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Abstract: Mass drug administration (MDA) for control of schistosomiasis is likely to affect
transmission dynamics through a combination of passive vaccination and reduction of local
transmission intensity. This is indicated in phenomenological models of immunity and the impact
of MDA, yet immunity parameters in these models are not validated by empirical data that reflects
protective immunity to reinfection. There is significant empirical evidence supporting the role
of IgE in acquired protective immunity. This is proposed to be a form of delayed concomitant
immunity, driven at least in part by protective IgE responses to the tegument allergen-like (TAL)
family of proteins. Specific questions have arisen from modeling studies regarding the strength and
duration of the protective immune response. At present, field studies have not been specifically
designed to address these questions. There is therefore a need for field studies that are explicitly
designed to capture epidemiological effects of acquired immunity to elucidate these immunological
interactions. In doing so, it is important to address the discourse between theoretical modelers
and immuno-epidemiologists and develop mechanistic models that empirically define immunity
parameters. This is of increasing significance in a climate of potential changing transmission dynamics
following long-term implementation of MDA.
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The age-infection intensity curve for all three major human-infecting schistosomes follows a
pattern of increasing intensity through cumulative exposure until adolescence. After this infection
intensities drop, irrespective of water exposure patterns [1]. It is therefore proposed that protective
immunity is acquired with cumulative experience of infection. Once an individual has been exposed to
a threshold of antigen, an effective immune response is mounted. Experience of infection is determined
by either duration of infection or intensity of exposure. Since individuals in high-transmission areas
are exposed to a higher level and greater diversity of antigens earlier in their lifetime, peak infection
intensity is greater and occurs at an earlier age, when compared to areas of lower infection intensity [2].
This observation is termed the ‘peak shift’ [3,4]. Treatment with the antihelminthic praziquantel has
been the cornerstone of morbidity control since the 1980s. Praziquantel kills adult schistosome worms,
thereby providing passive immunisation through an antigenic stimulus delivered as adult worms die.
Chemotherapy affects the development of individual protective immunity [4–6], but may also have
the potential to considerably affect transmission at the community level [7].

Theoretical models are useful for policy making and can be used in both planning and evaluating
the impact of control interventions on a broad epidemiological scale. For theoretical models of
transmission to be useful they must have sufficient biological basis. The challenge of developing
a schistosomiasis transmission model is in striking the balance between reality and parsimony.
Schistosomiasis is highly focal, demonstrating significant spatial heterogeneity both between village
and within village. This has been empirically demonstrated when studying the social, behavioural
and cultural determinants of transmission on a microgeographical scale [8]. Likewise, immunological
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processes are studied on a microgeographical scale, relevant to the mechanisms and pathways that
drive the development of immunity within populations studied. A model that aims to independently
quantify the contribution of each modifying factor will be complex and prove challenging to draw
useful analytical conclusions from [9,10]. Furthermore, model validity is likely to be restricted to the
population against which the model is tested. Population and environmental heterogeneities may,
however, play a significant role in dictating transmission dynamics [11].

The computational predictions of mathematical models are only as good as the data against which
they are calibrated and validated. Models are based upon the existing knowledge of biological processes
and the data available to describe and quantify these interactions [12]. Recent studies continue to base
the dynamics of infection solely on the explanation of variable exposure with age [13–15], despite
considerable field evidence to support the role of acquired immunity. It is important that models
evolve alongside the emergence of experimental evidence supporting model parameterization [16].
When immunological concepts have been modeled, immune processes have typically been described
phenomenologically, with interactions based on assumptions with limited empirical backing [12].
A shortage of field data to inform quantitative estimates for parameter values and limits to theoretical
understanding have frequently been cited as reasons for not exploring the contribution of immunity to
transmission dynamics in more detail [13,17]. Furthermore, immuno-epidemiological studies have not
historically been designed to provide empirical evidence for parameter values directly [16,17].

1. Required Immunological Parameters

“A closer collaboration between biometricians and parasitologists, and a better acquaintanceship
of each with the methods of the other, is one of the most useful things we can work for today” [18,19].

