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Abstract: Patch-based approaches in image processing are often preferable to working with the entire
image. They provide an alternative representation of the image as a set of partial local sub-images
(patches) which is a vital preprocessing step in many image processing applications. In this paper, a
new software tool called patchIT is presented, providing an integrated framework suitable for the
systematic and automatized extraction of patches from images based on user-defined geometrical and
spatial criteria. Patches can be extracted in both a sliding and random manner and can be exported
either as images, MATLAB .mat files, or raw text files. The proposed tool offers further functionality,
including masking operations that act as spatial filters, identifying candidate patch areas, as well
as geometric transformations by applying patch value indexing. It also efficiently handles issues
that arise in large-scale patch processing scenarios in terms of memory and time requirements. In
addition, a use case in cartographic research is presented that utilizes patchIT for map evaluation
purposes based on a visual heterogeneity indicator. The tool supports all common image file formats
and efficiently processes bitonal, grayscale, color, and multispectral images. PatchIT is freely available
to the scientific community under the third version of GNU General Public License (GPL v3) on the
GitHub platform.

Keywords: patch creation tool; patch-based image processing; mask filtering; geometric transforma-
tions; patch indexing; multispectral image processing

1. Introduction

Patch-based image processing techniques have attracted increasing attention during
the last year, as they have been applied in various scientific fields in physical, medical, and
environmental sciences. Patch-based algorithms first split an image into several smaller
images (generally rectangular), called patches, and in a second step, they process these
patches individually or collectively. Their utilization in image processing has been shown
to produce significant results in multiple domains, including image denoising, remote
sensing, medical image analysis, multiscale image restoration, and object detection, among
many others [1–10]. Recently, the evolution of convolutional neural networks (CNN) has
further extended the applicability of patch-based methods. For example, deep features can
be extracted from irregular image objects through CNN by utilizing a patch-based approach
to represent image objects and learn patch-based deep features, whereas a deep feature
aggregation method can be utilized to aggregate patch-based deep features into object-
based deep features [4]. In addition, a patch-based recurrent neural network (PB-RNN)
system tailored to classifying multitemporal remote sensing data can be used to process
remote sensing images [5]. In another work, a novel patch-wise semantic segmentation
method with a new training strategy based on fully convolutional networks was presented
to segment common land resources [6]. Another research study proposed and applied
a patch-based light convolutional neural network (LCNN), which was well-fitted for
medium-resolution land-cover classification and mapping [7]. In this study, aside from
pixel-based sampling, patch-based spatial sampling was also performed to create land-cover
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classifications and maps. The results of this study confirmed the superiority of patch-based
classification results compared to pixel-based classification in terms of accuracy.

In several recent publications, patch-based methods were successfully applied in
medical image processing applications. For instance, a generic approach to address fully
automatic segmentation of brain tumors using multi-atlas patch-based voting techniques
was proposed by Cordier et al. [8]. Khawaja et al. [9] recently proposed a state-of-the-
art probabilistic patch-based (PPB) denoiser for vessel segmentation, which is based on
an unsupervised retinal vessel segmentation strategy and the Frangi filter. In addition,
patch-based methods have been extensively implemented for magnetic resonance imaging
(MRI) reconstruction [10], segmentation [11], denoising [12], and brain tumor detection [13].
Furthermore, tools and libraries based on Python have been developed in the specific case
of MRI, which can be used for patch-based sampling in deep learning [14].

Remote sensing is another important field in which state-of-the-art technological
applications based on 3D laser scanners and digital cameras have led to significant advances
in computer vision. Barnes and Zhang recently reviewed patch-based synthesis methods in
this field [15]. Multiview stereo (MVS) dense reconstruction utilizing patch-based methods
has been proposed in image-based 3D acquisition [16,17]. In addition, patch-based density
forecasting networks were developed in order to forecast crowd density maps from public
datasets of surveillance videos [18], and drone-acquired forest images were analyzed by
deep learning techniques implementing a patch-based framework [19]. In another example
of the application of patch-based methods, laser speckle contrast imaging was studied using
deep neural networks to detect known and unknown fingerprint presentation attacks [20].

