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Abstract: Music elicits strong emotional reactions in people, regardless of their gender, age or cultural
background. Understanding the effects of music on brain activity can enhance existing music therapy
techniques and lead to improvements in various medical and affective computing research. We
explore the effects of three different music genres on people’s cerebral hemodynamic responses.
Functional near-infrared spectroscopy (fNIRS) signals were collected from 27 participants while they
listened to 12 different pieces of music. The signals were pre-processed to reflect oxyhemoglobin
(HbO2) and deoxyhemoglobin (HbR) concentrations in the brain. K-nearest neighbor (KNN), random
forest (RF) and a one-dimensional (1D) convolutional neural network (CNN) were used to classify
the signals using music genre and subjective responses provided by the participants as labels. Results
from this study show that the highest accuracy in distinguishing three music genres was achieved
by deep learning models (73.4% accuracy in music genre classification and 80.5% accuracy when
predicting participants’ subjective rating of emotional content of music). This study validates a strong
motivation for using fNIRS signals to detect people’s emotional state while listening to music. It
could also be beneficial in giving personalised music recommendations based on people’s brain
activity to improve their emotional well-being.

Keywords: human–computer interaction; functional near-infrared spectroscopy; physiological signals;
music; affective computing; multimodal interaction; integration

1. Introduction

A famous line penned by Stevie Wonder in his song “Sir Duke” is “Music is a world
within itself, with a language we all understand”. Music is an art form enjoyed and
understood by people all around the world. It tends to elicit a variety of emotions in people,
which can be reflected in their conscious and unconscious responses. The correlation
between music and emotion is often mysterious and thought provoking. Different types
of reactions have been reported in regards to people’s reaction to music. Some of them
include frustration when a particular style of music is played at a shop, sadness in response
to a late-night movie soundtrack, and nostalgia evoked by a familiar song playing on the
radio [1]. Music has benefits including increased focus [2], reduction in stress and anxiety
levels [3,4], and improvement in memory [5]. Thus, music has a significant impact on
our daily life and activities. Music stimuli are also used in therapeutic interventions and
have been shown to improve sleep quality [6]. Due to the diverse effects and applications
of music, music is frequently used as stimuli in medical and affective computing-related
research studies.

Studies in the field of affective computing aim to build computing systems that can
accurately understand human emotions. Understanding emotional reactions to music could
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be beneficial for giving personal music recommendations, which could improve emotional
well-being by avoiding inappropriate music. There are different ways to capture data about
people’s emotional reactions. The most common methods are self-reports [7–9] and facial
expressions [10–12]. Some other common measures are speech [13], pupillary response [14],
and hand and body gestures [15]. However, some of these methods can be prone to high
individual biases. For instance, people can sometimes hide their true emotions in their facial
expression. Capturing emotional responses using physiological signals is beneficial in such
cases as these signals are involuntary and cannot be readily hidden, muted or faked. Studies
have also shown that music can induce universal psycho-physiological responses among
different groups of people [16]. There are different physiological signals which reflect
human emotions. Some of them are electroencephalography (EEG), galvanic skin response
(GSR, also known as skin conductance), blood volume pulse (BVP), heart rate (HR), skin
temperature (ST) and functional near-infrared spectroscopy (fNIRS). Experiments have
demonstrated that music induces specific patterns in the autonomic nervous system (ANS)
that reflects a relaxing or arousing state [17]. A significant increase in skin conductance
was observed in subjects listening to emotionally intense music [18] and music evoking
fear or happiness [19]. Skin temperature can also be influenced by listening to music
that induces positive emotions [20]. With the advent of modern wearable technologies,
collecting physiological signals is becoming easier day by day.

Activities related to music such as listening to songs and playing an instrument have
a strong influence on people’s brain activity [21], and compared to other stimuli, music
stimuli activate more parts of the brain [22]. Experiments have shown that learning to
play instruments can enhance the brain’s capability to master tasks involving memory and
language skills, and improves academic performance [23]. Music that induce alpha waves
in the brain can promote relaxation [24], while music that increase gamma waves in the
brain can increase focus and attention [25]. Brain activity related studies have found that
music is influential in reducing epileptic seizures [26] and aiding stroke rehabilitation [27].
However, the relationship between music and the human brain is complex. A rare form of
seizure called musicogenic epilepsy can be triggered by listening to music [28].

Wearable technologies that collect brain activity such as EEG and fNIRS can assist
in analysing the complex brain activity patterns that are induced by music. Functional
near-infrared spectroscopy, commonly known as fNIRS, is a wearable, non-invasive means
of measuring cerebral hemodynamic responses (blood flow variations) using near-infrared
light. FNIRS is highly portable, safe, and less susceptible to noise in comparison to EEG
signals. FNIRS has higher spatial resolution but lower temporal resolution compared to
EEG. Another advantage fNIRS has over EEG is that fNIRS does not need any conductive
gel to connect with different brain regions, so it greatly reduces setup time and system
complexity, and provides ecologically valid measurements [29]. Recently, it has shown
promising performance in measuring mental workload [30] and different emotions [31].
Hence, despite being a relatively new measurement modality, fNIRS has become a popular
choice of physiological signal in brain–computer interaction studies.

FNIRS devices are capable of collecting responses from the pre-frontal cortex area. The
pre-frontal cortex area of the brain is involved in various functions such as decision making,
emotion processing and keeping focus [32,33]. Hemodynamic responses in the brain
are measured by changes in two types of blood oxygen conditions, namely oxygenated
hemoglobin (HbO2) and deoxygenated hemoglobin (HbR). An active state of the brain is
generally reflected by an increase in HbO2 and a decrease in HbR level as the blood supply
overcompensates [34]. Therefore, the concentrations of HbO2 and HbR measured by the
fNIRS used in this experiment can provide insight into our subjects’ pre-frontal cortex
emotion processing functions.

