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Abstract: In the context of automated vehicles, transparency of in-vehicle intelligent agents (IVIAs) is
an important contributor to driver perception, situation awareness (SA), and driving performance.
However, the effects of agent transparency on driver performance when the agent is unreliable have
not been fully examined yet. This paper examined how transparency and reliability of the IVIAs affect
drivers’ perception of the agent, takeover performance, workload and SA. A 2 × 2 mixed factorial
design was used in this study, with transparency (Push: proactive vs. Pull: on-demand) as a within-
subjects variable and reliability (high vs. low) as a between-subjects variable. In a driving simulator,
27 young drivers drove with two types of in-vehicle agents during the conditionally automated
driving. Results suggest that transparency influenced participants’ perception on the agent and
perceived workload. High reliability agent was associated with higher situation awareness and
less effort, compared to low reliability agent. There was an interaction effect between transparency
and reliability on takeover performance. These findings could have important implications for the
continued design and development of IVIAs of the automated vehicle system.
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1. Introduction

As the automation of vehicles increases, it becomes more difficult for drivers to
maintain their situation awareness and understand the actions of the system. If a vehicle
system works as a “black box”, its decision-making process can remain opaque to drivers [1].
When experiencing automated vehicles above Level 3 [2], drivers are able to decouple from
the operational and tactical levels of control [3]. Two of the most essential tasks for drivers
are: (1) maintaining situation awareness to ensure it to perform as expected and (2) getting
for resuming control (i.e., takeover) when the automation deviates from their expectation [2].
A lack of understanding of the reasoning process behind the output of an intelligent system
would be a risk for drivers in a dynamic environment in an automated vehicle. For example,
if the system only says, “an obstacle ahead”, a driver might consider the system to do some
action, even though the system wanted the driver to take an action. The lack of a clear
explanation of its intent may cause the driver to miss an important maneuver. Thus, the
challenge of designing automation to better understand how the automation interacts with
human operators, and to determine how the operational information is delivered to the
operator has recently come into view.

Researchers have suggested that introducing an explanation of algorithmic decision-
making can mitigate these adverse effects of black-box-like systems, and foster the driver’s
understanding and trust, leading to an increase in road safety [1,4]. This explainable AI
system then became a concept called XAI, which is used to refer to a system that makes
its behavior more intelligible to human operators by providing explanations [5]. As an
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anthropomorphized intelligent system that can interact with drivers using natural human
language, an in-vehicle intelligent agent (IVIA) is considered a great information delivery
medium to support transparent human–agent interactions with automated systems [6].
Chen and colleagues [7,8] proposed the situation awareness-based agent transparency
theory (SAT) to provide a framework of what and how information should be delivered
to improve the operator’s situation awareness (SA), to build a more “transparent” system.
Based on the theory of SA [9], the situation awareness-based agent transparency (SAT)
model was developed to provide a framework of what information should be delivered
to the driver and how the information should be structured to support situation aware-
ness [10]. The SAT model is comprised of three levels of information [8]: Level 1 is the
basic information about the agent’s goals and proposed actions; Level 2 provides informa-
tion about the agent’s reasoning process behind these actions or plans; and Level 3 is the
information regarding the agent’s projected outcomes of its current plan (e.g., predicted
consequences or likelihood of success/failure).

Given the importance of the topic and research gap in the literature, this study adopted
the SAT model to develop transparency levels and test its relationship with the agent’s
reliability on driver’s perception, trust, takeover performance, workload, and situation
awareness. The present study is expected to contribute to theory, research design, and
practical implementation of in-vehicle agents. First, the results from our study provide
profound insights into expanding the theory of explainable AI (artificial intelligence) in
dynamic situations such as driving. Second, through the novel factorial design, our study
proposed a clear experimental paradigm to examine both transparency and reliability in
one study. Finally, the findings of the current study can be used to inspire IVIA design to
promote safety as well as user experience in automated vehicles.

The rest of the present paper is organized as follows. Section 2 provides the back-
ground for this work. Section 3 develops the research questions. Section 4 describes the
method. The results are presented in Section 5 and discussed in Section 6. Section 7 depicts
the limitations and future work.

2. Related Work
2.1. Transparency Design of Interaction

There are many different definitions of what transparency is and how it should be
implemented. Transparency can be defined as the amount of information shared with
the operator about the function of the system [11]. According to Chen and colleagues [8],
transparency enables a user’s comprehension of the intention, performance, future actions,
and reasoning of automated processes. Such in-depth SAT information can be used to
help users determine not only whether an agent made an error, but also why it made an
error, which is a crucial consideration to develop appropriate trust and dependence [4,12].
For example, according to Koo and colleagues [3], participants drove more safely when
the agent provided explanations for both “how” and “why” the imminent actions were
chosen by the automated vehicle. Further, automation shows assistance in relation to
reducing attentional demands by providing more information to drivers [13]. Even when
implemented appropriately, increased transparency requires additional information in
the system’s interface, which may increase operator workload [14]. Consequently, the
challenge for increasing transparency in a human-automated system is to implement it in a
manner that keeps operators in the loop while minimizing additional workload [15].

Furthermore, how the information should be conveyed to the driver is a crucial
aspect when designing XAI. Keith et al. [16] argued that a proactive system should be
representative of the user and able to initiate behavior without user commands. Proactive
interaction can help human operators collect and process information in the environment,
thereby, reducing the user’s information processing burden [17]. In proactive interaction,
human operators can achieve more supervisory control rather than active control [18].