Considering the wide range of domains and applications in which patch-based meth-
ods and techniques are potentially involved, the development of a multipurpose software
tool to efficiently create patches based on a variety of user-defined criteria is an important
and beneficial task. In this work, a new MATLAB tool called patchIT is presented. It
enables the systematic extraction of patches from images based on user-defined geomet-
rical and spatial criteria. The proposed tool provides a unified framework that facilitates
patch-oriented operations that can be applied to all common image file formats, supporting
bitonal, grayscale, color, and multispectral images. PatchIT is utilized in an easy-to-adapt,
functional form that can be used to:

• Extract patches both in sliding and random mode controlled by user-defined parame-
ters regarding the patch size, stride, and distribution along the source image;

• Export the patches either directly to image files of various types, in a compact rep-
resentation as MATLAB .mat files, or as raw text files that can be easily loaded and
edited for further processing and maintenance;

• Involve masking techniques that act as spatial filters, identifying candidate patch areas;
• Apply patch-level geometric transformations;
• Reorder the patch intensities by user-defined patch value indexing, offering deeper

low-level information insights.

Because the number of created patches is a combination of various parameters that
affect the workload both in terms of memory and time requirements, patchIT provides
alternative processing modes that efficiently handle the applicability issues that arise in
large-scale patch processing scenarios.

In order to demonstrate the applicability of the tool in a realistic scenario and evaluate
its functionality in the case of a large dataset, cartographic backgrounds characterized
by different scale levels are utilized for the investigation of map visual heterogeneity. In
cartographic research, the quantification of map visual complexity constitutes a challenging
process, and over the years, map complexity has been examined according to various
concepts (e.g., [21,22]), including visual perception (e.g., [23–26]). In this work, visual
heterogeneity is used as an indicator of map visual complexity, demonstrating that map
visual heterogeneity is affected by map scale level. The Shannon entropy of the generated
patches is implemented as an indicator of visual heterogeneity as proposed by Merlemis
et al. [27].
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The rest of this paper is organized as follows: Section 2 introduces the basic operations
that refer to the creation and saving of the patches. Section 3 describes further functionality
provided by the tool regarding mask filtering, geometric transformations, patch indexing,
and operational modes. Experimental results of a use case in cartographic research are
provided in Section 4, and a discussion follows in Section 5 that highlights the applicability
of the proposed tool, in additional patch-oriented applications. Finally, conclusions are
drawn in Section 6.

2. Basic Operations

Patch extraction provides a representation of an image as a set of partial local sub-
images (patches) and is a vital preprocessing step in many image processing application.
Specifically, an image (I ∈ RM×N×B) is divided into patches (P ∈ RW×H×B), where M× N
and W×H denote the dimensions (width× height) of the image and the patch, respectively,
whereas B denotes the number of image bands. In a monochromatic image, B = 1, and
in a typical color image, B = 3, whereas in a multispectral image, B is a number greater
than 3. Patches are often square-shaped, that is, W = H and are usually much smaller than
the image, that is, W � M and H � N. It should be noted that for B > 1, patches are
created in an image cube fashion. This means that a patch concatenates all the B bands in
a 3D manner so that for each patch pixel, the entire spectral information is provided as
planes in the “third” dimension. Figure 1 illustrates the patch extraction process for various
image types.
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Figure 1. Patch extraction examples for various image types (a) in a monochromatic image, (b) in a
color (RGB) image, and (c) in a multispectral image.

2.1. Patch Creation

The patchIT function, in its simplest syntax, requires two parameters: the input image
and the patch size. For example, the command

patchit(‘sample512.jpg’,[50 30]);

defines sample512.jpg as the input image and sets the patch size equal to 50 pixels in width
and 30 pixels in height. The input image can be provided either as a string that defines the
image file name or as a MATLAB variable. Thus, the above command can be alternatively
written as
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I=imread(‘sample512.jpg’);
patchit(I,[50 30]);

An input image can be any bitonal, grayscale, color, or multispectral image that can
be imported into MATLAB. Several standard file formats are supported, including the
Joint Photographic Experts Group (JPEG), portable network graphics (PNG), tagged image
file format (TIFF), and graphics interchange format (GIF) formats. The patch size is a
two-valued vector that defines the width W and the height H (in pixels) of the patch.