Due to the complex relationship between music and the brain, many research questions
arise from this research area. In this paper, we investigate the following research questions:

• Can participants’ cerebral hemodynamic responses reflect what genre of music they
are listening to?
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• Are participants’ emotional reactions to music reflected in their hemodynamic responses?
• Are fNIRS signals suitable to train machine learning models to understand participants’

response to different music?

To answer these questions, we explore the effects of fNIRS signals in participants while
they listen to three different genres of music. Three commonly used machine learning and
deep learning methods are applied to classify the physiological responses into the three
genres. Classification is also performed using the subjective responses of the participants.
The contribution of this study is to analyse the effects of different types of traditional and
popular music in participants’ hemodynamic responses in the pre-frontal cortex using
computational techniques. This paper is organised as follows: this introduction is Section 1,
then some relevant background information on fNIRS signals and their uses in affective
computing are noted in Section 2. Section 3 describes the experiment in detail. Section 4
discusses the results of the experiment. Finally, we conclude this paper with Section 5 by
highlighting some limitations of our study and proposed future work.

2. Background
2.1. FNIRS Devices Used in the Literature

There are many devices that are used to collect fNIRS signals. Some of them are
OEG-16 [35], Brite23 [36] and LIGHTNIRS [37]. In this study, we used the NIRSIT device
by Obelab [38]. The device is shown in Figure 1.

Figure 1. Obelab NIRSIT Device.

NIRSIT has a total of 24 laser diode sources and 32 detectors. The relative changes
in hemoglobin concentration are measured by using light attenuation of two different
wavelengths: 780 and 850 nm. There are 48 primary channels in this device of which
16 are located on the right, 16 in the center and 16 on the left of the pre-frontal cortex.
In addition, the device also considers the horizontal, vertical and diagonal connections
between channels. Four different distances (15, 21.2, 30 and 33.5 mm) between channels
are considered by the device. This results in a total of 204 channels. FNIRS data using this
device are collected at the sampling rate of 8.138 Hz. The channel locations are shown in
Figure 2.

2.2. Computation Methods Using Brain Activity Signals

A number of papers in the literature have employed different computational meth-
ods to analyse physiological signals related to brain activity. In this paper, we highlight
some recent work which used different classification techniques to analyse these signals.
Hsu et al. [39] collected electrocardiogram (ECG) signals during music listening, and
classified these signals into four types of emotions (joy, tension, sadness, and peacefulness).
The classification using a least squares support vector machine (LS-SVM) reached 61.52%
accuracy. Lin et al. [40] used an SVM classifier to classify EEG signals into four emotional
states (joy, anger, sadness, and pleasure), with up to 82.29% accuracy. Rojas et al. [41] used
69 features from fNIRS signals to classify four types of pain, reaching 94.17% accuracy
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using a Gaussian SVM. In another approach, instead of using one physiological signal, a
combination of signals were used for classification. Daly et al. [42] used a combination
of EEG, GSR and ECG signals to classify affective valence and arousal levels, reaching an
average of 68.6% accuracy. Our previous work [43] also used a combination of GSR, BVP
and ST signals and classified them using an artificial neural network (ANN), reaching up
to 98.5% accuracy in classifying positive, neutral and negative emotions. All of these works
rely on feature extraction and a feature selection process, which significantly expands the
analysis time.

Figure 2. Nirsit Device Channel Locations at 30 mm separation.

Some recent FNIRS studies used deep learning methods which automatically extracted
features from the raw data, reducing overall computational time. Yang et al. [44] conducted
a study where they collected fNIRS signals while patients with mild cognitive impairment
completed three mental tasks. They applied a CNN on the signals and reached a highest
accuracy of 90.62%. Ho et al. [45] also investigated effects of mental workload on fNIRS
signals by applying a deep belief network (DBN) and a CNN. The classification accuracy
using DBN and CNN reached 84.26% and 72.77%, respectively. Chiarelli et al. [46] used
a combination of fNIRS and EEG signals for motor imagery classification. Using a deep
neural network (DNN), the average classification accuracy was 83.28%. A recent study
by Ma et al. [47] used a DNN to distinguish between bipolar depression and major
depressive disorder from patients’ fNIRS signals. Their average classification was 96.2%.
Deep learning methods have not been used extensively on fNIRS signals during emotion
recognition-related tasks, especially to understand emotional reaction to different genres
of music.

3. Materials and Methods
3.1. Participants and Stimuli

A total of 27 participants (17 female and 10 male) were recruited for voluntary partici-
pation in this experiment. Their mean age was 19.4, with a standard deviation of 1.5 (range:
18–24 years). All of the participants were undergraduate or postgraduate students at the
Australian National University (ANU).

We used a total of 12 music pieces for this experiment which were divided into three
categories: classical, instrumental and pop. These music stimuli were chosen based on some
specific characteristics. After analysing a number of classical music stimuli, Hughes [48]
suggested that music stimuli which have a long-lasting periodicity (phrases spanning
several bars of music) have a positive influence on the brain. Therefore, in previous music
therapy research, heterogenous classical music pieces have been used consisting of various
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different emotion colours, with the common factor being long-lasting periodicity. In this
study, we chose four classical music stimuli with this feature.

