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Abstract: Leishmaniasis is a neglected tropical disease caused by the Leishmania parasite and
transmitted by the Phlebotominae subfamily of sandflies, which infects humans and other mammals.
Clinical manifestations of the disease include cutaneous leishmaniasis (CL), mucocutaneous
leishmaniasis (MCL) and visceral leishmaniasis (VL) with a majority (more than three-quarters)
of worldwide cases being CL. There are a number of risk factors for CL, such as the presence of
multiple reservoirs, the movement of individuals, inequality, and social determinants of health.
However, studies related to the role of these factors in the dynamics of CL have been limited. In this
work, we (i) develop and analyze a vector-borne epidemic model to study the dynamics of CL in two
ecologically distinct CL-affected regions—Madrid, Spain and Tolima, Colombia; (ii) derived three
different methods for the estimation of model parameters by reducing the dimension of the systems;
(iii) estimated reproduction numbers for the 2010 outbreak in Madrid and the 2016 outbreak in Tolima;
and (iv) compared the transmission potential of the two economically-different regions and provided
different epidemiological metrics that can be derived (and used for evaluating an outbreak), once R0

is known and additional data are available. On average, Spain has reported only a few hundred
CL cases annually, but in the course of the outbreak during 2009–2012, a much higher number of
cases than expected were reported and that too in the single city of Madrid. Cases in humans were
accompanied by sharp increase in infections among domestic dogs, the natural reservoir of CL. On
the other hand, CL has reemerged in Colombia primarily during the last decade, because of the
frequent movement of military personnel to domestic regions from forested areas, where they have
increased exposure to vectors. In 2016, Tolima saw an unexpectedly high number of cases leading to
two successive outbreaks. On comparing, we estimated reproduction number of the Madrid outbreak
to be 3.1 (with range of 2.8–3.9), which was much higher than reproduction number estimates of
the Tolima first outbreak 1.2 (with range of 1.1–1.3), and the estimate for the second outbreak in
Tolima of 1.019 (with range of 1.018–1.021). This suggests that the epidemic outbreak in Madrid
was much more severe than the Tolima outbreak, even though Madrid was economically better-off
compared to Tolima. It indicates a potential relationship between urban development and increasing
health disparities.
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1. Introduction

Background: Leishmaniasis is a disease caused by an intracellular protozoan parasite (genus
Leishmania), which is transmitted by the bite of a female phlebotomine sandfly. The clinical spectrum
of leishmaniasis ranges from a self-resolving cutaneous ulcer to a lethal visceral illness. Cutaneous
leishmaniasis (CL) is the most common form of leishmaniasis and causes skin lesions on the exposed
parts of the body, leaving scars for life. About 95% of CL cases occur in the Americas, the Mediterranean,
the Middle East and Central Asia [1]. More than two-thirds of new cases of CL occur in six countries:
Afghanistan, Algeria, Brazil, Colombia, Iran and Syria. An estimated 0.7 million to 1.3 million new
cases occur worldwide annually [1,2]. Anthroponotic CL (where humans are the major reservoir of
the parasite) is predominantly urban and periurban and shows patterns of spatial clustering similar
to those of anthroponotic visceral leishmaniasis (VL) in South-East Asia. The epidemiology of CL is
complex, with intra- and inter-specific variation in transmission cycles, reservoir hosts, sandfly vectors,
clinical manifestations and response to therapy, and there are multiple circulating Leishmania species in
the same geographical area [1–4].

Leishmaniasis epidemiology in Spain: Human leishmaniasis in the Mediterranean basin,
including Spain, is an endemic zoonotic disease. In Spain, the vector involved in the transmission of
the leishmania parasite is a sandfly of the Phlebotomus genus (primarily P. perniciosus), which is active
between May and October, and dogs are the main reservoir [5,6]. During 2000 to 2009, an average
of 20 leishmaniasis cases was reported per year in the Madrid autonomous community (with an
annual incidence rate of around 0.5 per 100,000 inhabitants) [5]. However, during the last quarter
of 2010, a fivefold increase in the number of cases was detected, compared with the number seen
in the previous years. Subsequent research confirmed that an outbreak of leishmaniasis started in
July 2009 in the south-west area of the region of Madrid, mainly affecting four geographically close
municipalities [7]. The surveillance system for canine leishmaniasis did not detect any increase in
prevalence during the period. Improvements in sanitation and disinfection in affected areas were
also carried out as control measures [5]. Xenodiagnosis studies found that hares may have played
a role as active reservoirs for the leishmania parasite [8]. The discovery of the new reservoir initially
posed a challenge for controlling the outbreak. Rabbits were also known to be sources of blood meal
for the vector species before this outbreak. Although dogs are the main reservoir host, hares are
suspected to be a potential culprit for the surprising increase of cases during this outbreak. This was
the largest reported community outbreak of leishmaniasis in Europe, despite Spain being one of the
most economically-developed nations in the world, with continued intervention measures to control
the disease [5].