The patchIT tool offers two modes for patch creation defined by the Mode parameter. In
sliding mode, patches are created in a grid-like fashion; the distance between patches can
be precisely defined both in the horizontal and vertical directions. This approach produces
patches that may overlap, are densely allocated, or have a distance between them. In random
mode, the patches are randomly distributed all over the image following user-defined
criteria, such as the number of patches, their proximity, and their spatial distribution.

2.1.1. Sliding Mode

By default, patchIT extracts patches in a dense, non-overlapping mode. For example,
the command

patchit(‘sample512.jpg’,[128 128],’Mode’,’sliding’);

or simply

patchit(‘sample512.jpg’,[128 128]);

divides the 512 × 512 input image, sample512.jpg, into 16 dense, non-overlapping patches
with dimensions of 128 × 128, as shown in Figure 2a. In order to extract patches allocated
with an arbitrary distance between them, the Stride parameter should be involved. This
parameter is provided as a two-valued vector (S = {SX , SY}) that defines the offset between
patches in the horizontal and vertical directions. For instance, the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[192 192]);

extracts patches with dimensions of 128 × 128 that have a horizontal and vertical offset
of SX = SY = 192 pixels. This leads to patches with a 64-pixel gap between them in both
directions, as shown Figure 2b. On the other hand, in the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[192 96]);

the Stride value for the y axis is changed to SY = 96 pixels, resulting in patches that are
still 64 pixels apart in the x direction but overlap for 32 pixels in the y direction, as shown
in Figure 2c. The example shown in Figure 2d corresponds to the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[64 64]);

where the patches overlap for 64 pixels in both directions.
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Figure 2. Examples of controlling the offset between patches using the Stride parameter: (a) dense,
non-overlapping patches without gaps; (b) patches with the same gap between them in both direc-
tions; (c) patches that overlap only in the y direction; (d) patches that overlap in both directions.
Image sample512.jpg has dimensions M × N = 512 × 512, and the patch size is W × H = 128 × 128.
Patches are marked as red squares, and blue dots denote patch centers.

The overall number of created patches is

K =

[
M−W + 1

SX

]
×
[

N − H + 1
SY

]
(1)

where [x] denotes the least integer greater than or equal to x. If the Stride parameter is
omitted, its value is set to be equal to the patch size. Thus, the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[128 128]);

is equivalent to

patchit(‘sample512.jpg’,[128 128]);

which corresponds to densely non-overlapping patches such as those shown in Figure 2a.
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It should be noted that the overall number of patches increases significantly as the
patch size and the stride decrease. Table 1 summarizes the number of patches created for
several combinations of patch and stride size in a medium-sized image of 512 × 512 pixels
and an 4K image with dimensions of 3840 × 2160 pixels. The last row refers to the limiting
scenario (although very common in many applications) of patches that slide one pixel in
both directions. It is obvious that even in a medium-sized 512 × 512 image, the number of
patches reach 250,000 for an 8 × 8 patch size. This number increases to 8.2 million patches
in the case of a 4K image.

Table 1. Overall number of patches for various stride and patch sizes in a medium-sized image
(512 × 512 pixels) and a 4K image (3840 × 2160 pixels).

Image Size 512 × 512 Image Size 3840 × 2160 (4K)
Patch Size (W × H) Patch Size (W × H)

128 × 128 32 × 32 8 × 8 128 × 128 32 × 32 8 × 8

St
ri

de
(S

x,
S Y

) (128,128) 16 16 16 480 510 510
(64,64) 49 64 64 1888 2040 2040
(16,16) 625 961 1024 29,824 32,026 32,400

(4,4) 9409 14,641 16,129 472,861 507,949 516,901
(1,1) 148,225 231,361 255,025 7,548,529 8,109,361 8,252,449

Accordingly, the memory requirements grow even faster as the stride decreases and
the patch size remains large. Table 2 demonstrates similar results for various patch and
stride size combinations. In the case of one-pixel stride, the memory requirements for a
typical patch of size 128× 128 in a 4K image are approximately 117 GB for a monochromatic
image (assuming 1 byte per pixel). These results highlight the importance of selecting a
proper output methodology in order to keep the patch creation process feasible both in
terms of time and memory requirements.