Music therapy studies have predominantly seen the use of classical music stimuli
with specific characteristics during therapy. However, using only one type of stimuli is
not sufficient and it limits the ecological validity of the results [49]. Our aim of this work
was to go beyond the specific set of music that is used to understand human response to
music and extend it to other categories of music. Thus, we also chose music stimuli from
instrumental and pop music genres. The instrumental music comprised instrumental and
binaural beat stimuli. For our study, we chose a piece that increases gamma waves in the
brain to regain focus and awareness [50], and a piece that increases alpha waves in the
brain, primarily used for meditation and relaxation [51]. The other two instrumental pieces
chosen were used by Hurless et al. [52] to analyse the effects of alpha and beta waves on
the brain. Finally for the pop stimuli category, we chose four music pieces based on the No.
1 song of the Billboard Hot 100 year-end charts from 2014 to 2017 [53]. As the instrumental
and pop music stimuli have not been used in studies before, we could not find expert
annotations of these stimuli based on different musical attributes. In the absence of expert
annotations, we applied our best judgement to select stimuli based on previously described
criteria and a diverse range in terms of pace and emotion colour.

Table 1 shows the names of the 12 music stimuli and their corresponding genres.

Table 1. Music Stimuli Used in the Experiment.

Genre and Stimuli No. Music Stimulus Name

Classical 1 Mozart Sonatas K.448 [26]

Classical 2 Mozart Sonatas K.545 [54]

Classical 3 F. Chopin’s “Funeral March” from Sonata in B flat minor
Op. 35/2 [48]

Classical 4 J.S Bach’s Suite for Orchestra No. 3 in D “Air” [48].

Instrumental 1 Gamma Brain Energizer [50]

Instrumental 2 Serotonin Release Music with Alpha Waves [51]

Instrumental 3 “The Feeling of Jazz” by Duke Ellington [52]

Instrumental 4 “YYZ” by Rush [52]

Pop 1 “Happy” by Pharrell Williams

Pop 2 “Uptown Funk” by Mark Ronson featuring Bruno Mars

Pop 3 “Love Yourself” by Justin Bieber

Pop 4 “Shape of You” by Ed Sheeran

3.2. Experiment Design

This study was approved by the Human Research Ethics Committee of the Australian
National University (ANU). All participants signed up for the experiment using a research
participation scheme website of the ANU. After arriving at the scheduled time, participants
were given an information sheet that included the description and requirements for the ex-
periment. The document also highlighted potential risks, and how the data would be stored
and used. Participants were given a consent form which they were required to sign before
proceeding further in the experiment. Figure 3 shows a photo of the experimental setup.
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Figure 3. Experimental Setting.

In the first step of the experiment, participants sat in a chair in front of a 15.6 inch
laptop, where they were fitted with an Obelab Nirsit device. The device was placed on the
forehead of the participants. Participants were asked to move any hair from the forehead
area in order to ensure good recordings. We began the calibration process by first checking
in the associated tablet application to ensure all the points of the device connected properly
and the application was able to visualise the blood flow in the participant’s pre-frontal
cortex. We then asked them to move their head slightly in order to measure the baseline.
The baseline signals were recorded for 50–53 s.

Participants answered some pre-experiment demographic questions on the laptop
prior to the start of data collection. They also wore a pair of Bose QuietComfort 20 noise
cancelling earphones to avoid any outside noise that might occur during the experiment.
All the participants listened to all 12 pieces of music. The three genres were order balanced
using the Latin square method [55] to remove any ordering bias. The music pieces within
each genre were kept in the same order.

As fNIRS is a slow modality physiological signal [56], each music piece was played
for two minutes in order to ensure opportunity for changes in participants’ hemodynamic
response during each song. The first two minutes were chosen from the duration of each
music stimuli. After participants finished listening to one music piece, they were asked
to provide numeric ratings to the music pieces. These questions asked the participants
to reflect on the general impression of the music and different emotions evoked by the
music. The ratings were given on a 7-point Likert scale for 6 different emotion scales.
The scales are (i) sad → happy, (ii) disturbing → com f orting, (iii) depressing → exciting,
(iv) unpleasant → pleasant, (v) irritating → soothing, and (vi) tensing → relaxing. The
scales were chosen according to [57]. Continuous scales were chosen; as in the real world,
human emotions are usually blended and therefore cannot be reflected using a discrete
scale [58]. The entire experiment was conducted through an interactive website prepared
for this purpose. The experiment took approximately one hour including device setup
and participation.

3.3. Data Preprocessing

The fNIRS signals are quite sensitive to noise generated by participants’ head and body
movements. They are also impacted by noise from the environment. These interference
effects often result in shifts from the baseline values and fast spikes in the signals. Therefore,
a number of preprocessing steps were performed on the raw signals collected from the
NIRSIT device. We used the 750 nm wavelength and a 30 mm separation between channels
as this is standard for many fNIRS-BCI studies [59]. From the 204 channels, the 48 primary
channels were used for further analysis (based on 30 mm separation). The raw signals
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were first low-pass filtered at 0.1 Hz and high-pass filtered at 0.005 Hz. Then some noisy
channels were rejected based on their signal-to-noise ratio (SNR). Afterwards, hemoglobin
concentrations from the signals were obtained using the Modified Beer–Lambert law [60].
This method converts the near-infrared signals to HbO2, HbR and HBT (total hemoglobin)
data and normalises the signals. We only used HbO2 and HbR values for each channel in
further analysis. This normalisation step is necessary as it removes ’between-participant’
differences. All of these preprocessing steps were performed using the Matlab NIRSIT
Analysis Tool. Finally, the signals were segmented into two-minute lengths to identify the
effects of each music piece.

3.4. Feature Extraction

Classification techniques using physiological signals entail an additional step de-
pending on the computational method being used. In deep learning methods, features are
extracted automatically from the raw or pre-processed data; no additional steps are required.
However, in traditional machine learning methods, a set of features needs to be extracted
prior to classification. In this paper, we used two traditional machine learning methods for
classification. Thus, a number of features were extracted from the pre-processed HbO2 and
HBR signals. We extracted statistical features from both time and frequency domains based
on a number of papers that focused on physiological signal analysis [61–65]. The features
used in this paper are listed in Table 2.

Table 2. Features Extracted from fNIRS Signals.