Leishmaniasis epidemiology in Colombia: Colombia is one of two countries in the America region
with highest number of leishmaniasis cases [1,9]. In 2016, about 10,743 new cases of leishmaniasis
were reported from the country [10]. About 99.3% of all cases that occur in Colombia are CL, and the
rest are infected with other forms of leishmaniasis [11]. The disease prevails in much of the country,
moving from sylvatic to domestic cycles; parasites that are in jungle scenarios reach urban areas due to
human movement [1,12]. CL outbreaks caused by L. braziliensis, L. panamensis and L. guyanensis are
associated with intra- and peri-domiciliary transmission, which have been reported since 1984 [1,13,14].
Ramirez et al. [1] using data collected from 1980 to 2001, confirmed the leishmania species that caused
CL in Colombia, and found L. panamensis (61.3%, 201 of 327 isolates), L. braziliensis (27.1%, 88/327),
L. infantum chagasi (4%, 12/327), L. mexicana (2.1%, 8/327), and L. amazonensis (2.8%, 9/327) to be the
primary species. In Colombia, CL is the most common manifestation in army personnel, who are the
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most vulnerable population, due to the continuous deployment of troops to forested areas of high
endemicity and high density of the insect vector [15].

Health disparities: A central aspect of disparities is to identify and study differences in health
status between groups, which negatively impact less advantaged groups. These differences could
be because of socioeconomic status, gender and ethnicity disparities, and accessibility to health care
and interventions. For example, despite the United States’ economic dominance and status as one
of the most developed countries, an estimated 12 million Americans living in poverty suffer from at
least one neglected tropical disease (NTD) [16]. While there are immense challenges to systematically
investigating the potential impact of health disparities on an outbreak, overall potential of transmission
and size of an infection for distinct populations can be estimated via metrics such as reproduction
number, inoculation rate, epidemic size, vectorial capacity, and so forth. In this study, we modeled
leishmaniasis outbreaks in the regions of Madrid, Spain and in Tolima, Colombia, as two ‘distinct’
populations to study differences in transmission potential. Spain's healthcare system is regularly rated
among the world’s best (with ~90% of patients accessing public healthcare and ~20% accessing some
part of private healthcare) and spends about 10% of its gross domestic product (GDP) on healthcare.
State healthcare guarantees universal coverage, although one may have to travel far to find, or wait
a significant time to access, a public healthcare facility. On the other hand, Colombia ranks 22nd on
the WHO’s list of the best healthcare systems, with private healthcare establishments accounting for
around 57% of establishments (thus, relatively rapid access to healthcare). Total expenditures on health
constitute around 7% of Colombia’s GDP; however, urban and rural areas have significant differences
in access to health care (see Table in the Supplementary Material, Section S.1, for details on potential
health disparity between Spain and Colombia). Here, we do not aim to identify (or study) specific
factors for health disparity leading to a leishmaniasis epidemic. However, a general discussion of
the potential impact of health disparity on the disease outbreak is provided. Significant social and
environmental data are needed to truly capture the differences and study the role of health disparity
in the transmission dynamics of CL.

Mathematical modeling study of leishmaniasis and reproduction number: Initial mathematical
models of CL transmission dynamics were developed by Dye et al. [17,18], in which they analyzed
simple discrete-time epidemic models to study the mechanism behind observed inter-epidemic periods
and the intensity of infection in dog reservoirs. Other studies included models with heterogeneous
biting among age-structured dog populations and used serological data for the dog population in
Gozo, Malta to estimate the basic reproduction number [19], a quantity that measures the intensity
of an outbreak. Formally, the basic reproduction number (R0) of an infection can be interpreted as
the average number of new cases generated by a typical infectious individual over the course of its
infectious period, in an otherwise uninfected population. It is a key parameter, the value of which
characterizes the transmission potential of an epidemic and hence, is often used to inform the potential
effectiveness of intervention strategies. There are various ways to estimate R0 [20,21]. Here, we derive
three novel methods to estimate R0 for a CL outbreak via a mathematical model with region-dependent
features. The methods are tested using data from two ecologically distinct regions—Madrid (a city in
a ‘developed’ country, Spain) and Tolima (a city in a ‘developing’ country, Colombia)—as a case study.
In the literature, models have especially been used to estimate R0 [18] (see Table 1 for review on R0

estimates); however, such studies have used data primarily from different unrelated studies to collect
point estimates of model parameters instead of applying a rigorous parameter estimation procedure.
In the present study, we developed mathematical procedures for the estimation of model parameters
via fitting the model to temporal incidence data, using three different techniques.
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Table 1. Estimates of reproduction number (R0) from studies in the literature.

Study Estm of R0 Model’s Feature Data Used Region; Disease

Dye et al. 1992 [17] 11 Dog hosts Seroprevalence Gozo island, Malta; CL

Reithinger et al.
2003 [22] 1.9 Dog hosts Seroprevalence Huánuco, Peru; CL

Bacaer et al.
2006 [23] 1.94

Seasonality in
sandflies; intrinsic

latent period
distribution

Incidence Chichaoua, Morocco; CL

Carlos Rosales et al.
2007 [24]

4.689 (Rio Blanco),
1.948 (Las Carmelitas)

Human hosts,
canine hosts Incidence Rio Blanco & Las

Carmelitas, Argentina; CL

Chaves 2018 [25]

1.64 (Constant
mortality), 1.22

(smoothed variable
mortality)

Dog hosts Seroprevalence Rural village, Panamá; CL

Biswas 2017 [26] 3.81 Human hosts Incidence South Sudan; VL

Costa et al.
2013 [27]

1.09 (low endemic),
1.29 (high endemic) Dog hosts Seroprevelence Latin America; CL