Based on the SAT model, the present study adopted a transparency design of the
proactive interaction model: the “Push and Pull” Transparency Model [19,20]. In the Push
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condition, all the information, including “what” to do/is happening, “why” the driver
should listen, and “how” the system knows what is (going to be) happening/will react
was combined in one string and presented to the driver proactively; whereas in the Pull
condition, although the same type of information would be conveyed to the driver, only
the “what” information was initially presented to the driver, and the IVIA could supply
the reason behind the current action upon the driver’s request [3]. Participants can ask for
more information by saying, “more information”. Because the information is provided in
a non-proactive manner in the Pull condition, they would not get full information if they
chose not to ask.

2.2. Influence of System Reliability on Drivers

Increased system transparency provides the driver with an opportunity to determine
the accuracy of the system, which poses a challenge to the reliability of designing the
system. Agent reliability is a significant factor that influences the proper use of automation
and task performance in multiple ways.

In the present study, IVIA’s reliability is defined as the accuracy of information con-
veyed by IVIA, or its capability. Because the information conveyed by the agent is based
on system predictions, there is no way to make sure that it is absolutely accurate (e.g.,
system malfunction or limitations). On one hand, unreliable automation has been found
to have a detrimental impact on a user’s task performance, and harm the driver’s trust
and acceptance of the system [21,22]. On the other hand, highly reliable automation can
also have a negative impact on drivers’ trust in developing complacency or over-reliance
on the system and increasing mental workload [23]. Therefore, controlling the system’s
reliability within a moderate range could help improve driving performance and avoid
over or under trust that leads to misuse or disuse of the vehicle system [24]. Although such
unreliability damages drivers’ performance to some extent, benefits from an unreliable
system were found in a situation in which aircraft predictor information was only partially
reliable. Knowing that the predictor was not completely reliable, pilots calibrate their trust
and adopt an appropriate allocation of attention between the raw data and the predictor
information [25]. In the present study, we examined if and how the reliability level interacts
with the system transparency in terms of influencing driver perception and performance in
conditionally automated vehicles.

2.3. Drivers and In-Vehicle Intelligent Agents

In-vehicle intelligent agents influence drivers’ perception of the agent, trust, takeover per-
formance, workload, and situation awareness. Each factor was examined in previous research.

2.3.1. Perception of the Agent

Measuring human perception and cognition is an important process when designing
human–agent interaction [26]. It is important in how the human perceives the agent, which
in turn can affect their acceptance of the automated system. The current study examined
how the agent’s transparency and reliability affect the driver perception of the humanness
and intelligence of the agent [27].

2.3.2. Trust

Currently, many studies related to IVIAs for automated driving focus on driver trust.
Trust can be defined as the attitude that an agent will help achieve an individual’s goals in
a situation characterized by uncertainty and vulnerability [4]. An appropriate amount of
trust is essential to the effectiveness of the automated system: too much trust will lead to
misuse of the system, while lack of trust will result in disuse [24]. Studies have shown that
increasing information transparency and system reliability is an effective way to promote
trust [7,17,28,29]. The present study examined whether the proactive display of information
to support in-depth transparency information would aid in mitigating the impact of the
system errors [30].
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2.3.3. Takeover Performance

The takeover process of the automated vehicle is defined as the transition of control
from the automation to a human driver. According to Banks [31], when encountering an
emergency takeover scenario, drivers’ ability to safely resume control largely depends on
the extent to which they remained engaged in monitoring both the automation and external
road environment. Because Level 3 automated vehicles require drivers to take over control
of the vehicle in certain circumstances, the current study measured takeover performance
by obtaining the driving simulator data [32].

2.3.4. Workload

Mental workload represents the cognitive resources demanded by a task that is needed
to achieve a particular level of performance [33]. In-depth SAT information may increase
more complexity of mental processes. A previous study found an increase in mental work-
load, measured by using the NASA-TLX, as a result of higher levels of transparency [34].
They found in-depth SAT information brings a higher rating in the “physical workload”
subscale of the NASA-TLX. The current study assessed how the transparency model in-
teracts with agent reliability, and if that interaction will result in a concomitant change
in workload.

2.3.5. Situation Awareness (SA)

Situation awareness (SA) refers to an individual’s dynamic understanding of “what
is going on” in a system [35]. In this model, SA is comprised of three hierarchical levels:
perception of elements within the environment, the comprehension of their meaning,
and a projection of their status in the near future [9,35]. In Level 3 automated vehicles,
human operators need to maintain SA, and re-engage driving tasks if needed, so practical
transparency information must be displayed to support the needs of awareness and control,
while still maintaining the performance and cognitive benefits of automation [36]. As the
SAT model was designed to support the operator’s SA, the operator’s SA was assessed to
evaluate the effectiveness of the transparency model in the current study.

3. Current Study and Research Questions

Clearly, the relationship between agent transparency and reliability in driver-agent
interaction is complex. Agent transparency could have a mitigating influence on the
negative effects of agent reliability, and agent transparency’s impact on human performance
when automation is unreliable has yet to be explored. Little research has focused on both
characteristics in one study to see whether there is the influence of transparency and
reliability on drivers’ performance outcomes. As such, the research questions we seek to
examine are as follows.

• RQ 1. How will agent transparency influence drivers’ perception of the agent, trust,
workload, situation awareness, and takeover performance?

• RQ 2. How will agent reliability influence drivers’ perception of the agent, trust,
workload, situation awareness, and takeover performance?