Feature Type Feature Names

Time Domain (Linear)

Mean, maximum, minimum, standard deviation, in-
terquartile range, variance, summation, skewness, kurto-
sis, number of peaks, root mean square, absolute summa-
tion, difference absolute standard deviation value, simple
square integral, average amplitude change, means of the
absolute values of the first and second differences

Time Domain (Non-Linear) Hjorth parameters (mobility), Hurst exponent

Frequency Domain Mean, minimum and maximum of the first 16 points from
Welch’s power spectrum

3.5. Classification Methods and Evaluation Measures

Features extracted in Section 3.4 were further analysed using two commonly used
classification methods, k-nearest neighbor (KNN) and random forest (RF). We experimented
with different values of parameters and picked the suitable parameters for optimum results.
For the KNN method, we used k = 5 and the Chebyshev distance metric. For the RF
method, we selected the number of trees to be 1000 with a maximum depth of 20. A
leave-one-participant-out approach was used to evaluate the models.

Biomedical signals such as fNIRS can be represented in two formats, one-dimensional
(1D) and two-dimensional (2D) data. In this paper, we used a 1D convolutional neural
network (CNN) which is used for classifying time-series data. Using 1D signal data requires
less memory and reduces computational complexity in comparison to 2D image data. Thus,
we opted for 1D data for this analysis. We experimented with deep networks in addition to
hand-crafted features because manually identifying the appropriate set of features can be
highly time consuming.

The one-dimensional CNN (1D-CNN) network used the pre-processed time-series
data obtained after completing the steps in Section 3.3. As this model takes in the time-
series fNIRS signals as the input (without any handcrafted features), it introduces some
additional challenges. Every participant’s neural structure is different, which results in high
variance in their physiological signals. Even after pre-processing, there remain differences
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in individual responses. Therefore, the classifiers need to be trained on a per-individual
basis to identify useful features from each participant.

During the pre-processing stage, it was found that each participant had different
numbers of channels that recorded good-quality data. After removing some channels based
on the signal-to-noise ratio, each participant was left with different numbers of channel
data. Thus, the sample size of each participant was different. This produced an additional
challenge to our dataset. If all the participants’ data are used together to train the model,
some participants who had lower amounts of data would experience low training accuracy
and this would have a significant impact on the final prediction.

In order to overcome these challenges and combine each participants’ output into the
final output, we introduce an ensemble-based model. Ensemble methods are used where a
new model learns the best approach to combine predictions from multiple sub-models to
determine the final prediction result. This provides better generalisation and often results
in better accuracy compared to using a single model. Ensemble models have been used
in traditional machine learning techniques for quite some time. Recently, deep ensemble
models have gained popularity as they combine the advantages of deep learning models and
ensemble models. There are different techniques of creating ensemble models. Some of the
techniques include bagging, boosting, and stacking. Stacked ensemble-based deep learning
methods have been used in studies where time-series sequences were used [66]. They have
most commonly been used in speech recognition [67–69] and speech emotion recognition [70].
Stacked approaches have also been used in music emotion recognition [71]. Furthermore,
stacked ensemble approaches recently achieved impressive results classifying physiological
signals from the DEAP dataset, which contains EEG and EMG data [72]. Therefore, in this
paper, we created a stacked ensemble model using participants’ fNIRS signals.

There are multiple ways to create stacked ensemble models. Different models in the
ensemble can be created using different techniques (e.g., KNN, SVM, and NN). Another
way is to combine the weights of multiple neural networks with the same structure. We
adopt the latter approach for our problem. In our stacked ensemble-based approach, each
sub-model provides a contribution to obtain the final prediction output. The model consists
of two stages. In the first stage, a model is trained on each participants’ data to create
each sub-model. In the second stage, a meta-learner model is created based on the outputs
from the sub-models in the first stage. The meta-learner model is then validated on a new
participant’s data to make a final prediction. Thus, here we perform a subject-independent
k-fold cross-validation approach to validate our model. The subject-independent cross-
validation was performed by keeping one participant in the testing set for one iteration
while the rest of the participants data were kept in the training set. This process was
performed for every participant. This approach is also performed in similar analysis using
EEG data [73].

The 1D-CNN model in the first stage was created as follows. It has two convolutional
layers, one max pooling layer, one fully connected dense layer, two dropout layers and a
softmax classifier. In both convolutional and dense layers, a rectified linear unit (ReLU) was
used as an activation function. The dropout layers were used after the convolutional layers
and the dense layer to perform better regularisation. Mean squared error was used as the
loss function. For the optimisation algorithm, we used stochastic gradient descent (SGD),
with a momentum of 0.9 and a decaying learning rate, with an initial learning rate of 0.01,
and a mini batch size of 64. The epoch number was set to 200. The schematic diagram of
the 1D CNN model is shown in Figure 4.

In the meta-learning stage, the output of the sub-models was input into a shallow
neural network with one dense layer and one softmax classifier. The schematic diagram of
the overall ensemble model is shown in Figure 5.
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Figure 4. 1D CNN Architecture for fNIRS Signals Classification.

Figure 5. Stacked Ensemble Model Architecture for fNIRS Signals Classification.

For all of the classification tasks, we report four evaluation measures. They are classifi-
cation accuracy, precision, recall and f-measure. Classification accuracy reports the rate of
correct classification by comparing against an independent test set. Precision is defined
by the fraction of predicted labels matched, while recall measures the true positive rate.
F-measure is the harmonic mean of precision and recall, and is not affected by uneven class
distribution. Therefore, it is often considered a stronger measure than the arithmetic mean
for reporting accuracy [74]. While classification accuracy is the most popular evaluation
measure of classification models, it does not provide complete information on the predic-
tive power and value of the model. Models with a high accuracy can sometimes have a
low predictive power [75]. The classification based on participants’ subjective rating on
emotions lead to an imbalance in labels, which can cause bias in the classification results.
Using accuracy as the only evaluation measure is therefore not good because it does not
account for the class imbalance. Thus, we report all four evaluation measures to show
the complete strength of the model. Precision, recall and f-measure were computed using
weighted average which accounts for any class imbalance. F-measure in particular takes
the harmonic mean of precision and recall, which takes into account the class imbalance
issue. This is necessary for some of the label combinations described in Section 4.