Stauch et al.
2011 [28] 3.94 Human hosts Incidence Indian subcontinent; VL

Mubayi et al.
2010 [29] 1.3–2.1 Human hosts Incidence Bihar, India; VL

Research focus of the study: This study attempts to understand three major CL outbreaks, the first
one in Madrid, Spain from 2009 to 2012 and the second and third outbreaks in Tolima, Colombia—both
occurred in 2016. The outbreak in Madrid was started mainly by dogs, which are reservoir hosts of the
disease, and the outbreaks in Tolima initiated because of the movement of soldiers, particularly those
coming from the jungle to urban areas after staying in forestlands for long periods of time. In this
work, we study the dynamics of CL in Spain and Colombia using a simple vector-borne disease model,
while incorporating local characteristics and data on the disease. We used the country-specific model
to estimate the transmission potential of each of three outbreaks via three novel parameter estimation
procedures. These two regions were selected because of their distinct characteristics related to the
disease and to highlight the comparison of the transmission potential between the ecologically and
economically different regions. The estimated model parameters were then used to estimate the local
reproduction number for each outbreak and each region. The difference in the basic reproduction
number between regions could shed light on potential differences in health inequality, population
immunity and transmissibility of leishmaniasis. This information is also important for designing
effective control policies.

2. Materials and Methods

We used outbreak specific-models for the two regions—Madrid and Tolima—and estimated their
parameters using three different estimation methods (methodologies shown in Figure 1; details of the
methods are provided in later sections).



Trop. Med. Infect. Dis. 2018, 3, 43 5 of 22

Trop. Med. Infect. Dis. 2018, 2,  5 of 23 

 

 
Figure 1. Types of models and estimation methods used in this article. 

2.1. Data Sources 

2.1.1. Data Sources for Madrid, Spain 

The data corresponding to the 2009–2012 CL outbreak in communities of Madrid, Spain were 
collected (Figure 2) for the study by Mar Noguerol Álvarez et al. [30]. These reported data consisted of a 
monthly collection of new cases over the four-year period. The epidemic started in July 2009 (7th month 
of the year), ended in March 2012 and resulted in 156 total cases. The patients were primarily reported 
from four communities, namely, Fuenlabrada, Leganés, Getafe, and Humanes de Madrid.  

 
Figure 2. Reported number of new cases of cutaneous leishmaniasis (CL) from southwest communities of 
Madrid from July 2009 to March 2012. 

The mean incidence was found to be 14 cases per 100,000 inhabitants during this period. The 
incidence rate during the 2009 to 2012 epidemic was much higher than the corresponding rate during the 
2000 to 2009 period from the same regions (between 1 and 6 new cases per year or incidence rate of less 
than 1 per 100,000 inhabitants). More than 60% of reported cases were male with a mean age of 46 years. 
L. infantum was identified as the causative pathogen species. It is important to note that around one 
quarter of cases had contact with dogs in one or more places in the domestic or peridomestic 

02
46
81012141618

0 10 20 30 40 50

In
ci

de
nc

e 
ca

se
s

Month

Figure 1. Types of models and estimation methods used in this article.

2.1. Data Sources

2.1.1. Data Sources for Madrid, Spain

The data corresponding to the 2009–2012 CL outbreak in communities of Madrid, Spain were
collected (Figure 2) for the study by Mar Noguerol Álvarez et al. [30]. These reported data consisted of
a monthly collection of new cases over the four-year period. The epidemic started in July 2009 (7th
month of the year), ended in March 2012 and resulted in 156 total cases. The patients were primarily
reported from four communities, namely, Fuenlabrada, Leganés, Getafe, and Humanes de Madrid.
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Figure 2. Reported number of new cases of cutaneous leishmaniasis (CL) from southwest communities
of Madrid from July 2009 to March 2012.

The mean incidence was found to be 14 cases per 100,000 inhabitants during this period.
The incidence rate during the 2009 to 2012 epidemic was much higher than the corresponding rate
during the 2000 to 2009 period from the same regions (between 1 and 6 new cases per year or incidence
rate of less than 1 per 100,000 inhabitants). More than 60% of reported cases were male with a mean
age of 46 years. L. infantum was identified as the causative pathogen species. It is important to note
that around one quarter of cases had contact with dogs in one or more places in the domestic or
peridomestic environment. The present study uses these 2009–2012 epidemic data from Madrid and
estimates the basic reproduction number for the outbreak using a mathematical model.
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2.1.2. Data Sources for Tolima, Colombia

The CL epidemic was observed in Tolima, Colombia in 2016 (Figure 3). The epidemic data
representing new cases per week were obtained from the National Institute of Health’s Weekly
Bulletin [10]. The outbreak started during the first week of January of 2016 (epidemiological week
1) and ended during the first week of January of 2017 (epidemiological week 53). There were two
consecutive outbreaks resulting in 3223 total reported cases. The second outbreak might have been
a result of heavy movement of troops back to the city from forest areas as a result of peace deal signed
between government and Revolutionary Armed Forces of Colombia (FARC) rebels. The first outbreak
occurred between week 1 and week 35 and the second outbreak occurred between week 36 and week
53. The highest number of reported cases (~149) occurred on 15 May (~week 20) and 15 November
(~week 46). In this study, we use these two outbreaks in Tolima and estimate the corresponding basic
reproduction numbers using a mathematical model.
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2.2. Model Description

2.2.1. Mathematical Model for CL Epidemic in Madrid, Spain

Since dogs are the major reservoir of the disease in Spain, we considered a transmission dynamics
model consisting of human (represented by subscript ‘h’), dogs (represented by subscript ‘A’), and
sandfly vector (represented by subscript ‘v’) populations [16]. The susceptible, infectious and recovered
subcategories for the three populations are represented by X, Y, and Z, respectively. The flowchart of
the epidemic model for the Madrid outbreak is illustrated in Figure 4. The model equations are given
in Supplementary Material (Section S.2) and state variables and parameters are explained in Table 2.Trop. Med. Infect. Dis. 2018, 2,  7 of 23 
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Table 2. Variables and parameters of model used for Madrid.