• RQ 3. Are there any interaction effects of agent transparency and reliability on drivers’
perception of the agent, trust, workload, situation awareness, and takeover performance?

To answer these research questions, the present study integrated transparency and re-
liability to systematically explore the effects of both critical features of in-vehicle intelligent
agents on driver perception and performance in the context of conditionally automated
driving. Multiple factors, particularly, drivers’ perception of the agent, trust, perceived
workload, situation awareness, and takeover performance have been investigated.



Multimodal Technol. Interact. 2022, 6, 82 5 of 19

4. Methods
4.1. Participants

A total of 27 college students (nine females, 17 males, and one chose not to specify)
with valid American driver’s licenses participated in the study. Their age was between
19 and 30 (Mean = 21.46, SD = 2.42). Each of them was compensated with $10 for their
time. Two participants’ data were excluded from the study: one was excluded due to false
driver’s license information and the other was excluded due to breaking the rules during
the experiment by maintaining manual driving all the time without required takeover or
handover. The remaining 25 participants (eight female, 16 male, one declared as other,
Mean age = 21.24, SD = 2.18) had an average driving experience of 4.32 years (SD = 1.57)
and an average driving frequency of 5.88 times per week (SD = 4.32).

4.2. Apparatus

The study used a motion-based driving simulator (NervtechTM, Ljubljana, Slovenia).
The simulator is equipped with three 48” visual displays, a steering wheel, an adjustable
seat, gas and brake pedals, and surrounded sound equipment. The driving scenarios were
programmed in SCANeR studio, the software program that came with the simulator. Two
humanoid robots, NAO (by SoftBank Robotics; Height: 22.6 in, Length: 12.2 in, Width:
10.8 in) and Milo (by Robokind; Height: 23.25 in, Length: 7.5 in, Width 9.75 in) were used
as in-vehicle intelligent agents (See Figure 1). During driving, the robot was placed in the
same fixed position to the participants’ right (See Figure 2).

Figure 1. Robot NAO (left), robot Milo (right).

Figure 2. Experiment setup: NervtechTM driving simulator with the IVIA.

4.3. Experimental Design

A 2 × 2 mixed factorial design was used in this study, with transparency (Push: proac-
tive vs. Pull: on-demand) as a within-subjects variable and reliability (high vs. low) as
a between-subjects variable. Thirteen participants were assigned to the high-reliability
condition, where 100% of the information presented was accurate; while the remaining
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twelve participants experienced the low-reliability condition, where 60% of the information
presented was accurate. Tables 1 and 2 present the lists of agent intervention scripts in
order. Within each reliability group, participants had two driving scenarios corresponding
to two transparency conditions. They always experienced the Push transparency con-
dition first, meaning that the agent provided all the information about the event in one
string during the driving scenario they first experienced. The first statement uttered by
the agent was a command or “what” statement, describing either what was occurring
or what the participant was required to do (e.g., “Pedestrian on road ahead” or “Please
take over”). Then, participants experienced the Pull transparency condition in the other
scenario, where they were only provided with a single unit of information (e.g., “Please
take over”), and the participants then had the opportunity to ask for more information
up to two times by saying, “more information”. (see Tables 1 and 2). The order of the
transparent conditions was not counterbalanced deliberately, to show the potential infor-
mation content availability under the Pull condition to the participants. Meanwhile, the
learning effect was minimized by balancing the matching between the driving scenarios
and the transparency conditions. In addition, each participant experienced both robots
as their in-vehicle intelligent agents. The order in which each robot was assigned to the
transparency condition was fully counterbalanced (See Table 3). All participants experi-
enced the study in a driving simulator with both types of information transparency agents
in turn (within-subjects condition): half of the participants had Milo as the Push-type agent
and NAO as the Pull-type agent; the remaining half of the participants experienced the
opposite. Further, the robots used for each reliability condition were counterbalanced. Half
of the participants experienced a high reliable agent, and another half experienced a low
reliable agent (between-subjects condition).

Table 1. Scenario 1 Intervention Scripts.

Event No. Description

Condition

Push Pull

[Reliable/Unreliable] 1 [Reliable/Unreliable]

1 Construction Site
Please take over. The vehicle’s front
cameras detect an obstacle [around a
quarter mile/3 miles] ahead

1. Please take over
2. Obstacle around [around a quarter
mile/3 miles] ahead
3. Detected by front cameras

2 Car Swerves
The car in front of you is expected to
swerve into your lane in [1000 feet/2 miles]
based on the system’s prediction program.

1. The car in front of you is expected to
swerve into your lane
2. It is expected to swerve in
[1000 feet/2 miles]
3. Detected by prediction program

3 Decision
Error

Please take over. There is an error in the
system’s decision-making code.
. . . Never mind

1. Please take over
2. System Error
3. Detected in system’s decision code.
4. Never mind (given regardless of whether
the participant asks for more info)

4 Jaywalker

The vehicle’s front right sensors detect a
[pedestrian ahead who is walking into
the street/large animal crossing the
road ahead]
Based on their trajectory the vehicle will
brake and move to the left lane.

1. [Pedestrian on road/Animal crossing
road] ahead
2. Based on the pedestrian’s trajectory, the
vehicle will brake and move to the left lane
3. Detected by front right sensors

5 Fog Please take over. The vehicle’s light sensors
detect heavy [fog/rain] ahead.

1. Please take over
2. Heavy [fog/rain] ahead
3. Detected by vehicle’s light sensors

1 Bolded part was presented in the high-reliability condition. The Italic part was presented in the low-
reliability condition.
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Table 2. Scenario 2 Intervention Scripts.