Classification was performed using the TensorFlow framework with the Python Keras
library. The system specifications were an AMD Ryzen 7 3700X 8-core processor with
3.59 GHz, NVIDIA GeForce GTX 1660 SUPER GPU, 16.00 GB of RAM and a Microsoft
Windows 10 Enterprise 64-bit operating system.

4. Results and Discussion

In this section, we will report the key findings derived from qualitative, quantita-
tive, visual and computational analysis conducted on participants’ fNIRS and subjective
response data.

During data pre-processing, we found that three participants’ fNIRS data were incom-
plete. Therefore, those participants’ data were discarded, and classification was performed
using data from the remaining 24 participants. For all the subsequent computational anal-
yses, we report two types of classification using traditional machine learning and deep
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learning techniques. The first is classification by music genre, where the three genres
provided the three classification labels. The other is classification using the subjective
rating of participants’ emotions, where we used the six different emotion ratings given
by the participants as labels. We converted all of these cases into three-class classification
problems. Therefore, we converted the 7-point Likert scale responses for all emotion scales
into three categories (negative, neutral and positive). We applied a majority voting method
to determine the final label for each music stimulus. However, for three emotion scales,
only two out of the three categories received votes by the participants. The votes were either
in the positive or neutral category. Thus, those three emotion scales were converted into
binary classification tasks. These are disturbing → com f orting (Neutral = 7, Positive = 5),
depressing → exciting (Neutral = 8, Positive = 4), and irritating → soothing (Neutral = 8,
Positive = 4). The other three remained ternary classification tasks. They are sad → happy
(Negative = 1, Neutral = 7, Positive = 4), unpleasant → pleasant (Negative = 1, Neutral =
6, Positive = 5), and tensing → relaxing (Negative = 1, Neutral = 6, Positive = 5). It is also
important to note that while the genre-based classification had the same number of samples
in each class, the subjective rating-based classification had uneven numbers of samples in
each class, leading to an imbalanced dataset. The other evaluation measures (precision,
recall and f1-score) are useful in such cases as they account for the weight of each class.

In the following subsections, we will summarise the key messages arising from the results.

4.1. Automatic Feature Extraction Reduces Complexity and Performs Better Than Handcrafted
Feature-Based Model

Table 3 shows the four evaluation measures for all seven (one genre-based and six
subjective rating-based) classification problems using KNN, RF and 1D CNN model. It
shows that the highest evaluation measures in all seven classification problems were
achieved by the 1D CNN model. The classification accuracies of the 1D CNN model in
classifying three genres using HbO2, HbR and a combination of both signals are 69.6%,
61.4% and 73.4%, respectively. The other evaluation measures also achieved highest
scores using a combination of both signals (0.762 precision, 0.734 recall and 0.731 f1-score).
Classification using participants’ subjective responses in a three-class category achieved
up to 77.4% accuracy in classifying sad → happy emotion. For the binary classification,
the accuracy reached 80.5% in classifying irritating → soothing emotion. Compared to the
1D CNN model, the traditional machine learning technique achieved 59.4% accuracy in
ternary classification and 74.9% accuracy in binary classification. Both were achieved using
all of the extracted features and the RF method. A one-way ANOVA on the accuracy results
of the three methods showed high statistical significance (p < 0.001).

It is important to note that in all seven cases, the highest accuracy was achieved by
using both HbO2 and HbR signals together, followed by only HbO2 signals and only
HbR signals. Therefore, we can conclude that using the combination of both hemoglobin
concentration values is more beneficial in building a robust computational model. If it
is not possible to collect both types of data, collecting only HbO2 data would be more
useful than collecting HbR data. The outcome is similar to some papers in the literature
where oxyhemoglobin features were shown to be more useful than deoxyhemoglobin
and total hemoglobin features [76,77]. The improved performance of the 1D CNN model
over KNN and RF models highlights the benefit of using deep learning techniques over
traditional machine learning techniques in physiological signal analysis. In traditional
machine learning methods, identifying the useful features to extract is a very difficult and
time consuming step. Useful features also differ based on different physiological signals.
An additional step of feature selection may also be required to identify the useful set of
features. Automatic feature extraction in 1D CNN removes the requirement of these steps
and thus significantly reduces the time and complexity of the process.
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Table 3. Evaluation Measure Results Using KNN, RF and 1D CNN.

KNN RF 1D CNN

Label Signal ACC PREC REC F1 ACC PREC REC F1 ACC PREC REC F1

classical → HbO2 0.342 0.34 0.342 0.334 0.327 0.326 0.327 0.321 0.696 0.724 0.696 0.689

instrumental HbR 0.339 0.336 0.339 0.33 0.341 0.342 0.34 0.336 0.614 0.649 0.614 0.602