Symbol Definition

Parameters

Reduced Model

sh(0) Initial size of susceptible population
β Effective transmission rate

γh Per capita recovery rate
R2

0 Basic reproduction number

µh Per capita natural mortality rate in humans
ah Average number of bites received by a human

βvh Probability of transmission from vector to human in a bite
µv Per capita natural mortality rate in vectors
bv Average biting rate (avg. vector bites/(human or dog)/time

βhv Probability of transmission from human to vector in a bite
βAv Probability of transmission from dog to vector in a bite
µA Per capita natural mortality rate in dogs
βvA Probability of transmission from vector to dog in a bite
αA Average number of bites received by a dog

Variables

Xh Number of susceptible humans
Yh Number infected humans
Zh Number of recovered humans
Xv Density of susceptible vectors
Yv Density of infected vectors
XA Number of susceptible dogs
YA Number of infected dogs

Here, Nh, Nv and NA represent the total population of humans, vectors and dogs, respectively.
We assume these populations to be constant by taking equal natural birth and death rates (where, µh
and µA represented both birth and death per capita rates for the three populations). The probability
of a vector choosing a human to bite is Nh

Nh+NA
and therefore, a human receives ah

Nv
Nh

Nh
Nh+NA

bites per

unit time and a vector takes ah
Nh

Nh+NA
human blood meals per unit time. Hence, the infection rates per

susceptible human and susceptible vector are given by

βvhah
Nv

Nh

Nh
Nh + NA

Yv

Nv
=

βvhah
Nh + NA

Yv and βhvbv
Nh

Nh + NA

Yh
Nh

=
βhvbv

Nh + NA
Yh,

respectively. Similarly, the probability that a vector bites a dog is NA
Nh+NA

. Hence, a dog receives

αa
Nv
NA

NA
Nh+NA

bites per unit time and a vector takes αa
NA

Nh+NA
dog blood meals per unit time. Hence, the

infection rates per susceptible dog and susceptible vector are given by

βvAαA
Nv

NA

NA
Nh + NA

Yv

Nv
=

βvAαA
Nh + NA

Yv and βAvbv
NA

Nh + NA

YA
NA

=
βAvbv

Nh + NA
YA,

respectively. The corresponding model’s equations are included in the Supplementary Material
(Section S.2.1).

2.2.2. Mathematical Model for CL Epidemic in Tolima, Colombia

Since the movement of military personal from the forest to civilian regions resulted in
an unprecedented higher number of cases in Colombia, we considered the transmission dynamical
model consisting of civilian (represented by subscript ‘c’), military (represented by subscript ‘m’)
and sandfly vector (represented by subscript ‘v’) populations interacting with each other [16].
The susceptible, infectious and recovered subcategories are represented by S, i, and R, respectively.
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The model framework that is used for the two Tolima, Colombia outbreaks is illustrated in the flow
chart in Figure 5. The model state variables and parameters are explained in Table 3.
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Table 3. Variables and parameters of the model used for Tolima, Colombia.

Symbol Definition

Parameters

Reduced Model

sh(0) Initial size of susceptible population
β Effective transmission rate

γh Per capita recovery rate
R2

0 Basic reproduction number

Variables

Sv Density of susceptible vectors
iv Density of infected vectors
Sc Number of susceptible civilians
ic Number of infected civilians
Rc Number of recovered civilians
Sm Number of susceptible military individuals
im Number of infected military individuals

The civilian or military susceptible population moves to the class of infected population by the
bite of an infected vector biting at the rate b. Similarly, the susceptible vector population moves to the
infectious class by the bite of a female vector to an infected civilian or military. For each population, the
total recruitment rate is Λc, Λm and Λv and the per capita death rates are µc, µm and µv. The recovery
rate for the civilian population is γc. It is assumed that proportion q of the traveling military individuals
move to the town are infected and proportion (1-q) are assumed to be susceptible. The corresponding
model’s differential equations are included in the Supplementary Material (Section S.2.2).

We assumed two different new incoming rate parameters each for civilian (Λc) and military (Λm)
populations. The incoming rate for military incorporate two constant rates: the net recruitment rate
in military from civilian population and the net movement rate from other surrounding areas to the
modeled region of Tolima. The recruitment into military occurs at national (country) level. In urban
areas of Tolima, Colombia, military populations are stationed in battalion camps, which are typically
on the outskirts of the urban areas. These military camps have all relevant facilities but only limited
interactions with civilians occur. This is to ensure safety of military individuals (as they fight with
local guerillas, who are often friendly with civilians) and to maintain secrecy of military operations.

3. Analysis

The well-known Ross-Macdonald model, developed in 1911, formally initiated the field of
modeling of complex transmission cycles of vector borne diseases [31] and provided a theoretical
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support for understanding the dynamics of those infections. The key quantities such as the basic
reproduction number, vectorial capacity and inoculation rates derived from the analysis of vector-borne
models become the central to the quantification of transmission. Once the model parameters are
estimated, these quantities can be easily computed. Here, we develop the enhanced expression and
estimate of some of these quantities using region-specific characteristics and data.