Event No. Description

Condition

Push Pull

[Reliable/Unreliable] 1 [Reliable/Unreliable]

1 Construction Site
Please take over. The vehicle’s front
cameras detect an obstacle [700 feet/2
miles] ahead

1. Please take over
2. Obstacle around [700 feet/2 miles] ahead
3. Detected by front cameras

2 Sensor
Malfunction

The front right sensor is malfunctioning
based on the test code.
. . . Never mind

1. Please take over
2. Sensor malfunction
3. Detected in system’s decision code.
4. Never mind (given regardless of whether
the participant asks for more info)

3 Cow on road

The vehicle’s front right sensors detect a
[large animal/child] crossing the
road ahead.
Based on their trajectory the vehicle will
brake and move to the left lane.

1. [large animal/child] on the road ahead
2. Based on the pedestrian’s trajectory, the
vehicle will brake and move to the left lane
3. Detected by front right sensors

4 Rain Please take over. The vehicle’s moisture
sensors detect heavy [rain/fog] ahead.

1. Please take over
2. Heavy [rain/fog] ahead
3. Detected by vehicle’s moisture sensors

5 Car Swerves
The vehicle to your [left/right] is expected
to swerve into your lane based on the
system’s decision model.

1. Vehicle expected to move into your lane
2. The vehicle is positioned on your
[left/right]
3. Detected in system’s decision model

1 Bolded part was presented in the high-reliability condition. The Italic part was presented in the low-
reliability condition.

Table 3. Experiment design matrix.

Reliability Transparency
Order of Robot (Scenario)

NAO (S1) Milo (S2) NAO (S2) Milo (S1)

High
Push

Group 1 Group 2
Pull

Low
Push

Group 3 Group 4
Pull

S1 = Scenario 1, S2 = Scenario 2.

4.4. Procedure

Upon arrival, participants signed the consent form approved by Virginia Tech’s Institu-
tional Review Board (IRB) and completed a demographic questionnaire that included age,
gender, and driving experience. Participants were informed that the vehicle is a condition-
ally automated vehicle and they are going to be accompanied by an intelligent agent during
the driving scenario. Then, participants underwent a simulation sickness test following
the Georgia Tech Simulator Sickness Screen Protocol [37], including 3 min of test drive and
self-comfort checklists before and after the test drive. Before the test drive, they were told
that the scene would be randomly paused during the formal drive, and they would be
asked to answer questions. They had a practice of the pause during the test drive. This
process allowed them to get familiar with the driving simulator, making sure that they do
not have simulator sickness and were safe for the study. The participants who only did not
get simulator sickness continued to conduct an actual experiment. No participants reported
that they had simulator sickness during the test drive. Then, participants were presented
with a thorough explanation of the experimental procedures before the beginning of each
trial. After completing each trial, participants filled out the NASA-TLX scale and subjective
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questionnaires. After finishing two trials, their preference toward the two transparency
conditions was collected.

4.5. Dependent Measures

Both subjective measures and objective measures were used in the study. Subjective
measures included rating scales used to assess the interaction between driver and agent,
which are (1) Godspeed questionnaire, containing five factors with 24 items on a 5-point
semantic differential scale [26]; (2) Social presence questionnaire: five items on a 10-point
Likert scale [38]; (3) Robotic Social Aptitude Scale Questions (RoSAS): three factors with
18 items on a 7-point Likert scale [39]; (4) Subjective Assessment of Speech System Inter-
faces (SASSI): six factors with 34 items on a 7-point Likert scale [40]; (5) Scale of Trust in
Automated Systems: twelve items on a 7-point Likert scale [41]. Participants’ perceived
workload was collected through NASA-TLX [33]. In addition, participants’ preferences
toward two types of transparency and their reasons were collected through a questionnaire.

Objective measures were obtained from Situation Awareness Global Assessment
Technique (SAGAT) and the driving simulator.

SAGAT queries were used to capture drivers’ situation awareness (SA) of their en-
vironment [35]. It is a freeze-probe recall method that involves asking participants of
their awareness of the SA elements during random freezes of the simulated environ-
ment. Research shows that SAGAT does not distract the participant from the main task
of driving [42].

In both scenarios, a simulation scenario was paused at a pre-defined place without
participants’ awareness beforehand about when, where, and how many times it would
happen; the screen was hidden from the driver immediately following the pause. During
each pause, participants were asked to answer a paper questionnaire that was designed
based on the design guideline of SAGAT [22], to measure all three situation awareness levels
(perception, comprehension, and projection) of the driver. The questionnaire contained
six questions in total, including two questions about Level 1 SA, two questions about
Level 2 SA, and two questions about Level 3 SA. After all the answers were scored, the
average score for each SA level was calculated to analyze situation awareness for each level.
The average score of SA was calculated from an average score of the three SA levels.

The driving simulator produced raw CSV data, containing takeover time, speed,
acceleration, and steering wheel angles [33].

Takeover time: The response time of takeover was measured from the time the agent
starts the command and the first input of the driver takes over control (either braking or
turning the wrench near the steering wheel), measured in seconds.

Takeover quality [32]:

1. Speed: the maximum/minimum/average speed during the takeover, measured in
kilometers per hour.

2. Acceleration: the maximum/minimum/average longitudinal and lateral acceleration
during the takeover, measured in m/s2.