→ pop HbO2 + HbR 0.371 0.378 0.371 0.369 0.376 0.374 0.376 0.368 0.734 0.762 0.734 0.731

sad → HbO2 0.495 0.455 0.495 0.467 0.553 0.449 0.553 0.461 0.74 0.758 0.74 0.707

neutral → HbR 0.49 0.452 0.491 0.466 0.56 0.46 0.56 0.466 0.67 0.66 0.67 0.614

happy HbO2 + HbR 0.541 0.512 0.541 0.521 0.594 0.538 0.593 0.519 0.774 0.786 0.774 0.749

unpleasant → HbO2 0.437 0.424 0.437 0.427 0.464 0.422 0.464 0.428 0.694 0.716 0.694 0.668

neutral → HbR 0.451 0.433 0.451 0.438 0.486 0.451 0.486 0.446 0.587 0.589 0.587 0.523

pleasant HbO2 + HbR 0.489 0.476 0.489 0.479 0.517 0.478 0.517 0.481 0.734 0.748 0.734 0.717

tensing → HbO2 0.452 0.439 0.452 0.442 0.476 0.444 0.476 0.446 0.697 0.719 0.697 0.682

neutral → HbR 0.442 0.425 0.442 0.429 0.472 0.437 0.472 0.435 0.619 0.638 0.619 0.597

relaxing HbO2 + HbR 0.479 0.463 0.479 0.466 0.491 0.451 0.491 0.457 0.719 0.741 0.719 0.708

disturbing → HbO2 0.517 0.512 0.516 0.513 0.541 0.505 0.54 0.493 0.708 0.734 0.708 0.674

neutral → HbR 0.518 0.509 0.518 0.512 0.549 0.513 0.549 0.499 0.626 0.644 0.626 0.546

com f orting HbO2 + HbR 0.539 0.533 0.538 0.533 0.544 0.511 0.544 0.496 0.718 0.743 0.718 0.684

depressing → HbO2 0.596 0.559 0.595 0.57 0.649 0.555 0.649 0.557 0.749 0.747 0.749 0.697

neutral → HbR 0.595 0.556 0.595 0.568 0.651 0.544 0.651 0.55 0.692 0.674 0.692 0.605

exciting HbO2 + HbR 0.648 0.633 0.658 0.637 0.684 0.668 0.683 0.618 0.77 0.772 0.77 0.731

irritating → HbO2 0.706 0.638 0.706 0.659 0.744 0.631 0.742 0.653 0.794 0.791 0.794 0.734

neutral → HbR 0.7 0.629 0.7 0.652 0.74 0.627 0.74 0.651 0.769 0.726 0.769 0.69

soothing HbO2 + HbR 0.748 0.727 0.747 0.73 0.769 0.749 0.768 0.702 0.805 0.799 0.805 0.753

ACC = accuracy, PREC = precision, REC = recall, and F1 = f1-score.

4.2. fNIRS Shows Differential Brain Responses to Music Genres

We further conducted a visual analysis of the HbO2 signals to understand how well
the signals can differentiate the three music genres. We performed a timeline analysis of
100 s of signals recorded in two different stages of the experiment. The first stage signals
were taken from point 900 to 1000 starting from the beginning of one genre, which is
approximately 100 s after the start of the genre. The second stage was from point 2500 to
2600, which is approximately 300 s into listening to one genre. The analysis was performed
on the average of all participants pre-processed HbO2 signals from three different channels.
We picked channel no. 16, 32 and 46 from the left, mid and right side of the pre-frontal
cortex, respectively. These channels were chosen based on their good quality of data. The
signals were reshaped to set the initial value to 0.5. This value was chosen so that the
increasing or decreasing trend of fNIRS response could be seen in a clear manner. The
result of the timeline analysis is shown in Figure 6. The red shaded area shows participants’
fNIRS responses to classical music, while the blue and green shaded areas show responses
to instrumental and pop music, respectively.

From Figure 6a,c,e, it can be seen that participants’ oxyhemoglobin response did not
show much difference while they were listening to the three genres of music. These signals
were captured while participants were listening to the first stimulus of each genre. However,
participants’ responses were more distinguishable in Figure 6b,d,f, with a stronger response
seen during classical and instrumental music listening in the mid and right pre-frontal
cortex. These signals represent the responses elicited during the third stimulus of each
genre. In summary, the figures show that the fNIRS signals provide a slow response in
differentiating three genres. However, the responses become more prominent after the
first few minutes, and show a more distinct range for the genres, especially in the mid and
right pre-frontal cortex. The mid region of the pre-frontal cortex is known for decision
making and maintaining emotional information within working memory [78,79]. The right
pre-frontal cortex is associated with self-evaluation of the face and episodic memory [80,81].
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Timeline Analysis of Participants HbO2 Response to Three Music Genres. (a) Channel 16:
900–1000 points. (b) Channel 16: 2500–2600 points. (c) Channel 32: 900–1000 points. (d) Channel 32:
2500–2600 points. (e) Channel 46: 900–1000 points. (f) Channel 32: 2500–2600 points.

4.3. Hemodynamic Responses Are Slow Modality Signals and Show Similar Patterns While
Reliving the Experience of Listening to a Music Genre

We further trained the 1D CNN model without the data from the first music track of
every genre. This resulted in an increase in the classification accuracy to 75.7% using both
HbO2 and HbR signals, 73.1% accuracy using only HbO2 signals, and 63.9% accuracy using
only HbR signals. This could be due to the fact that fNIRS is a slow modality signal, so the
effects of listening to a specific genre require time to be reflected in the signals recorded.
Since the effect is seen in a delayed manner, we assumed that the effect of listening to
one genre may be reflected after the playback was finished for one genre. Therefore, we
further trained the model using varied offset lengths of the final stimuli in every genre. The
classification result in differentiating three genres is shown in Figure 7.
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Figure 7. Classification Accuracy Using Different Offset Lengths.

We can see in Figure 7 that the classification performance decreases from the initial
value of 73.4% (two minutes segment without any offset for any stimuli and not discarding
first stimuli) to 72.8% using the offset length of 20 s. After that point, the accuracy starts
increasing again and reaches 74.6% with the offset length of 40 s. Looking at the experiment
participation of each subject, we identify this as the time period when they were completing
the post-experiment questionnaire, particularly when they were answering the open-ended
question of providing any comments about the music they listened to. Our assumption is
that this question triggered the participants memory of listening to the music and feeling
the same emotion they felt while listening to it. Thus, this effect can be seen in their
hemodynamic response. The same trend can be seen using only HbO2 or HbR signals. A
one-way ANOVA on the classification accuracy values showed high statistical significance
(p < 0.001).