Table 2. Memory requirements (in megabytes, MB) assuming 1 byte/pixel for various stride and
patch sizes when applied to two monochromatic images (B = 1) with dimensions of 512 × 512 and
3840 × 2160 pixels, respectively.

Image Size 512 × 512 Image Size 3840 × 2160 (4K)
Patch Size (W × H) Patch Size (W × H)

128 × 128 32 × 32 8 × 8 128 × 128 32 × 32 8 × 8

St
ri

de
(S

x,
S Y

) (128,128) 0.250 0.016 0.001 7.500 0.498 0.031
(64,64) 0.766 0.062 0.004 29.500 1.992 0.125
(16,16) 9.766 0.938 0.062 466.000 31.275 1.978

(4,4) 147.016 14.298 0.984 7388.453 496.044 31.549
(1,1) 2316.016 225.938 15.565 11,7945.766 7919.298 503.690

2.1.2. Random Mode

In this mode, the patches are randomly positioned all over the image. This mode
is enabled by setting the parameter Mode to random. The number of required patches is
provided by the parameter Count. For example, the command

patchit(‘sample512.jpg’,[64 64],’Mode’,’random’,’Count’,15);

creates 15 patches with dimensions of 64 × 64 pixels randomly positioned all around the
source image, as shown in Figure 3a. The default Count value is 10 patches. As depicted in
the figure, some of the patches may partially overlap. The maximum percentage of allowed
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overlap can be defined by setting the parameter RandomMaxOverlap to a value between 0
(no overlap allowed) and 1 (any patch position is allowed). The value is expressed as
a percentage of the patch area. For example, if the patch size is 64 × 64 pixels and the
RandomMaxOverlap value is 0.25, then a maximum of (64 × 64)·25% = 1024 pixels overlap is
allowed among patches.

Multimodal Technol. Interact. 2022, 6, x FOR PEER REVIEW 7 of 21 
 

 

RandomMaxOverlap value is 0.25, then a maximum of (64 × 64)25% = 1024 pixels overlap 

is allowed among patches. 

A combination of large patch size, small image dimensions, large patch count, and 

low RandomMaxOverlap value may render the patch extraction process disproportion-

ately difficult or even infeasible. The parameter RandomAttempts defines a maximum 

number of attempts to be performed in order to achieve a feasible solution. For example, 

the command 

 
patchit(‘sample512.jpg’,[128 128],’Mode’,’random’,’Count’,5,... 
‘RandomMaxOverlap’,0.1,’RandomAttempts’,50); 
 

attempts to extract five random patches with dimensions of 128 × 128 pixels that are al-

lowed to overlap up to 10% of their area, as shown in Figure 3b. If the maximum number 

of 50 attempts is reached, an error message appears, and the process stops. 

  

(a) (b) 

Figure 3. Creating random patches: (a) 15 patches with dimensions of 64×64 randomly positioned 

all over the source image (overlapping of patches is allowed); (b) 5 patches with dimensions of 128 

× 128 randomly positioned all over the source image (overlapping of patches is allowed for up to 

10% of the patch’s area, and a maximum of 50 attempts is allowed in order to find patches that fulfill 

the requested conditions). 

2.2. Saving Patches 

This section describes the various patch-saving options provided by the patchIT tool. 

Patches can be saved either as image files, as a MATLAB (*.mat) file, or as a text-format 

file. The first option is the evident one that provides the extracted patches directly in im-

age format, ready for further processing and analysis. The second option results in a typ-

ical MATLAB .mat file in which all patches are stored in a unified form in one multidi-

mensional variable. Finally, the last option extracts all multiband pixel intensity infor-

mation of all patches in a text format that can be easily loaded and edited for further pro-

cessing and maintenance. The method used to save the extracted patches is defined by the 

SaveMode parameter, with three possible values, namely images, mat, or raw. Each 

method has its own characteristics and advantages, and an appropriate choice depends 

on a combination of application requirements and time/memory restrictions. 