When studying the dynamics of infectious diseases interdisciplinary collaboration is essential.
This is particularly important in cases of such complex social and ecological interactions as
schistosomiasis. It is therefore important to identify specific areas where there is a greater need
for quantitative estimates of model parameters. This is especially important with the recent clear shift
from a focus on control towards discussion of elimination efforts. Subsequently, a number of recent
models have attempted to predict the requirements and impacts of mass drug administration (MDA)
in reaching proposed elimination targets [13,20,21].

It has been argued that models that do not incorporate the dynamics of acquired immunity
lack power in reproducing age-intensity profiles [13,22] and may overestimate the positive impact of
control achieved by MDA [23,24]. This would occur if reduced transmission delays the development
of immunity. Existing transmission models incorporating protective immunity suggest that worm
lifespan and the rate of immune decay significantly contribute to the magnitude of specific antibody
response [5,20]. Moreover, as many communities have now experienced access to mass drug
administration with praziquantel, to a varying degree [25], fluctuations in antibody magnitude are
likely to be occurring. There is therefore a need for field studies that are explicitly designed to capture
epidemiological effects of acquired immunity. This will aid model development through provision of
parameter estimates for transmission models [9].

The following gaps in our theoretical understanding and data requirements have been
highlighted in phenomenological examination of immune responses, some of which relate to
immuno-epidemiological study design, some specifically to immune mechanisms:

• Information on the demographic profile of communities from which immunological cohorts are
drawn [15].

• Longitudinal studies of age-specific correlations between parasite burden and immune responses,
incorporating individual data from a full range of age classes, in addition to comparison of
communities with differing overall levels of endemic infection [13,26].

• Better knowledge of patterns of exposure experienced by immuno-epidemiological cohorts [26],
requirement for water contact studies including cultural and sociological analysis [8].
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• Specific analysis of age-dependent immunological parameters, including immunological
responsiveness (strength of protective response) and loss of immunological memory [5,20,26],
with particular reference to the parameterisation of protective immunity.

• Effects of inappropriate responses such as blocking antibodies and parasite-induced
immunomodulation [26].

• The impact of immune responses that affect parasite fecundity and host excretion of eggs [20,26].

2. Delayed Concomitant Immunity

Mechanisms that confer partial immunity to schistosomes are not fully understood due to
reliance on immuno-epidemiological evidence, with the murine experimental model being largely
inappropriate for modelling human resistance to infection. However, levels of IgE specific to
schistosome antigens, particularly antigens derived from the adult worm (SWA), are negatively
associated with reinfection in studies examining all three major human-infecting schistosomes [27–29].

While historically a switch in the balance between SWA-IgE and the blocking antibody SWA-IgG4
was proposed as the key to immunity, with adults having a greater SWA-IgE:IgG4 ratio than
children [30,31], the current leading hypothesis of the mechanism of immunity is that exposure
to worm death is required for the development of immunity [2,6]. This has been referred to as delayed
concomitant immunity [32], a development on the concomitant immunity first described by Smithers
and Terry, in which established live worms mediate an immune response that prevents establishment
of further parasites [33]. In the model of delayed concomitant immunity, the source of antigen to which
the IgE is raised is the adult worms, upon worm death, while the focus of immune attack remains
the early schistosomule. From an evolutionary point of view, this represents a stand-off between the
parasite and the host—sufficient time is awarded to the parasite to produce the next generation, while
the host is protected against the build-up of an excessive worm burden. Biologically this hypothesis is
also compelling, with the adult worm being a master of immune evasion, successfully living within the
blood stream for an estimated 3.5–10.5 years depending on species [34,35], while the transformation
undergone during the transition from free-living cercaria to host-dwelling schistosomule provides a
point of vulnerability within the parasite’s life history for the host to attack.

