those aged 5–17 years had an OR of 0.17 (95% CI
0.07–0.40). The OR of people working in indoor/mix of indoor and outdoor environment
was 9.49 (95% CI 1.33–67.85) compared to people working in outdoor environments. Com-
pared to those responding none/primary/secondary in terms of educational level, people
with tertiary/technical education had an OR of 1.78 (95% CI 1.39–2.29). Compared to
unvaccinated people, those who received one dose or two or more doses had ORs of 4.80
(95% CI 2.35–9.83) and 85.94 (95% CI 10.95–674.33), respectively.
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The results of the national multilevel models for PT80, for both the ancestral and
Delta strains, also identified vaccination as the strongest predictor of a positive result
(Supplementary Table S6). For the ancestral strain, those respondents having one or two or
more doses had ORs of 2.61 (95% CI 1.72–3.94), 4.78 (95% CI 2.15–10.62), respectively. For
the Delta strain, those respondents having two or more doses had an OR of 3.08 (95% CI
1.57–9.65).

Besides vaccination, results from the national models identified other factors associated
with higher odds for PT80 for the ancestral and Delta strains. For the ancestral strain, higher
odds were seen in those working in indoor/mix of indoor/outdoor environment OR 4.34
(95% CI 2.43–7.76) compared to outdoor work environment. For the Delta strain, those
aged ≥ 55 years, the OR was 1.45 (95% CI 1.11–1.89) compared to those aged 18–54 years
and indoor/mix of indoor/outdoor work environment had an OR of 2.41 (95% CI 1.16–4.97)
compared to outdoor work environment.

Regional Models

Despite the relatively small sample size per region, those who received two or more
doses of the COVID-19 vaccine had significantly higher ORs when compared to the unvac-
cinated for anti-S and PT80 for the ancestral and Delta strains in all regions (Figure 5A–C).
Overall, the results of the multilevel logistic regression models for all outcomes in each
region were not statistically significant for most covariates (Supplementary Materials
Tables S7–S9). However, it showed trends regarding the association of covariates in each
region (i.e., higher odds associated with vaccination status and area of residence and lower
odds associated with younger age groups). Anti-S had significantly lower ORs for par-
ticipants under 18 years compared with those aged 18–54 years in most regions, except
Enriquillo and Valdesia (Supplementary Materials Table S7). Other significant results for
all outcomes can be found in the Supplementary Materials Tables S7–S9.
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4. Discussion

To our knowledge, this is the first study to assess the spatial variation in anti-S
seroprevalence at the regional and cluster levels and to evaluate factors associated with
protection against symptomatic SARS-CoV-2 infection at the sub-national level in the DR.
The findings suggest that the prevalence of anti-S and PT80 for the ancestral and Delta
strains were spatially heterogeneous at regional and cluster levels and highlight areas of
low population immunity that may be more vulnerable to potential future outbreaks. Two
or more doses of the COVID-19 vaccine had the strongest association with higher odds of
anti-S positivity and correlates of protection at the national and regional levels. We also
quantified the relative importance of sociodemographic covariates on anti-S positivity and
correlates of protection. This information may help guide policymakers in implementing
vaccination campaigns and targeting regions/communities with lower current vaccine
coverage and particular sociodemographic sub-populations with lower immunity. These
models can be used for various scenario analysis of disease transmission and immunity at
subnational scale to identify and forecast population sub-groups at greatest risk for new
COVID infection and related morbidity/mortality, waning immunity etc.

The regional differences observed in this study contribute to a better understanding of
the distribution of the COVID-19 burden in the DR. A previous study, conducted in the DR
between April and June 2020, identified heterogeneous distribution of immunoglobulin
IgM and IgG across ten emerging hotspots of transmission and indicated that pathogen
circulation preceded community-level interventions [34]. Two hotspots located in the
touristic region of Yuma presented low seroprevalence compared to hotspots located in
Cibao Norte and Nordeste. This difference remained present in our study, in which Yuma
had the lowest anti-S seroprevalence, PT80 for the ancestral strain, and vaccine coverage.
Our findings suggest that this region could be prone to a higher risk of an outbreak,
particularly if the regional differences identified in this study persist over time. Enriquillo
had the highest prevalence of anti-S and correlates of protection; this region is located on
the border with Haiti and has the highest percentage of participants living in urban areas
and of households with five or more members. The Enriquillo region also had the highest
odds of anti-S positivity, PT80 for the Delta strain, and the second highest odds of PT80 for
the ancestral strain, confirming regional differences in the COVID-19 burden across regions.

Although these regional differences had an impact on SARS-CoV-2 distribution, our
findings suggest a greater importance of factors that might occur on a smaller spatial
scale. A higher risk of transmission in enclosed environments or between household
members, when compared with the risk of transmission between community members,
has been identified [35,36]. In agreement with these findings, all our national models
consistently identified two factors associated with higher odds of positivity: indoor and
mixed work environments and COVID-19 vaccination. Conditions that facilitate the spread
of viral particles via aerosol and droplets, such as poor ventilation, difficulty in maintaining
distance from a sick individual, and longer exposure time, might explain the relevance
of indoor work environments [37–41]. These findings support our previous report at the
national level [6].