  

Figure 3. Creating random patches: (a) 15 patches with dimensions of 64 × 64 randomly positioned
all over the source image (overlapping of patches is allowed); (b) 5 patches with dimensions of
128 × 128 randomly positioned all over the source image (overlapping of patches is allowed for up
to 10% of the patch’s area, and a maximum of 50 attempts is allowed in order to find patches that
fulfill the requested conditions).

A combination of large patch size, small image dimensions, large patch count, and
low RandomMaxOverlap value may render the patch extraction process disproportionately
difficult or even infeasible. The parameter RandomAttempts defines a maximum number of
attempts to be performed in order to achieve a feasible solution. For example, the command

patchit(‘sample512.jpg’,[128 128],’Mode’,’random’,’Count’,5, . . .
‘RandomMaxOverlap’,0.1,’RandomAttempts’,50);

attempts to extract five random patches with dimensions of 128 × 128 pixels that are
allowed to overlap up to 10% of their area, as shown in Figure 3b. If the maximum number
of 50 attempts is reached, an error message appears, and the process stops.

2.2. Saving Patches

This section describes the various patch-saving options provided by the patchIT tool.
Patches can be saved either as image files, as a MATLAB (*.mat) file, or as a text-format
file. The first option is the evident one that provides the extracted patches directly in image
format, ready for further processing and analysis. The second option results in a typical
MATLAB .mat file in which all patches are stored in a unified form in one multidimensional
variable. Finally, the last option extracts all multiband pixel intensity information of all
patches in a text format that can be easily loaded and edited for further processing and
maintenance. The method used to save the extracted patches is defined by the SaveMode
parameter, with three possible values, namely images, mat, or raw. Each method has its
own characteristics and advantages, and an appropriate choice depends on a combination
of application requirements and time/memory restrictions.
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2.2.1. Image Files

Saving the patches as image files is the most common approach, whereby each patch
is saved to a separate image file capable of readily being shown in any image viewer. For
this purpose, the SaveMode parameter has to be set to images. For example, the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[64 64], . . .
‘SaveMode’,’images’);

creates 49 separate image files in the current folder, each one containing a certain patch.
By default, the patches are saved in auto-numbered *.PNG image files named patch1.png,
patch2.png, etc. The default image file type can be modified using the parameter SaveImage-
sExt. For instance, the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[64 64], . . .
‘SaveMode’,’images’,’SaveImagesExt’,’tif’);

saves the patches in TIF format. Alternatively, the parameter SaveImagesTemplate can be
used that provides more flexibility, as it predefines the filename prefix, the image file format,
and the numbering pattern. For example, the command

patchit(‘sample512.jpg’,[128 128],’Stride’,[64 64], . . .
‘SaveMode’,’images’,’SaveImagesTemplate’,’patchfile000.jpg’);

saves the patches in JPG format using the prefix patchfile followed by a three-digit pattern,
such as patchfile001.jpg, patchfile002.jpg, etc.

Besides the patch image files, an additional pos.txt file that contains the coordinates
of all patches is created. This text file includes N lines (one per patch), where each line
consisting of four values (x1, y1, x2, y2) corresponds to the top-left and bottom-right coor-
dinates of the respective patch. Once created, the pos.txt file can be easily imported using
the load command, which creates a variable named pos in the MATLAB workspace. For
example, the position of the 15th patch on the image is provided by command pos(15,:),
returning a four-value vector that denotes its top-left and bottom-right coordinates.

Although saving patches directly to image files is an efficient and convenient way to
visualize and explore the extracted patches, it should be noted that, according to Table 1,
various combinations of image size, patch size, and stride may potentially result in a very
large number of patch files. In this case, saving the patches to a .mat MATLAB file should
be considered, as this option offers a more compact representation.