This hypothesis of delayed concomitant immunity is best described through the responses
to members of the Schistosoma mansoni–tegumental allergen-like (SmTALs) protein family.
SmTAL1 (previously Sm22.6), the first of the family to be described, is the major IgE antigen detected
on western blots probed with sera from endemic populations [29]. SmTAL1-IgE levels rise with age
(Figure 1a), commensurate with the drop in infection intensities in adolescence, and have been shown
to be negatively associated with reinfection intensities [36,37]. SmTAL1 is expressed from the 24 h
schistosomule onwards, mainly within the tegument of the adult worm, where it is not substantially
exposed to the host by live worms. IgE levels to SmTAL1 increase in the weeks after praziquantel
treatment, confirming increased exposure of the antigen to the host during worm death [38]. SmTAL3,
also expressed within the adult worm, follows a similar increase in detectable IgE with age, but with
SmTAL3-IgE responders being a subset of SmTAL1-IgE responders (Figure 1b) [32,37]; thus, it is
proposed that a greater exposure to dying worms is required for a SmTAL3-IgE response. If true,
this would be illustrative of an antigen-threshold effect occurring for IgE responses to antigens of
this family.
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Figure 1. IgE Responses to SmTAL1, SmTAL3 and SmTAL5. Shown are the 9-week post-treatment 
IgE responses of a cohort of males, aged 7–60 years, resident in a Ugandan fishing village of high 
endemicity. (A) Prevalence of detectable IgE specific to SmTAL1, SmTAL3 and SmTAL5 by age.   (B) 
Venn diagram displaying sequentiality of detectable of IgE specific to SmTAL1, SmTAL3 and 
SmTAL5. Figures are reproduced with permission from [32]. 

Responsiveness to SmTAL2, which is expressed throughout the life cycle, offers an illustrative 
counterpoint to SmTAL1/3 responses. An IgE response to this protein is measurable, but only 
amongst the very youngest members of populations in endemic areas, ultimately being regulated by 
IgG4 [37,39]. The constant exposure to SmTAL2 from dying eggs within the tissue, in contrast to the 
intermittent exposure to SmTAL1 and SmTAL3 from the adults, makes it imperative that the host 
down-regulates the potentially damaging IgE response to SmTAL2, a down-regulation that is not 
required for the members of the family cryptically expressed in adults. However, with SmTAL1 and 
3 not expressed in the earliest schistosomule stages, as would be required if this stage is the target of 
immunity, IgE response to SmTAL1 and SmTAL3 will not be explanatory of immunity, and indeed 
after controlling for age, IgE responses to these antigens are not significantly associated with 
immunity [32]. 

Immunity via exposure to dying adult worms is not easily reproduced in murine models, with 
long-term egg deposition altering vasculature, and hence migratory pathways of worms infecting 
from trickle exposures. Immuno-epidemiological studies suggest a slow-developing IgE-mediated 
mechanism, rather than sentinel myeloid cell-derived regulatory immune responses, as seen in a 
multiple (pre-egg laying) cercarial challenge murine model [40]. It is therefore hypothesised that skin 
resident mast cells would be the first responders in immune individuals [41]. This will dramatically 
alter the immune profile of the response upon cercarial challenge from one of regulation to one 
characterised by IgE mediated by type-1 hypersensitivity reactions. Potential targets include 
SmTAL5, for which age-dependent IgE responsiveness is observed (Figure 1a) [37]. Expressed in the 
early schistosomules, SmTAL5 displays IgE cross-reactivity with SmTAL3, with SmTAL3 appearing 
to be the antigenic source for this IgE response [32]. It is this cross-reactivity between the adult worm 
expressed SmTAL3 and the early schistosomule expressed SmTAL5 that is proposed to exert the 
delayed concomitant immunity, though it is unlikely that this is the sole cross-reactive antigen that 
is involved in the development of partial immunity. 