Looking further at the numeric values of testing accuracy at each iteration, we noticed
that the accuracy remains very similar (even if there is a slight increase, it is too close to be
considered significant) or tends to drop slightly in the first 15 s in all three combinations of
signals. The drop is more noticeable when a larger dataset containing both signals is used.
We suspect that, if the model is trained multiple times with these different offset values
using large dataset, the accuracy will mostly tend to drop in the first 15 s. In terms of the
experiment design, this is the part where the participant is moving from the music listening
stage to the questionnaire stage, which could be considered a break/rest point. Therefore,
the effects of the music showed less prominence during this time.

This result tells us that there is a lingering effect on brain patterns while reliving the
experience of listening to music from each genre. Similar findings were reported by Chen
et al., where they noticed similar neural activity when participants watched and described
the events of a TV show episode [82]. Our results also align with the results in Section 4.2,
where we showed that the responses to different music genres became more prominent on
different brain regions after the first few minutes of listening to the stimuli. This finding
may be useful for future experiments that study the effects of music on the brain using
fNIRS signals.

4.4. Common Assumptions about Music May Need to Be Revisited

We observed some expected and unexpected responses to some of the stimuli which
was reflected in both participants’ verbal and physiological signals. For instance, the
stimulus “Instrumental 1” is a binaural beat designed to enhance gamma waves on the
brain, thus increasing focus and concentration on tasks. However, the majority of the
votes by participants leaned towards “sad”, “unpleasant” and “tensed” rating for the
three respective categories, and received neutral votes in the rest. This is contrary to our
expectation as we assumed this stimulus would have a positive impact on participants’
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emotion. In addition, all of the classical music mostly received neutral votes from the
participants. Depending on the stimuli, we expected three out of the four stimuli to evoke
a positive response, and a negative response by the other one. The stimulus “Classical 3”
is a piece played in a minor key and a very sombre tone. This piece has been used in
funerals. However, participants mostly voted towards neutral or positive emotions for this
piece. Although this aligns with some studies that mention sad music inducing pleasant
emotions [83], the findings were still surprising and interesting.

To understand this effect in a greater detail, we performed a qualitative analysis
using a grounded theory approach [84] on participants’ comments provided for each
music stimulus. We coded the comments into higher-level themes based on participant
descriptions of the emotions they felt while listening to a particular stimulus. These codes
were then divided into three categories: negative, neutral and positive. During the coding
process, frequently appearing words that were considered negative were: “dislike”, “sad”,
“depressing”, and “irritating”. Some of the comments highlighted as positive were: “like”,
“relaxing/relaxed”, “soothing”, and “calming”. The neutral comments mostly described
some features about the music, or whether they had previously heard the song or not,
where the comments did not reflect participants’ emotions. Some of the common words
used for neutral comments were: “familiar”, “loud”, “slow”, “fast”, and “upbeat”. The
analysis was completed using NVivo 12 software. Table 4 demonstrates the number of
participants providing different categories of comments on each stimulus.

Table 4. Kinds of Comments Provided by Participants on Each Music Stimuli.

Stimuli Negative Comments Neutral Comments Positive Comments

Classical 1 2 6 19

Classical 2 4 6 17

Classical 3 9 6 12

Classical 4 3 5 19

Instrumental 1 19 3 5

Instrumental 2 8 3 16

Instrumental 3 5 1 21

Instrumental 4 9 8 10

Pop 1 2 10 15

Pop 2 1 11 15

Pop 3 3 8 16

Pop 4 0 12 15

Table 4 provides some interesting insights on the stimuli, which also reveals useful
relationships of the music with participants’ brain activity. The classical pieces mostly
received positive comments from the participants. Classical 3 stimulus also received more
positive comments than negative, although it received more negative comments compared
to the other stimuli. On the one hand, this stimulus received comments saying the piece is
“relaxing” and “calming”, but it also received comments such as “dark” and “depressing”.
This could explain the neutral ratings on the six emotion scales given by the majority of
participants as the piece invoked negative emotions such as sadness and positive emotions
such as relaxation at the same time. In comparison, Instrumental 1 received a majority of
negative votes and comments such as “disturbing” and “irritating”. This raises a question
on the effectiveness of using a gamma wave inducing binaural beats stimulus for improving
focus when this causes discomfort in participants, which is likely to cause distraction and
reduced focus. The pop music pieces received a mix of neutral and positive comments.
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However, both of these types of comments were influenced by the fact that these music
tracks were more familiar (all of the participants were familiar with at least one stimulus in
this category). This suggests that music stimuli invoking sad emotions or familiar music
invoking positive emotion may both perform better in improving focus rather than binaural
beats. Future experiments could combine music stimuli and task performance to explore
this phenomenon.

4.5. Participants’ Verbal Responses on Emotional Reaction to Music Aligns with Their
Hemodynamic Responses

While some of the stimuli received a different emotion label than we expected, the
verbal response correlated with their hemodynamic responses. In order to analyse this, we
used the image frames generated from the activation map videos by the Matlab NIRSIT
Analysis Tool [85]. The activation map shows the changes of HBO2 and HbR in the
prefrontal cortex over time. The map reflects the prefrontal cortext area, where the dots
represents the channel locations. The colorful areas show which areas in the pre-frontal
cortex were activated at a given time, and the color intensity represents the value. The
frames were extracted at 25 frames/second and segmented according to the song length.
Figure 8 shows a sample frame from the activation map videos.

Figure 8. Frame from Activation Map Video Showing Changes in HBO2.