2.2.2. MATLAB .Mat File

This is the default option that saves the extracted patches to a MATLAB .mat file.
The file name can be defined by the SaveMatFilename parameter. The default .mat file
name is patches.mat. The created .mat file consists of a variable named patch that contains
the image data of all the patches in a compact representation as an array with dimen-
sions W × H × B× N, where N denotes the number of extracted patches. For example,
the command

patchit(‘sample512.jpg’,[8 8],‘Stride’,[4 4], . . .
‘SaveMode’,‘mat’,‘SaveMatFilename’,‘C:\Data\mypatches.mat’);

extracts 8 × 8 patches from the sample.jpg color image, using a stride of 4 pixels in
both directions. The input image is a 512 × 512 pixel color RGB image; thus, there are
N = 16,129 patches in total, saved in file C:\Data\mypatches.mat. This file includes a
variable named patch that can be easily imported into the MATLAB workspace afterward
using the load command. In this example, the variable patch is an 8 × 8 × 3 × 16,129
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array, as it contains 16,129 patches, each one corresponding to an 8 × 8 × 3 color image.
For instance, patch (3,5,1,8) provides the first color component (the red component in a
typical RGB image) of the pixel at position (3,5) in the eight patch. Similarly, command
patch(:,:,:,50) provides the whole 50th patch as an 8 × 8 × 3 array. The coordinates
of the patch can be extracted from the pos.txt file that is also created, as described in
Section 2.2.1. Thus, commands

load pos.txt;
v=pos(50,:);

result in a four-value vector that denotes the top-left and bottom-right coordinates of the
50th patch.

Saving patches to a .mat file is beneficial, especially when the number of patches is
very large. In this case, the memory and/or storage requirements may increase significantly,
as demonstrated in Tables 1 and 2. For instance, the command

patchit(‘sample4K.jpg’,[32 32],’Stride’,[4 4]);

is applied to the 4K image sample4K.jpg and results in a patches.mat file that contains
507,949 color patches with dimensions of 8 × 8 × 3, consuming about 1.5 gigabytes of
memory. For other patch size and stride combinations, the memory requirements can be
several times of magnitude larger. Loading such a .mat file may be problematic or even
unfeasible, depending on the system’s memory availability.

In order to overcome these barriers, the patchIT tool provides access to subsets of
patches directly from the file instead of reading the whole .mat file in memory. Continuing
the previous example, let us suppose that only the first 100 patches are needed. One
approach is to load the whole patches.mat in memory and then cut the desired patches.
This operation loads into memory a patch variable of 1,560,419,328 bytes that contains all
the patches. Thereafter, the command

y=patch(:,:,:,1:100);

extracts the first 100 patches into variable y with dimensions of 8 × 8 × 3 × 100 = 307,200
bytes. Alternatively, the commands

m = matfile(‘patches.mat’);
y=m.patch(:,:,:,1:100);

provide the same result much more efficiently without loading the whole patch variable
into memory. Only the subset of the first 100 patches (307,200 bytes) is loaded in memory.

2.2.3. Raw Text Files

This option is enabled by setting the SaveMode parameter to raw and allows the pixel
intensity information of all patches to be saved in text files. A separate text file is created
for each spectral band. For example, in the case of a typical RGB input image, three files are
created, namely raw1.txt, raw2.txt, and raw3.txt. The first text file contains the intensity
values for the red component, the second one for the green component, and the third for
the blue component. Each text file line stores the intensity values of a separate patch. In
general, if the patch size is W × H× B and there are N patches, then B text files are created,
each with N lines, where each line contains W × H values. Once again, the dimensions
and positions of all patches can be retrieved from the accompanying file, pos.txt. Figure 4
depicts the raw text files that correspond to the first two RGB patches with dimensions of
3 × 3.
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The default path and the naming template can be defined by the parameter SaveRaw-
Filename. For example, the command

patchit(‘sample512.jpg’,[5 5],’Stride’,[64 64], . . .
‘SaveMode’,’raw’,’SaveRawFilename’,’C:\Data\rawdata.txt’);

creates in folder C:\Data three raw text files named rawdata1.txt, rawdata2.txt, and
rawdata3.txt—one for each component of the three-band input RGB image. There are N =
64 lines in each text file, and each line contains 5 × 5 = 25 values. Using this encoding, all
multiband pixel intensity information of all patches is provided in text format, which can
be easily loaded and edited for further processing and maintenance. A separate pos.txt
file is also created that contains the coordinates of the extracted patches, as described in
Section 2.2.1.