3.1. Reproduction Numbers

The type-reproduction number (RT) for a specific host type is interpreted as the average number of
secondary cases of that type produced by the primary cases of the same host type during the entire
course of infection. It takes into account not only the secondary cases directly transmitted from the
specific host but also the cases indirectly transmitted by way of other types, who were infected from the
primary cases of the specific host with no intermediate cases of the target host. It is a useful measure
when a particular single host type is targeted in the disease control effort in a community with various
types of host [32]. RT can be seen as an extension of R0 in a sense that the threshold condition of the
total population growth can be formulated by the reproduction process of the target type only.

The next generation matrix NGM using Figure 6 can be computed as K =

 0 K12 0
K21 0 K23

0 K32 0

,

and hence, the basic reproduction number is R0 = ρ(K) =
√

K12K21 + K32K23 =
√

Rh1
0 Rv1

0 + Rh2
0 Rv2

0 ,
where Kij represents average number of new infections among the susceptible of type i, generated
by an infected of type j. Note, for vector borne diseases, infected host of type 1 cannot directly infect
susceptible host of type 3 and vice versa, and type 2 represents the vector. The type reproduction
number for Type One is

RT1 = K21K12 + K21(K32K23)K12 + K21(K32K23·K32K23)K12 + · · · =
K12K21

1− K32K23
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If K32K23 > 1 then the series fails to converge and Type Three hosts, NH2, is a reservoir of infection.
The type reproduction numbers of Type Two and Type Three, respectively, are RT2 = K21K12 + K32K23

and RT1 = K23K32
1−K12K21

.
The next-generation matrix (NGM), introduced by Diekmann et al. [33], provides a procedure

to derive the basic reproduction number, R0. This matrix (often denoted by K = [kij]) gives the average
number of new infections among the susceptible individuals of type i, generated by an infected
individual of type j and R0 is identified as its dominant eigenvalue (that is, R0 = ρ(K)). In some special
models, K = F × V−1, where F is the new generation matrix and V represents the transition matrix [34].
However, this is not true for vector-borne models with multiple hosts, as is the case in this study. Note,
R0 < 1 i f f RTi for all host type i and if RTi > 1 then host type i is a reservoir of infection.

For the K = [kij], one identifies the set of targeted entries S, that is, the set of entries in K that
are subject to change in control. The target matrix KS is identified as [KS]ij = kij if (i,j) ∈ S, and zero
otherwise. The target reproduction number, RS is defined as RS = ρ(KS·(I − K + KS)−1) provided that
ρ(K − KS) < 1, where I is the identity matrix [35]. The last condition can be referred to as the condition
for controllability, since if the spectral radius is greater than 1 then the disease cannot be eliminated
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by targeting only S (in such case, RS is not defined [36]). The controlled NGM, Kc, is formulated by
replacing the entry kij in K by kij/RS whenever (i,j) ∈ S.

Typically, in the case of the simple one-host vector-borne epidemic model, the computed basic
reproduction number is given by R2

0 = Rh
0Rv

0, where Rh
0 represents average number of human cases

generated by one vector and Rv
0 is the average number of vector cases generated by one host. Therefore,

the basic reproduction number R0 gives the average number of secondary infectious hosts (or vectors)
produced by one primary infectious hosts (or vector) introduced in completely susceptible populations
of hosts and vectors. The effective reproduction number Re f f (t) can be defined as product of partial
effective reproduction numbers Rh

0·(Sh(t)/Nh(t)) and Rv
0·(Sv(t)/Nv(t)) as

Re f f (t) =
(

Rh
0·

Sh(t)
Nh(t)

)
·
(

Rv
0·

Sv(t)
Nv(t)

)
(1)

where Sh(t), Nh(t), Sv(t), and Nv(t) represents number of susceptible hosts, total size of host
population, density of susceptible vectors, total density of vector population, respectively. At the time
of the beginning of epidemics, Re f f = R0 because all hosts and vectors in their respective populations
are susceptible. Moreover, for large time, the epidemics reaches a steady state, which occurs due to
Re f f = 1. Also, Reff formula could be used to numerically see the difference in Madrid and Tolima
outbreaks over time.

3.2. Mathematical Computations

3.2.1. Mathematical Computations for Spain Model

The basic reproductive number for the model (S1)–(S7) has the form

R2
0 =

βhvbvNh
(Nh + NA)(µh + γh)

βvhahΛ/µv

(Nh + NA)µv
+

βAvbvNA
(Nh + NA)µA

βvAαAΛ/µv

(Nh + NA)µv
. (2)

We transform the complex model (S1)–(S7) and we obtain the following effective simple
epidemic model

dXh
dt

= −βe f f XhYh (3)

dYh
dt

= βe f f XhYh − γe f f ,hYh (4)

dZh
dt

= γe f f ,hYh (5)

where γe f f ,h = γh + µh and

βe f f =
ahβvhbvβhvNvµA

µAµvN2
h + 2µAµvNhNA + µAµvN2

A − bvβAvNvαaβvANA
. (6)

The basic reproduction number for this model is

R2
0 =

ahβvhNhβhvbvNv

µv(Nh + NA)
2(γh + µh)

+
bvNvNAβAvαAβvA

µAµv(Nh + NA)
2 (7)

3.2.2. Mathematical Computations for Colombia Model

The basic reproduction number for the model (S25)–(S31) has the form

R2
0 =

b2β2ΛvΛm

Nvµ2
vµm(Nc + Nm)

+
b2β2ΛvΛc

Nvµ2
vµc(Nc + Nm)(µc + γc)

. (8)
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We transform the complex model (S25)–(S31) into an effective simple SIR model and obtain

dSc

dt
= −βe f f Scic (9)

dic
dt

= βe f f Scic − γcic (10)

dRc

dt
= γcRc (11)

and for the basic reproduction number we obtain

R2
0 =

β2b2Nc

µv(µc + γc)(Nc + Nm)
+

β2b2Nm

µv(µm + γm)(Nc + Nm)
(12)

Note, Equations (3)–(5) and (9)–(11) are similar.