Vaccination has so far been the most efficient public health intervention for preventing
symptomatic infections and severe COVID-19 [42–45]. However, the emergence of new
strains has raised concern about COVID-19 vaccine efficacy and lasting immunity generated
via prior infection, with demonstrably lower protection against symptomatic infection
against the highly immune-evasive Omicron strains [46]. The principal COVID-19 vaccines
administered in the DR were the inactivated viral CoronaVac (Sinovac, Biotech, Beijing,
China), the adenovirus vector ChAdOx1-S (Oxford/AstraZeneca, Cambridge, United
Kingdom), and the mRNA BNT162b2 (Pfizer/BioNTech, New York, USA). These vaccines
had their effectiveness against the Delta strain tested both for symptomatic and severe
infection [47–49], with better performance on individuals that received the third dose [50,51].
Our results from the PT80 for the Delta strain models support the importance of the third
dose to develop protective immunity.
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Results from the separate multilevel models for each region were not uniform, indicat-
ing that, except for vaccination, national results might not be generalized to sub-national
levels at the time of this study. Indoor work environment was a key factor in the national
models but was not associated with higher odds in the regional models. This effect might
be related to a more even rate of indoor and outdoor work environments in each region [23].

The strengths of this study include the robust sampling design that was able to provide
a well-distributed and nationally representative sample, as it accounted for characteristics of
population distribution, such as the differences between rural and urban areas and a higher
concentration on two large urban areas. The different models were able to quantify the
relative importance of drivers and generate data that might be useful for future modelling
of COVID-19 transmission. Part of the limitations of this study is related to the risk
of misinterpretation regarding the anti-S positive result. The detection of anti-S can be
indistinguishably related to previous infection or vaccination [52], which are not mutually
exclusive and may be associated with different drivers [53]. Moreover, seroprevalence
should not be interpreted as immunity, which would be an oversimplification of the
complex immune response [54]. Depending on the type of exposure to SARS-CoV-2 strains,
antibodies can wane over time [54], and factors such as age [55], comorbidities [56], and
smoking [57] can also influence antibody production. In our study, smoking history was
limited to “current smoker”, “prior smoker”, and “never smoked” and current smokers
were underrepresented compared to previous studies [58], which may have prevented
the accurate identification of associations between tobacco use and seroprevalence of
SARS-CoV-2. Cellular immune response could not be assessed through this seroprevalence
survey. The Omicron strain was detected in December 2021, and, in this study, samples
were not tested for neutralizing activity against Omicron. Studies that investigated the
effectiveness of the three main vaccines used in the DR against the Omicron strain indicated
that regardless of the mild protection against symptomatic disease, the protection against
severe disease remained high [41–44,59–61]. Lastly, the relatively small sample size per
region may have limited the identification of significant variation of covariates importance
across regions.

The results presented here can inform more targeted regional-level public health
response by identifying areas with low population immunity, which might be more prone
to severe outbreaks and will also benefit the most from increased vaccination coverage
and other public health measures. It is likely that SARS-CoV-2 will continue to circulate
endemically for years and that not all individuals present the same susceptibility. Although
our study was based on cross-sectional data, the regional differences in risk factors and
drivers of protective immunity will likely persist over time (e.g., regions with relatively low
vaccination coverage will likely remain low). Therefore, the areas identified in our study
that will benefit most from targeted public health measures, such as vaccination, will likely
continue to be relevant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/tropicalmed8110493/s1, Table S1: Weights for Regions and set-
ting categories based on probability of selection for each sampled cluster, Dominican Republic,
June–October 2021.; Table S2: The Dominican Republic age and gender population distribution;
Table S3: National SARS-CoV-2 anti-S antibody prevalence by demographics, COVID-19 vaccination
status, and regions, Dominican Republic, June–October 2021; Table S4: Adjusted anti-S prevalence,
correlates of protection and vaccine coverage by region in the Dominican Republic, June–October
2021; Table S5: Adjusted anti-S prevalence, correlates of protection and vaccine coverage by cluster in
the Dominican Republic, June–October 2021; Table S6: National level OR for PT80 for the ancestral
and Delta strains from multilevel logistic regression, the Dominican Republic, June–October 2021;
Table S7: Regional OR for Anti-S from regional multilevel logistic regression, the Dominican Republic,
June-October 2021; Table S8: Regional OR for PT80 for the ancestral strain from multilevel logistic
regression, the Dominican Republic, June–Oct 2021; Table S9: Regional OR for PT80 for the Delta
strain multilevel logistic regression, the Dominican Republic, June–October 2021.
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