Eosinophil infiltration has also been implicated in protective human IgE responsiveness. In vitro 
eosinophils can mediate killing of schistosomules in an IgE-mediated manner [42]. In S. haematobium 
infection, eosinophils from Gambian individuals with the greatest expansion in eosinophil number 
have the greatest capability to kill schistosomules [43], and in adult Kenyan car-washers infected with 
S. mansoni, both eosinophil numbers, and their expression of the tetrameric high-affinity IgE receptor 
on their surface, are associated with immunity to reinfection [44]. It is tempting to hypothesise that 
cross-linking of IgE on mast cells leads to chemotactic infiltration of eosinophils, which then release 

Figure 1. IgE Responses to SmTAL1, SmTAL3 and SmTAL5. Shown are the 9-week post-treatment IgE
responses of a cohort of males, aged 7–60 years, resident in a Ugandan fishing village of high endemicity.
(A) Prevalence of detectable IgE specific to SmTAL1, SmTAL3 and SmTAL5 by age; (B) Venn diagram
displaying sequentiality of detectable of IgE specific to SmTAL1, SmTAL3 and SmTAL5. Figures are
reproduced with permission from [32].

Responsiveness to SmTAL2, which is expressed throughout the life cycle, offers an illustrative
counterpoint to SmTAL1/3 responses. An IgE response to this protein is measurable, but only amongst
the very youngest members of populations in endemic areas, ultimately being regulated by IgG4 [37,39].
The constant exposure to SmTAL2 from dying eggs within the tissue, in contrast to the intermittent
exposure to SmTAL1 and SmTAL3 from the adults, makes it imperative that the host down-regulates
the potentially damaging IgE response to SmTAL2, a down-regulation that is not required for the
members of the family cryptically expressed in adults. However, with SmTAL1 and 3 not expressed
in the earliest schistosomule stages, as would be required if this stage is the target of immunity, IgE
response to SmTAL1 and SmTAL3 will not be explanatory of immunity, and indeed after controlling
for age, IgE responses to these antigens are not significantly associated with immunity [32].

Immunity via exposure to dying adult worms is not easily reproduced in murine models, with
long-term egg deposition altering vasculature, and hence migratory pathways of worms infecting
from trickle exposures. Immuno-epidemiological studies suggest a slow-developing IgE-mediated
mechanism, rather than sentinel myeloid cell-derived regulatory immune responses, as seen in a
multiple (pre-egg laying) cercarial challenge murine model [40]. It is therefore hypothesised that skin
resident mast cells would be the first responders in immune individuals [41]. This will dramatically
alter the immune profile of the response upon cercarial challenge from one of regulation to one
characterised by IgE mediated by type-1 hypersensitivity reactions. Potential targets include SmTAL5,
for which age-dependent IgE responsiveness is observed (Figure 1a) [37]. Expressed in the early
schistosomules, SmTAL5 displays IgE cross-reactivity with SmTAL3, with SmTAL3 appearing to be
the antigenic source for this IgE response [32]. It is this cross-reactivity between the adult worm
expressed SmTAL3 and the early schistosomule expressed SmTAL5 that is proposed to exert the
delayed concomitant immunity, though it is unlikely that this is the sole cross-reactive antigen that is
involved in the development of partial immunity.

Eosinophil infiltration has also been implicated in protective human IgE responsiveness. In vitro
eosinophils can mediate killing of schistosomules in an IgE-mediated manner [42]. In S. haematobium
infection, eosinophils from Gambian individuals with the greatest expansion in eosinophil number
have the greatest capability to kill schistosomules [43], and in adult Kenyan car-washers infected
with S. mansoni, both eosinophil numbers, and their expression of the tetrameric high-affinity IgE
receptor on their surface, are associated with immunity to reinfection [44]. It is tempting to hypothesise
that cross-linking of IgE on mast cells leads to chemotactic infiltration of eosinophils, which then
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release their granular contents to kill the schistosomules, but without a valid model of IgE-armed skin
responses this remains a hypothesis.