3. Steering Wheel Angle: the maximum/standard deviation of steering wheel angle of
the takeover period, measured in degrees.

4.6. Data Analysis

Repeated-measures analysis of variance (ANOVA) was conducted to investigate the
difference between participants’ NASA-TLX workload, situation awareness, subjective
survey data, and driving performance. The driving performance includes takeover per-
formance (takeover time, maximum/minimum/average/standard deviation of speed,
acceleration, and wheel angle during participants take over the control), the number of
requests for more information in the Pull-type transparency condition (Pull request), and
the number of compliances of takeover requests. All statistical analyses were performed by
JMP Pro 16.
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5. Results
5.1. User Perception and Trust in Automation

Results from 2 × 2 repeated measures ANOVA indicated that transparency and
reliability influenced user perception in different ways. Tables 4 and 5 show the statistical
analysis of the response.

Table 4. Subjective evaluation results: condition means and standard deviation.

Scale Items
Agent Condition Mean (SD)

H 1, Push H, Pull L 1, Push L, Pull

GodSpeed Anthropomorphism 2.33 (0.77) 2.93 (1.04) † 2.73 (0.72) 2.65 (0.87)
Animacy 2.60 (0.85) 3.22 (1.05) † 2.69 (0.89) 2.86 (0.91)
Likeability 3.62 (1.01) 4.05 (0.91) † 3.51 (0.74) 3.63 (1.02)
Perceived Intelligence * 4.17 (0.73) † 3.89 (1.03) 3.92 (0.67) 3.74 (0.81)
Perceived Safety 3.64 (0.52) 3.63 (0.83) 3.59 (0.64) 3.51 (0.59)

Social Presence Social Presence 4.90 (1.44) 5.65 (1.36) 5.61 (1.15) 5.57 (1.04)

RoSAS Competence * 5.54 (1.36) † 5.25 (1.61) 5.08 (0.83) 4.64 (1.38)
Warmth * 2.64 (1.75) 4.18 (1.79) † 3.05 (1.16) 3.17 (1.55)
Discomfort 2.17 (0.98) 2.21 (1.66) 2.19 (0.74) 2.13 (1.67)

SASSI System Response
Accuracy 5.03 (0.83) 5.30 (1.34) 4.90 (0.84) 4.71 (1.13)

Likeability 4.96 (1.16) 5.29 (1.40) † 5.19 (0.87) 4.91 (1.38)
Cognitive Demand 3.20 (1.37) 3.17 (1.23) 3.20 (1.09) 3.09 (1.20)
Annoyance 3.00 (1.80) 2.85 (1.52) 2.85 (1.29) 2.95 (1.47)
Habitability 3.96 (0.58) 4.34 (1.22) † 3.94 (0.64) 4.13 (0.55)
Speed 4.75 (0.97) † 4.17 (2.33) 4.69 (1.38) 4.08 (1.98)

Trust in
Automation Trust 4.54 (1.26) 5.23 (1.37) † 4.64 (1.12) 4.73 (0.93)

1 H = High Reliability, L = Low Reliability, † Top score, * p < 0.05.

Table 5. Subjective evaluation statistics.

Scale Items

F Value and Significance (p)

Transparency Reliability Transparency × Reliability

F p F p F p

GodSpeed Anthropomorphism 1.75 0.20 0.15 0.70 3.73 0.07
Animacy 3.40 0.08 0.15 0.70 1.32 0.26
Likeability 1.78 0.19 0.77 0.39 0.54 0.47
Perceived Intelligence 4.32 0.049 * 0.91 0.35 0.86 0.36
Perceived Safety 0.10 0.76 0.14 0.70 0.09 0.76

Social Presence Social Presence 1.02 0.32 1.32 0.26 2.52 0.13

RoSAS Competence 4.81 0.039 * 0.96 0.34 0.38 0.54
Warmth 4.53 0.043 * 0.49 0.49 3.07 0.09
Discomfort 0.00 0.98 0.01 0.92 0.02 0.88

SASSI System Response
Accuracy 0.04 0.84 0.99 0.33 1.46 0.24

Likeability 0.00 0.95 0.04 0.84 1.20 0.28
Cognitive Demand 0.07 0.79 0.00 0.95 0.02 0.89
Annoyance 0.00 1.00 0.04 0.84 0.22 0.64
Habitability 1.52 0.23 0.01 0.90 1.05 0.32
Speed 2.34 0.14 0.06 0.81 0.01 0.90

Trust in
Automation Trust 2.50 0.13 0.39 0.53 1.46 0.24

* p < 0.05.
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Transparency had a significant main effect on (1) Perceived Intelligence: F(1, 24) = 4.32,
p = 0.049, ηp

2 = 0.19, which is the subscale of Godspeed. The Push-type agents were
perceived more intelligent (Mean = 4.04, SD = 0.70) than the Pull-type agents (Mean = 3.80,
SD = 0.90). (2) Competence: F(1, 24) = 4.81, p = 0.039, ηp

2 = 0.15, which is the subscale
of RoSAS. The Push-type agents were perceived more competent (Mean = 5.3, SD = 1.12)
than the Pull-type agents (Mean = 4.93, SD = 1.50). (3) Warmth: F(1, 24) = 4.53, p = 0.044,
ηp

2 = 0.17, which is the subscale of SASSI. The Pull-type agents were perceived warmth,
presenting more emotion (Mean = 3.65, SD = 1.71) than the Push-type agents (Mean = 2.86,
SD = 1.46). No significant difference between transparency conditions was found in other
scales (see Table 5).