3.3. Parameter Estimation Procedure

Three different methods were used to estimate model parameters and hence R0. Supplementary
Material (Section S.3) contains the detailed explanation of the parameter estimation procedures and
the corresponding codes.

3.3.1. Method 0 (Cumulative Incidence Technique)

Dividing Equation (3) by (5) and then integrating we can compute expression of Xh(t) in terms of
Zh(t). Since Yh(t) = 1− Xh(t)− Zh(t) and Xh(t) function of Zh(t), Equation (5) can be written only in
terms of single variable Zh(t). Expanding right hand side of this new equation using its Taylor series
and approximating only up to quadratic terms. Finally, integrating it to obtain the solution of Zh(t).

That is, the SIR model (3)–(5) can be solved approximately (see detailed computations in
Section 2.3.2 of [37]) as

Zh(t) =
ρ2
(

s
ρ − 1− αtanh(−0.5αγt + φ)

)
s

(13)

where s = Nh, β = βe f f , γ = γe f f ,h,

α =

√(
s
ρ
− 1
)2

+
2s
ρ2 . (14)

φ =
1
2

ln
(

αρ + s− ρ

αρ− s + ρ

)
. (15)

ρ =
γ

β
(16)

Furthermore, Xh(t) =
Xh(0)e

−Zh(t)

ρ and Yh(t) = 1− Xh(t)− Zh(t). Hence, cumulative incidence

by time t is
∫ t

0 βe f f Xh(l)Yh(l)dl or simply Zh(t). Similarly, the cumulative incidence formula
corresponding to the Equations (9)–(11)can be derived.

3.3.2. Method 1 (Incidence Technique)

Taking the temporal derivative of (13) we obtain the theoretical incidence curve given by

dZh
dt

=
1
2

ρ2α2γ

s cosh
(
− αγ

2 t + φ
)2 (17)
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3.3.3. Method 2 (Incidence Technique)

Another method to obtain the theoretical incidence is to use (13), discretize time and take the
difference between the two successive times, namely

Inc(t) =
ρ2
(

s
ρ − 1− αtanh

(
− αγ

2 t + φ
))

s
−

ρ2
(

s
ρ − 1− αtanh

(
− αγ

2 (t− 1) + φ
))

s
. (18)

This equation can be simplified as

Inc(t) =
ρ2α
(
tanh

(
− αγ

2 t + φ
)
− tanh

(
− αγ

2 t + αγ
2 + φ

))
s

(19)

3.4. Epidemiological Evaluation Metrics Using Components of R0

Once R0 is estimated, we can derive other epidemiological metrics for evaluation of an outbreak.
However, additional data may be also needed to compute some of these metrics. We do not use these
other metrics for comparison of the outbreaks in the two regions considered in this study.

Vectorial Capacity (VC) describes the potential for a vector population to transmit a parasite and
can be interpreted as the total number of potentially infectious bites that would eventually arise from
all the vectors biting a single perfectly infectious (i.e., all vector bites result in infection) human on
a single day. For the Madrid model and under the assumption of presence of only human host,

VC =
mb2

vβhvβvh pn

− ln(p)
.

where m is the number of vectors per hosts (i.e., Nv/Nh), n is the extrinsic incubation period and
p = e−µv is the probability of a mosquito surviving a day. In fact, VC = R0γh

βvh
can be written as

a function of R0 [38].
The Entomological Inoculation Rate (EIR) is in general defined as the number of infectious bites per

person per unit time and can be computed by multiplying the human biting rate with the fraction of
infectious vector [39]. In other words, EIR = (Nvbv)

(
Yv
Nv

)
= bvYv for the Madrid model and under

the assumption of presence of only human hosts.
Often, defining the risk associated with a host or with a region is needed. There are two types

of risk indexes commonly used for the vector borne diseases—the Transmission Risk Index and the
Vulnerability Risk Index. The transmission risk index for host i, TRi, is defined as the probability Pi that
a host i gets infected, multiplied by the secondary cases it generate. Thus, it is given by TRi = PiRhi

0 ,
where Pi =

Ni
∑ Nk

and summation is over only host populations. This index indicates the risk of the host
i becoming the main transmitter of the infection at the beginning of an epidemic. On the other hand,
we define the Vulnerability Risk index for host j, VRj, as the secondary infections in host j when another

host of type i ( 6=j) becomes infected first at the beginning of an epidemic. Thus, VRj = Rhj
0

(
∑i 6=j PiRvi

0

)
.

4. Results

Note, the next generation matrix NGM for the model in Figure 6 is K =

 0 K12 0
K21 0 K23

0 K32 0

.