We visualised the activation maps and found a higher HbO2 response listening to
stimuli that were labelled sad compared to happy ones. Figure 9 shows sample frames of
two participants listening to Instrumental 1 (received mostly negative ratings) and Pop 4
(received mostly positive ratings).

Figure 9a,c shows that for both participants, there is a higher level of HbO2 activation
in the mid pre-frontal area while listening to the piece Instrumental 1. This stimulus was
voted by the majority of the participants as being in either neutral or negative categories
such as “tensing” and “unpleasant”. Figure 9b,c shows lower HbO2 activation listening
to Pop 4, which was voted in the positive categories such as “exciting” and “soothing” by
the participants. The trend is observed for other participants as well. This is similar to the
work by Moghimi et al. [86], where they found larger peaks in HbO2 responses in negative
emotion inducing music pieces. Our findings suggest that participants’ hemodynamic
responses are correlated with their emotional reaction. Therefore, these signals can reliably
be used to build computational models to provide music recommendations based on
human emotional states.

The results from all parts of Section 4 indicate that participants’ hemodynamic re-
sponses are a strong indicator of their emotional responses to music. Future studies can be
designed to explore these phenomena in more detail.
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(a) P3 Listening to Instrumental 1 (b) P3 Listening to Pop 4

(c) P17 Listening to Instrumental 1 (d) P17 Listening to Pop 4

Figure 9. Sample Activation Map Frames: (a,b) = Frame 417 of P3 Listening to Instrumental 1 and
Pop 4; (c,d) = Frame 417 of P17 Listening to Instrumental 1 and Pop 4.

5. Conclusions

In this paper, we reported the results of an experiment that collected participants’
brain activity response via fNIRS signals while they listened to three different genres of
music. Signals were first pre-processed using different techniques to convert the raw signals
into oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) responses. Three well-known
machine learning and deep learning methods (KNN, RF and 1D CNN) were applied to
classify the signals. Results from our analysis show that the deep learning models achieve
higher accuracy in classifying different music using their genres and participants’ subjective
rating of emotions as labels. A 1D CNN model achieves 73.4% accuracy in classifying three
music genres (classical, instrumental, pop) and 80.5% accuracy in classifying subjective
rating of emotions (irritating → soothing) based on the fNIRS data.

There are some limitations to our work. The number of participants may be considered
small to train a deep network. The number of participants for our study has been considered
reasonable in recent studies [87]. Although the initial results are promising, this needs
to be analysed further. Therefore, more data will be collected in the future to build more
robust models. A larger dataset will also be used to explore the complex interaction of
different emotions felt by the participants during each music genre listening. As the feature
engineering methods resulted in poor results, more features will be investigated along
with some feature selection techniques to identify the useful set of features. The device is
also sensitive to movement and noise; therefore, we had to eliminate many channels due
to poor connection. Thus, further pre-processing techniques such as wavelet and Fourier
transformation will be explored in order to make these models adapt to studies in the wild,
where different channels may be available for different participants. Additional techniques
will be explored to remove movement-related artefacts on the fly.

An additional limitation of our stacked ensemble 1D CNN method is that it assumes
every participant’s model provides a useful contribution to the final model. However,
there were some participants whose models resulted in poor training accuracy due to
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many noisy channels, a low number of samples, etc. Future work will include grid search
and optimisation methods to identify the best set of models for the ensemble model.
Additionally, a larger set of music stimuli will be investigated to understand if patterns
similar to this study emerge across a wider range of music genres. A further future
work could compare the use of musical instruments and digital instruments in the music
stimuli used in this study and explore the difference in participants’ physiological response
to them.

There are also certain limitations identified in the experiment design. As the instrumen-
tal and pop music stimuli have not been used in similar research before, it was not possible
to come to a resolution on what common factor should be considered while choosing the
stimuli in all three music genres. While classical music pieces have auditory attributes
of preference established in the literature, this is not the case for instrumental and pop
music pieces. Due the lack of expert annotation published on these pieces, we applied
our best judgement for selection criterion. This could have introduced potential bias to
our study. Future experiments will aim to gather expert annotations to identify auditory
attributes such as rhythm, tempo, flow which would facilitate appropriate music stimuli
choice. Another approach is to annotate based on participants physiological response to
the stimuli, which may result in less nuanced labelling.

Our study provides a contribution to the field of music emotion recognition based
on human hemodynamic response using automatic feature extraction with deep learning
methods, which is an emerging technique. This study paves the way for a wide range of
applications and future studies in musical interactions. It also identifies the usefulness
of combining HbO2 and HBR signals to construct effective models. This study reveals
that human brains process different genres of music differently and that we can see this in
their hemodynamic response. It also reveals the strength of fNIRS signal alignment with
participants’ emotional states. As fNIRS is a highly portable and non-invasive wearable
technology, multiple prospects from this study can be identified which could benefit future
affective computing research. Some of these are outlined below:

• Creation of advanced wearable technology that will measure fNIRS signals and rec-
ommend music to improve participants’ emotional well-being.

• Identification of appropriate stimuli based on participants’ physiological response for
various purposes such as music therapy and task performance. As mentioned in the
discussion in Section 4.4, participants’ physiological and verbal responses often do
not align with pre-assumptions about the stimuli. Using their physiological responses
would yield more accurate results in such cases.

• Identification of music that has adverse effects on the brain which can be used to
prevent musicogenic epilepsy.

• Creation of wearable devices using only the regions of interest (e.g., medial pre-
frontal cortex) which can be used for longer-duration experiments and continuous
measurements.

Our study uncovers the effectiveness of cerebral hemodynamic responses in revealing
participants affective state while listening to different music. This study has an immense
potential to be used in the advancement of affective and medical computing studies, and
further contribute to music therapy related studies.
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