No significant main effect of reliability and interaction effect between transparency
and reliability was found on other items of the questionnaires (see Table 5).

5.2. Takeover Performance

The result from repeated measures ANOVA indicated an interaction effect between trans-
parency and reliability on maximum lateral acceleration: F(1, 24) = 5.34, p = 0.03, ηp

2 = 0.063
(see Figure 3). With high reliability, the Push-type agent (Mean = 1.11, SD = 0.82) led to signifi-
cantly higher maximum lateral acceleration than the Pull-type agent (Mean = 0.75, SD = 0.61)
t(30) = 2.067, p < 0.05. With low reliability, the Pull-type agent (Mean = 1.11, SD = 1.02) led
to numerically higher maximum lateral acceleration than the Push-type agent (Mean = 0.96,
SD = 0.65) t(35) = −0.856, p > 0.05, but this did not lead to the statistically significant differ-
ence. There were no significant results on takeover time, maximum/minimum/average
speed or steering wheel angles (see Table 6).

Figure 3. Maximum Lateral Acceleration (p < 0.05) [error bars indicate standard errors].

Table 6. Takeover performance statistics.

Takeover Measures Items

F Value and Significance (p)

Transparency Reliability Transparency × Reliability

F p F p F p

Take over time Take over time 2.38 0.14 0.01 0.91 0.26 0.62

Speed Maximum 1.01 0.33 0.47 0.50 0.91 0.33
Minimum 0.07 0.80 1.78 0.20 0.03 0.86
Average 0.63 0.44 1.04 0.32 0.30 0.59
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Table 6. Cont.

Takeover Measures Items

F Value and Significance (p)

Transparency Reliability Transparency × Reliability

F p F p F p

Longitudinal
Acceleration

Maximum 0.02 0.88 0.80 0.38 1.43 0.24
Minimum 0.02 0.90 0.02 0.90 1.04 0.32
Average 0.08 0.77 0.69 0.41 1.71 0.20

Lateral
Acceleration

Maximum 0.42 0.52 0.15 0.70 5.34 0.03 *
Minimum 4.05 0.06 0.00 1.00 1.78 0.19
Average 1.01 0.33 0.17 0.68 1.69 0.21

Wheel Angel Maximum 0.60 0.45 0.31 0.59 0.32 0.60
Standard deviation 0.51 0.48 0.02 0.89 0.02 0.89

* p < 0.05.

5.3. Agent Preference

Figure 4 shows the participants’ preference ranking for agents between two types
of transparency conditions. Compared with the Pull condition, the Push condition was
ranked as their first choice, with 84 percent of people choosing it.

Figure 4. Preference ranking of agent’s transparency.

Participants provided their reasons to explain their preference for Push-type agents:
“Providing the information automatically with the ‘please take over’ was much more

useful as I didn’t have to process much beyond that, like thinking about what I would say.”
(P2, chose Push)

“I want to confirm if the system detects the situation correctly.” (P3, chose Push)
“When I ask for more information, it might take a little too much time. It is easier to

know the reason for caution earlier on and is less stressful in that way.” (P23, chose Push)
However, not all participants liked the Push-type agents. For the three participants

who chose the Pull-type agent, two of them provided explanations that they were able to
see what is ahead and ready to take over anytime without further details from the agent.

5.4. Pull Request

There was no significant difference in requesting more information between high
reliability (Mean = 1.92, SD = 1.62) and low reliability conditions (Mean = 1.85, SD = 2.97),
F(1, 24) = 0.0053, p = 0.94 based on repeated measures ANOVA.

It is important to note that the Pull request in each trial can be up to 10 times. Numeri-
cally, the results show that in the Pull condition, the request time for more information in
both reliability conditions was less than 20%.
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5.5. Workload

Results from repeated measures of ANOVA indicated a significant main effect of
transparency on physical demand, F(1, 24) = 6.42, p = 0.02, ηp

2 = 0.22 (see Figure 5, Table 7).
Under the Pull condition, participants showed more physical demand to accomplish
the task (Mean = 23, SD = 14.36), compared with participants under the Push condition
(Mean = 18.8, SD = 11.84).

Figure 5. Physical demand measured by NASA/TLX in all conditions (* p < 0.05) [error bars indicate
standard errors].

Table 7. NASA/TLX statistics.

Items

F Value and Significance (p)

Transparency Reliability Transparency × Reliability

F p F p F p

Mental Demand 0.26 0.61 0.64 0.43 0.09 0.77
Physical Demand 6.42 0.02 * 0.03 0.86 0.04 0.86
Temporal Demand 0.24 0.62 0.01 0.93 0.01 0.95
Performance 0.16 0.70 0.02 0.89 1.74 0.20
Effort 0.42 0.52 5.57 0.03 * 0.17 0.68
Frustration 2.52 0.13 0.07 0.79 0.21 0.65
Total Workload 0.94 0.34 0.72 0.40 0.49 0.49

* p < 0.05.

Results from repeated measures ANOVA indicated a significant main effect of reliabil-
ity on effort, F(1, 24) = 5.57, p = 0.03, ηp

2 = 0.17 (see Figure 6). Under the low-reliability con-
dition, participants gave more effort to accomplish their level of performance (Mean = 41.00,
SD = 23.27), compared with participants under the high-reliability condition (Mean = 26.4,
SD = 15.11).