Hence, the NGM for the Spain model is humans→ humans Humans→ vectors humans→ dogs
vectors→ humans vectors→ vectors vectors→ dogs

dogs→ humans dogs→ vectors dogs→ dogs

 =

 0 Khv 0
Kvh 0 Kvd

0 Kdv 0

 (20)
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and for the Colombia model is civilian→ civilian civilian→ vectors civilian→ military
vectors→ civilian vectors→ vectors vectors→ military
military→ civilian military→ vectors military→ military

 =

 0 Kcv 0
Kvc 0 Kvm

0 Kmv 0


The components of the K matrix for our two models are given by:

Spain K12 =
βvh ah Nh

(Nh+NA)µv
, K21 =

βhvbv

(
Λ
µv

)
(Nh+NA)(µh+γh)

, K32 =
βvAαA NA

(Nh+NA)µv
, K23 =

βAvbv

(
Λ
µv

)
(Nh+NA)µA

.

Columbia K12 =
bβ(Λc/µc)
(Λv/µv)µv

, K21 =
bβ(Λv/µv)

((Λc/µc)+(Λm/µm))(µc+γc)
, K32 =

bβ(Λm/µm)
(Λv/µv)µv

, K21 =
bβ(Λv/µv)

((Λc/µc)+(Λm/µm))µm

4.1. Estimates of R0 for Madrid-Spain

We use equation (13) to fit the observed curve of accumulated cases to estimate the model
parameters (that is, using Method 0; Figure 7) hence, obtaining

sh(0) = 711, β = 0.00048, γh = 0.0859, R2
0 = 3.9

and we use equation (17) to fit the observed curve of incidence obtaining the following estimated
values of the parameters (see Figure 8).

sh(0) = 629, β = 0.00057, γh = 0.1169, R2
0 = 3.1

We use equation (19) to fit the observed curve of incidence obtaining the following estimated
values of the parameters (see Figure 9)

sh(0) = 606, β = 0.00061, γh = 0.1312, R2
0 = 2.8
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Table 4 summarizes the estimates obtained in this case.

Table 4. Model parameter estimates for Madrid-Spain.

Method sh(0) βeff γh R2
0

EAC 1 711 0.000481 0.08593 3.9
EIC1 2 629 0.000569 0.11699 3.1
EIC2 3 606 0.000614 0.13117 2.8

1 Estimation using the observed curve of accumulated cases (EAC or Method 0), 2 Estimation using the observed
incidence curve (EIC1 or Method 1), 3 Estimation using the observed incidence curve (EIC2 or Method 2).
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The details of the estimation procedure and confidence interval are given in the Supplementary
Material, Section S.3.1. The results suggest that around 626 individuals (with range of 606-711) were
at-risk of CL in Madrid before 2009-2012 outbreak (see Table 4). The estimated reproduction number
of the Madrid CL outbreak was found to be 3.1 with range from 2.8 to 3.9 (see Table 4).

4.2. Estimates of R0 for Tolima-Colombia

4.2.1. Tolima First Outbreak

In this case, we use similar methods to estimate the parameters of the respective model
(see Supplementary Material Section S.3.2) obtaining the following results for the two outbreaks.
The parameter estimation is carried out using three methods (the fitting are shown in Figures 10–12).Trop. Med. Infect. Dis. 2018, 2,  16 of 23 
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The details of the estimation procedure and confidence interval are given in the Supplementary
Material, Section S.3.2. The results suggest that around 6656 individuals (with range of 5288–7301)
were at-risk of CL in Tolima-Colombia before 2016 outbreak (see Table 5). The estimated reproduction
number of the Tolima CL outbreak was found to be 1.2 (see Table 5).

Table 5. Model parameter estimates for Tolima, Colombia (first outbreak).

Method sc(0) βeff γc R2
0

EAC 1 5,288 0.000272 1.13165 1.3
EIC1 2 6,656 0.000266 1.47689 1.2
EIC2 3 7,301 0.000272 1.69342 1.2

1 Estimation using the observed curve of accumulated cases (EAC or M0), 2 Estimation using the observed incidence
curve (EIC1 or M1), 3 Estimation using the observed incidence curve (EIC2 or M2).

4.2.2. Tolima Second Outbreak

In this case also the parameter estimation is carried out using the same three methods (the fitting
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The details of the estimation procedure and confidence interval are given in the Supplementary
Material, Section S.3.2. The results suggest that the estimated reproduction number of the Tolima CL
second outbreak was found to be 1.02 (see Table 6).
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Table 6. Model parameter estimates for Tolima, Colombia (second outbreak).

Method sc(0) βeff γc R2
0

EAC 1 41,031 0.000412 16.59690 1.019
EIC1 2 38,706 0.000382 14.47438 1.021
EIC2 3 44,325 0.000384 16.71430 1.018

1 Estimation using the observed curve of accumulated cases (EAC or M0), 2 Estimation using the observed incidence
curve (EIC or M1), 3 Estimation using the observed incidence curve (EIC or M2).

4.3. Comparison of Estimates of R0 between Two Regions

The estimates of the basic reproduction number for Madrid outbreak was around three times
more than the estimates of the reproduction number for Tolima outbreaks (see Table 7). The first
outbreak of Tolima has larger reproduction number as compared to the corresponding number for the
second outbreak.

Table 7. Comparison of estimates of the basic reproduction number for the outbreaks.