3. IgE Responses and Praziquantel Treatment

The proposed reliance on worm death for development of protective immunity to schistosomes
suggests that treatment with praziquantel could provide a ‘passive vaccination’ effect, boosting the
development of immunity. This passive vaccination effect is eloquently illustrated in the studies
of car-washers conducted in Kisumu, Kenya, in which praziquantel treatment was administered
after every detectable S. mansoni reinfection. As the number of treatments administered increased,
the longer the observed duration to reinfection [45]. In comparative studies enrolling longer-term
exposed sand-harvesters, this immunity was observable after two treatments, but an extended process
of 7 infections and treatment was required for car-washers who were more recently exposed to
infection. In agreement with our hypothesis, at baseline the greater exposed sand-harvesters had
greater circulating levels of SmTAL1-IgE, indicating that this group had moved further along the path
towards immunity prior to the commencement of the study [46]. During the reinfection-treatment
cycles, elements of the immune system involved in IgE production, in particular soluble and B cell
membrane-bound levels of CD23, the low-affinity IgE receptor, became elevated in comparison to
baseline [47]. The elevation of these immune elements was also observed in a cohort of schoolchildren
treated four times annually [48].

Immunologically, elevated levels of SWA and SmTAL1-, 3- and 5-specific IgE are observed
3–9 weeks post-treatment. These post-treatment IgE levels are better correlates of resistance to
reinfection as measured 1–2 years post-treatment, than pre-treatment antibody levels [32,38,49].
This boost in IgE to adult worm-derived antigens, and antigens cross-reactive with worm-derived
antigens, is accompanied by an increase in histamine release upon antigen stimulation of basophils,
indicating that the increased IgE is biologically active [50]. The elevated specific IgE levels are
also accompanied by an increase in immune cell proliferation [51] and production of type-2 immune
cytokines, such as IL-4, 5 and 13 by peripheral blood mononuclear cell and whole blood cultures [52,53].
IL-5, an eosinophil maturation factor, in particular, is elevated in post-treatment supernatants of
SWA stimulated immune cells [54,55]. For Ugandan children residing in high-transmission fishing
villages, the pre-treatment strength of this IL-5 cytokine response is associated with levels of SWA-IgE
measured post-treatment with praziquantel [56]. Mirroring this ex vivo IL-5 response are circulating
24 h post-treatment IL-5 levels measured in the plasma [57]. For S. haematobium infection, the IL-5
levels detected 24 h post-treatment are associated with pre-treatment SWA-IgE and eosinophil levels.
Furthermore, post-treatment IL-5 is associated with pre-treatment infection intensity, indicating that
both the primed state of the immune system, or prior exposure to dying worms, and the amount of
antigen the system is exposed to upon treatment, is crucial in generating this IL-5 response. In turn,
24 h post-treatment levels of IL-5 are positively associated with protective post-treatment SWA-IgE
levels and elevated circulating eosinophil numbers [58].

4. Rate of Decay of Protective Immunity

What is clear from the above immunological evidence is that treatment with praziquantel can give
a boost to proposed elements of a protective immune response; that is, type 2 cytokine responsiveness,
levels of specific IgE and eosinophil numbers. Moreover, this could be providing a ‘passive vaccination’
effect, allowing individuals in endemic areas to develop their immunity at an earlier age. While this is
encouraging, as stated earlier, when conducting reinfection studies immuno-epidemiologists work
on a microgeographical scale and tend to seek out study sites with high transmission, or particularly
highly-exposed occupational cohorts, as this allows us to examine correlates of immunity. Little is
known about whether a significant vaccination effect occurs if transmission is low or, as is the aim
with multifaceted control strategies, driven to be being very low. Successful control programs have,
over time, altered the distribution of schistosomiasis. French et al. [59,60], noted a change in force
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of infection following repeated MDA campaigns in five countries where the Schistosomiasis Control
Initiative has been working for the past decade. In an era where control is primarily based on upscaling
chemotherapy, it is increasingly important to understand the impact of MDA on transmission dynamics.
Are the levels of antigen exposure induced by annual treatment going to be sufficient to drive a
vaccinating effect? Or indeed, by driving transmission to a point when it is very low, but continuing,
will antigen exposure be limited to the point that it takes into late adolescence or early adulthood
for antigen thresholds to be passed and immunity to have fully developed? Early modeling studies
indicate that mass chemotherapy may reduce immunity at the community level, to the extent that,
following cessation of control, parasite load in the older age classes may rise above the pre-control
burden [7]. The latter will have implications for school-based strategies if the focus of control moves
further from public health morbidity control strategies towards interruption of transmission.