No interaction effect between transparency and reliability was found in any of the
subscales of the NASA-TLX (see Figure 7).
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Figure 6. Effort measured by NASA/TLX in all conditions (* p < 0.05) [error bars indicate
standard errors].

Figure 7. NASA/TLX Result [error bars indicate standard errors].

5.6. Situation Awareness (SAGAT)

The result from repeated measures of ANOVA indicated a significant main effect of
reliability on Level 1 SA, F(1, 24) = 4.93, p = 0.036, ηp

2 = 0.146. Under the high-reliability con-
dition, participants had a higher perception of the elements in the environment (Mean = 0.81,
SD = 0.20) compared to participants under the low-reliability condition (Mean = 0.64,
SD = 0.33).

There was no significant difference in average rating scores in their Level 2 SA or
Level 3 SA (Table 8). However, under the high-reliability condition, participants had
numerically higher Level 2 and Level 3 SA scores compared to participants under the
low-reliability condition (see Table 9).
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Table 8. Situation Awareness statistics.

Items

F Value and Significance (p)

Transparency Reliability Transparency × Reliability

F p F p F p

Level 1 SA 2.85 0.10 4.93 0.036 * 0.00 0.95
Level 2 SA 0.50 0.49 0.67 0.42 0.00 0.97
Level 3 SA 0.76 0.39 1.84 0.19 0.36 0.55

Average 2.36 0.14 2.50 0.13 0.06 0.81
* p < 0.05.

Table 9. SAGAT result (mean and standard deviation).

Situation Awareness
Condition Mean (SD)

High Reliability Low Reliability

Level 1 SA * 0.81 (0.20) 0.64 (0.33)
Level 2 SA 0.56 (0.44) 0.46 (0.37)
Level 3 SA 0.45 (0.35) 0.30 (0.30)

Average 0.60 (0.27) 0.47 (0.26)
* p < 0.05.

5.7. Compliance

Table 10 shows the statistical analysis of the compliance of the takeover request. There
was no significant main effect in compliance on either transparency, F(1, 25) = 0.03, p = 0.84,
ηp

2 = 0.004, or reliability, F(1, 24) = 0.47, p = 0.50, ηp
2 = 0.026, based on repeated measures

ANOVA. There was no interaction effect in compliance between reliability and transparency,
F(1, 24) = 3.39, p = 0.08, ηp

2 = 0.072.

Table 10. Mean and standard deviation of the number of compliances in each condition.

Transparency

Reliability

High Reliability, Push
2.54 (0.18)

High Reliability, Pull
2.92 (0.19)

Low Reliability, Push
3.00 (0.19) †

Low Reliability, Pull
2.70 (0.25)

† Top score.

It is important to note that the maximum compliance of takeover requests in each trial
is three times. Numerically, the result shows that compliance time is rather high in all cases,
with the lowest being the Push condition with high-reliability information (84%) and the
highest being the Push condition with low-reliability information (100%).

6. Discussion

The objective of the study was to investigate the effects of in-vehicle intelligent agents’
transparency and reliability on drivers’ perception, takeover performance, workload, and
situation awareness in conditionally automated vehicles. Results showed that the agent’s
transparency seemed to contribute to participants’ perception towards the automated
vehicle system, perceived workload, and takeover performance. On the other hand, the
agent’s reliability had a significant influence on driver perceived workload and SA. There
was a significant interaction effect on takeover performance.

• RQ 1. How will agent transparency influence drivers’ perception of the agent, trust,
workload, situation awareness, and takeover performance?

To answer RQ1, the results showed that transparency significantly influenced drivers’
perception of the agent, including perceived intelligence, competence, and warmth. Further,
participants showed a higher preference on the Push-type agent than the Pull-type agent.
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Results showed that participants perceived the Push-type agent more intelligent and
competent than the Pull-type agent; whereas they felt significantly more warmth from
the Pull-type agent than the Push-type agent, regardless of the reliability level. Prior
research argued that participants consider an agent more intelligent when it provides more
information [10], which was consistent with our result that participants found the Push-type
agent more intelligent. The warmth that Pull-type agent brought to the participants can be
explained by prior research suggesting that a chatbot which develops more conversation
promotes perceived humanness [43]. Note that the Pull agent required the participants to
communicate with the agent more. In the same line, a numerical trend appears in other
subjective questionnaires that under the high-reliability condition, the Push-type agent
received the highest rating for perceived intelligence, competence, and system response
speed, which are associated with the performance-based aspect of the system; whereas the
Pull-type agent received the highest rating for anthropomorphism, animacy, likeability,
warmth, habitability, and trust, which are more associated with the relationship-based aspect
of the system. Because driving is a safety-critical task situation, the participants might have
chosen the performance-first agent, which can lead to better safety, rather than the social
and relational agents. This might explain why more participants chose the Push-type agent
as their preference. Among the reasons that participants addressed for choosing the “Push”
agent, most expressed a desire to confirm the accuracy of the system.

On the other hand, results showed that transparency had a significant influence on the
participants’ physical demand of workload. Previous research has shown that increased
information content does not necessarily lead to higher workload when working with a
reliable agent [15,44]. Based on that, the difference in physical demand of the present study
might not come from the different amount of information in the two conditions. However,
the difference might come from the fact that the Pull-type agent asked the participants for
more interactions. Thus, designing the interaction mode might be more important than
deciding the amount of information for drivers’ perceived workload.