Madrid, Spain:

Using accumulated cases (Method 0) R2
0 = 3.9

Using incidence derivative (Method 1) R2
0 = 3.1

Using discrete incidence (Method 2) R2
0 = 2.9

Tolima, Colombia (first outbreak)

Using accumulated cases (Method 0) R2
0 = 1.3

Using incidence derivative (Method 1) R2
0 = 1.2

Using discrete incidence (Method 2) R2
0 = 1.2

Tolima, Colombia (second outbreak)

using accumulated cases (method 0) R2
0 = 1.01

using incidence derivative (method 1) R2
0 = 1.02

Using discrete incidence (Method 2) R2
0 = 1.02

5. Discussion

Proper surveillance is crucial for controlling leishmaniasis in endemic countries; however, there is
a need to develop methods that can measure disease transmission rates effectively using existing
limited data [29] and can be used to evaluate control programs [40]. Leishmaniasis-affected regions are
primarily resource-constrained and hence face various challenges to gathering regular comprehensive
data. In such scenarios, model-driven decisions might be helpful and can provide understanding
of region-specific transmission dynamics [37]. In this study, we provide methodologies to estimate
the basic reproduction number, R0, for CL with regional dependent factors. The estimation methods
were tested using case studies from the two economically contrasting regions, Madrid, Spain and
Tolima, Colombia. The Madrid model considers dog reservoir hosts (since most cases had contact with
infected dogs) whereas the Tolima model takes into account the movement of military personnel on
the transmission dynamics of CL. The three estimation procedures were developed for the two models
to estimate their parameters using reported incidence data. Unlike the traditionally used estimating
process, in which point estimation of model parameters is taken directly from independent studies
reported in the literature, the methods in this research provide a simple but consistent way to estimate
model parameters. The estimation of model parameters is followed by the estimation of the basic
reproduction number, R0, and the computation of various epidemiologically important quantities,
the type reproduction number (RT) vectorial capacity (VC) and entomological inoculation rates (EIR).

Prior to the estimation of model parameters, outbreak-related CL incidence data from the two
ecologically and epidemiologically different regions (Tolima, Colombia and Madrid, Spain) are first
analyzed. Various differences are found in the outbreaks: (i) The Madrid incidence data were in months
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whereas the Tolima data were collected every week (this suggests a difference in the reporting systems
of the two countries and potentially different infectious and latent periods between the regions),
(ii) The outbreak in Madrid peaked in winters (Dec and Jan) as compared to the outbreak in Tolima,
where the highest incidence was observed in Spring (April) and fall (in October), (iii) Each of the
Tolima outbreaks was short lived (1/2 year) whereas the outbreak in Madrid lasted for 3 years (the
Madrid outbreak was from 2009 to 2012 whereas the two Tolima outbreaks both occurred during 2016),
(iv) there were two successive outbreaks in Tolima whereas there was a single outbreak in Madrid (the
first outbreak in Tolima was much more lethal than its second outbreak), and (v) Dog reservoirs were
important in the Madrid transmission cycle but in the Tolima outbreak, the frequently moving military
population played a critical role in its spread.

The key parameter describing the spread of an infection is the basic reproduction numbers, R0,
which is defined as the number of secondary infections generated by an infected index case in otherwise
susceptible population. This study uses mathematical models to estimate R0 for the 2009–2012 CL
outbreak in Madrid and the two CL outbreaks in Tolima during 2016. The mean estimates of R0 are
found to be 3.1 for Madrid, 1.2 for the first outbreak of Tolima and 1.01 for the second outbreak of
Tolima. The R0 estimate for Madrid seems to be significantly higher than corresponding estimate for
Tolima. This could be a result of differences in the population density (60 persons/km2 in Tolima
vs. 5400 persons/km2 in Madrid), climatic factors, human mobility, and/or health disparities in
sub-communities [41]. In the Madrid outbreak, dogs were the main reservoir host, P. perniciosus was
the principal vector of leishmania and L. infantum was the primary parasite species [5]. Epidemic
outbreaks of CL in Tolima were caused by L. braziliensis, L. guyanensis and L. panamensis, with intra- and
peri-domiciliary transmission. The military showed the highest incidence of CL due to the continuous
deployment of troops to areas of high endemicity.

Risk factors for CL such as urbanization, malnutrition, health seeking behaviors and disparity
have been reported in the literature [42]; however, their impact on the dynamics of CL is less known [43].
This study attempts to provide a simple framework by which the impact of risk factors can be captured
using limited reported data. We made some simplifying assumptions to reduce the dimension of
the models and to obtain an explicit analytical formula for estimating R0. The data used here for
fitting the model were obtained through passive case detection and therefore may be prone to high
underreporting. Nevertheless, the results in this study suggest a One Health perspective, for example,
if animals are key reservoirs of CL, interventions should not be human focused only, instead control
programs should be heterogeneous, focusing on both human and animal hosts [44]. It suggests
identification of disease-affected communities also in Blue Marble Health countries, wealthy nations
with high GDP but also high endemicity of neglected diseases in hidden pockets [41]. Thus, the current
estimation study needs to also include proper cost analysis in order to study transmission dynamics
comprehensively [45]. As more data accumulate in the future, a more thorough analysis will allow for
more accurate estimates of R0, together with less uncertainty around them and greater understanding
of impact of socio-economic conditions on its estimates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2414-6366/3/2/43/s1,
Figure S1: Cumulative cases of leishmaniasis in the Madrid from July 2009 to March 2012, Figure S2: Cumulative
cases of leishmaniasis in Tolima-Colombia during 2016, Figure S3: Flow chart representing the second
mathematical model for Tolima.
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