Mitchell et al. [20] related protective immunity to reduced egg production, a phenomenon
observed in S. haematobium field studies, but not seen for S. mansoni infections [61,62]. It was
concluded that MDA will initially boost protective immunity, but antibody levels could decline
below pre-treatment levels during or after cessation of MDA. The model is calibrated on short-term
pre- and post-treatment studies of S. haematobium infection, but does support the hypothesis that MDA
may disrupt the build-up of protective immunity. They also proposed that if reduced transmission led
to reduced antigen exposure, antibody levels will be strongly influenced by immune decay rates and
demonstrated a rebound in egg excretion following cessation of MDA activities [20]. It is important
to note that this paper does not examine protective response against reinfection. Anti-fecundity and
anti-infection immunity are likely mediated by different antibody classes [62], therefore have differing
mechanisms of induction and preservation by the memory component of the immune system.

In relation to the immune decay rate of IgE, biologically-active IgE may be sustained for months
after exposure to the initial stimuli of production due to long-lived IgE plasma cells maintaining IgE
production [63]. Yet, when we conducted a longitudinal study looking at immune factors when annual
praziquantel treatment of Kenyan school-aged children was combined with biannual mollusciding of
the one source of transmission in the area, the levels of circulating SWA-IgE were significantly lower
one and two years after the baseline survey (unpublished results). This suggests that antigen exposure
is required to maintain production of SWA-IgE at pre-treatment levels. Basophil bioassays were not
conducted so we do not know whether SWA-IgE was reduced to a level sufficiently low to prevent
cross-linking of IgE bound to receptors on effector cells. At the same time-points, however, whole
blood cultures produced elevated SWA-specific type-2 cytokines, indicating that T cell memory is
robust and maintained over that extended period [64]. Although it is thought that B cells switched to
IgE are very poorly recruited to the memory compartment of the immune system [63,65], it has recently
been shown in murine models of peanut allergy that a memory response is crucial to re-activation of
clinical IgE reactivity, with IL-4 from T cells driving IgG memory B cells to switch and mature into IgE
plasmablasts [66]. In humans, grass pollen allergic rhinitis sufferers have higher numbers of circulating
memory B cells that proliferate upon allergen exposure than control subjects [67]. It is therefore
plausible that if transmission is still occurring, the memory component of the immune response could
maintain or re-establish protective IgE-mediated immunity upon intermittent exposure to worm death,
the long-term dynamics of which will depend on the local transmission patterns.

5. Variation in Estimates of Immune Parameters

An important consideration is that numerical analyses are necessarily based upon a restricted
set of parameter combinations [26]. These broad parameter estimates are likely to vary between
locations [68], with authors highlighting the importance of using locality-specific values to generate
predictions from models [69]. The generalisability of these models from one situation to another is
consequently restricted [12]. In particular reference to immunological parameters, Chan et al. [68]
argue that immuno-epidemiological studies on the individual community level fail to capture the
true dynamics of transmission as a result of variability in parasitological examination and antibody
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titres. They therefore proposed the use of mathematical models to inform the design of field studies,
a concept further discussed in relation to ecological modelling by Restif et al. [16]. Chan et al. [68]
advocate that model-guided design of fieldwork can strengthen the power of data analysis and
inferences. They also suggest that the village is the smallest unit considered when studying patterns
of transmission. Immunologically, this leads to the technical hurdle of scale; however, advancing
technology for sample processing, including liquid handling capabilities and associated reductions
in sample volume requirements, are now such that the potential to conduct serologically-based
immunological studies on a wider scale does exist.

We believe, given the field-based evidence, that more mechanistic modelling of immunity in future
schistosome transmission models is required. We have provided discussion, from an immunological
perspective, on what is known from existing field data, but acknowledge that previous immunology
studies, through scale and design, may fail to capture the parameters that modelers identify as
important. However, with technological advances, an integrated approach between theoretical
modelers and field immunologists is now possible and of utmost importance if transmission models
are to truly capture schistosome infection dynamics within endemic areas.
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