These outcomes may be beneficial for designers and developers when designing
transparency and assigning proper transparency considering usage scenarios when it
comes to the interaction between drivers and in-vehicle intelligent agents.

• RQ 2. How will agent reliability influence drivers’ perception of the agent, trust,
workload, situation awareness, and takeover performance?

Compared to agents with low reliability, agents with high reliability showed signif-
icantly less effort for participants to accomplish their performance and higher situation
awareness. This supports the previous finding [45] that human operators’ performance
improves with the automation reliability in general.

Surprisingly, the result shows that the reliability does not influence the result of the
questionnaire, such as accuracy (SASSI) and trust (Trust in automation) or behavioral
compliance with the system. One possible reason could be the potentially high initial
trust in the automated system. Prior research has shown that users may begin their work
with an unfamiliar system with overly high expectations of the system’s performance
(i.e., positive bias [46,47]). Thus, considering that most of our participants were novices
(22/25) to the simulator, although we did not measure initial trust in the study, participants
might have a relatively high level of initial trust in the automated vehicle they drove. This
could explain why they had a higher workload on effort when they received low-reliability
information; they might feel confused and need to make more effort to respond [48]. In
the low reliability condition, due to the conflict between the environmental information
perceived by the driver and the information given by the agent, the driver may have
needed more cognitive resources than in the high reliability condition. According to the
concept of limited attentional resource [49], the driver’s workload increased and situation
awareness might be damaged accordingly. Even though the high reliability agent enhanced
driver situation awareness only at Level 1, the same trend appeared at higher levels of
SA, showing that the information in the high reliability condition helped our participants
gain better situation awareness, overall. However, this different SA scores did not lead
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to significant performance differences. Note that good SA does not guarantee good or
better performance because in between there are at least two more steps–decision-making
and action selection. Further, the higher initial trust could help to explain why reliability
did not influence the rating of the trust scale. This explanation was also confirmed in the
analysis of compliance, with a high average number of compliance responses across the
different reliability conditions.

The other possible explanation is that high transparency might diminish the negative
effect of unreliability on trust. In the two scenarios we designed, the system informed
about the system failure of certain events (i.e., “decision error” in Scenario 1, and “sensor
malfunction” in Scenario 2) which might serve as a safeguard for temporary agent trust
reduction when experiencing an actual malfunction [50]. By receiving sufficient information
from XAI, users gained the chance to better anticipate system behavior and would be able
to adapt their expectations early in the process and thus, might not be negatively surprised
when the malfunction occurred. This finding is also in line with earlier studies showing that
appropriate information about system functioning may lead to a facilitated trust calibration
when system malfunctions occur [51,52].

• RQ 3. Are there any interaction effects of agent transparency and reliability on drivers’
perception of the agent, trust, workload, situation awareness, and takeover performance?

There was only one significant interaction effect on the maximum lateral acceleration
of takeover performance. A combination of high reliability and high transparency level
led to higher maximum lateral acceleration, and a combination of low reliability and low
transparency level also led to the similar outcome. We can cautiously infer that providing
more information when the system is highly reliable might increase the participants’ confi-
dence; while providing less information when the system is unreliable might increase the
participants’ urgency.

Other than that, no significant interaction effect of agent transparency and reliability
was found on the participants’ perception of the agent, trust, perceived workload, or
situation awareness.

7. Limitations and Future Work

Future research on this topic can disentangle the underlying mechanisms by consider-
ing the limitations of the current study.

First, the order of the transparency conditions was not counterbalanced, and the order
of the Push and Pull conditions might influence the results. The order of transparency
was designed in such a way (i.e., Push-type first and Pull-type second) that participants
could learn from the Push condition about what kind of information is available in the Pull
condition thereafter.

Second, in both transparency conditions, the actual information amount was the same
if the participants requested more information. In our experiment, we still succeeded in
manipulating the transparency of the system because the number of the request for more
information in both reliability conditions was less than 20%. However, different approaches
to the transparency manipulation will add interesting insights (e.g., differences in a total
amount of information provided).

Third, our study lies in the use of the driving simulator. The driving simulator provides
a reliable method for manipulating the experiment and a safe environment for testing in the
lab. Although the simulator we used in the current study is a motion-based one with the
surrounding sound equipment that could mimic a real driving experience to a large extent,
there is still some amount of difference in fidelity between the simulation and real-life
driving. Conducting driving research in real traffic and road conditions would increase the
reliability and validity of the data regarding both attitudes and performance.

Another limitation of our study is that our participant number may not be sufficient
to show all the possible outcomes, and we are planning to replicate and extend the current
study with more participants in the future.
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The potential interaction effect between transparency and reliability is worthy of fur-
ther measurement and investigation in the future. Further investigation should treat some
of the potential factors mentioned in the paper that may affect the result (e.g., information
about the system’s weakness may have an influence on initial trust), helping to achieve
further understanding of the effects of transparency and reliability on drivers’ outcomes
in automated vehicles. Further, this experiment could be expanded to include dynamic
trust measures by adding measures for a pre- and post-trust investigation to test the initial
trust hypothesis discussed in the current study. Physiological sensors can be added to
obtain an objective measurement of workload and trust, and their dynamic calibration
with the agent’s transparency and reliability. Further, this study found a trend of high
subjective rating scores on performance-related items in the Push conditions, and social
relationship-related items in the Pull conditions when the agent was highly reliable. In
this line, questionnaires such as cognitive trust and affective trust can be used to assess the
scientific consensus and practical merits of the two variables.
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