It should be mentioned that column-based indexing is applied in order to convert
the W × H values of each patch into a row of values in the text file, as shown in Figure 4.
However. A variety of alternative indexing options provided by the patchIT tool are
discussed in Section 3.2. Table 3 summarizes the various SaveMode options.

Table 3. Patch-saving options.

Saving Mode Description Example

images Saves patches into
separate image files

patchit(‘image.jpg’,[128 128], . . .
‘Stride’,[64 64],’SaveMode’,’images’, . . .
‘SaveImagesTemplate’,’C:\results\patchfile000.png’);

Creates PNG patch files with dimensions of 128 × 128 in folder
C:\results using the filename template patchfile000 as
‘C:\results\patchfile001.png’
‘C:\results\patchfile002.png’
. . . (etc) . . .
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Table 3. Cont.

Saving Mode Description Example

mat
Saves all patches into a

multidimensional
variable

patchit(‘image.jpg’,[32 32], . . .
‘Stride’,[4 4],’SaveMode’,’mat’, . . .
‘SaveMatFilename’,’C:\results\allpatches.mat’);

Creates file allpatches.mat in folder C:\results that contains all the 32 × 32 patches

raw

Save intensity values
into separate text

files—one per spectral
band

patchit(‘image.jpg’,[15 15], . . .
‘Stride’,[64 64],’SaveMode’,’raw’, . . .
‘SaveRawFilename’,’C:\results\rawdata.txt’);

Creates a separate text file (one per each spectral band) in folder
C:\results. Assuming that ‘image.jpg’ is a multispectral image
with eight bands, the following eight text files are created:

‘C:\results\rawdata1.txt’
‘C:\results\rawdata2.txt’
. . .
‘C:\results\rawdata8.txt’

corresponding to intensity values for each spectral band.

2.3. Patch Order

By default, the patches in all of the above-mentioned sliding methods are saved in a
column-wise order. However, this can be changed using the Order parameter, with four
possible values, namely column, row, columnrev, and rowrev. Figure 5 demonstrates this
functionality. This parameter defines the order in which the patches are saved either as
image files, as a MATLAB .mat file, or as raw text files. It should be noted that the parameter
Order affects only patches created in sliding mode. In random mode, the order of patches
is randomly defined by default.
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3. Further Operations and Functionality

Aside from the basic patch operations regarding the creation and saving of patches,
the patchIT tool supports further functionality that may be beneficial for certain patch-
based image processing applications. This section introduces masking operations, as well as
geometric transformations through patch value indexing, in addition to demonstrating how
the patchIT tool efficiently handles memory issues in large-scale patch processing scenarios.

3.1. Masking Image Regions

In addition to the source image, a mask array can be also provided, acting as a spatial
filter that affects the patch creation process. A masking process can be applied in cases in
which certain image parts should be excluded from the candidate patch areas. From another
point of view, a mask could also be used as a weighting array that provides significance
information at the pixel level. A mask array should have dimensions equal to the source



Multimodal Technol. Interact. 2022, 6, 111 12 of 21

image itself and can be provided either as a MATLAB array or as an image file using the
mask parameter. For instance, the commands

M=imread(‘sample512_mask.tif’);
patchit(‘sample512.jpg’,[32 32],’Mask’,M);

are equivalent to

patchit(‘sample512.jpg’,[32 32],’Mask’,’sample512_mask.tif’);

In the first case, the mask image file is imported into a MATLAB variable (M); then,
this variable is used as a Mask parameter value. In the second approach, the mask file is
directly imported to the patchIT tool. Both cases have their advantages. Providing the mask
as a MATLAB variable offers increased flexibility, as the mask can be programmatically
generated and/or modified before being imported into patchIT. On the other hand, an
image-like visual representation of the mask may be the output of some external prepro-
cessing step and is, in general, easier to interpret. Figure 6 demonstrates the masking
results of the above-mentioned commands. On the left, the original 512 × 512 pixel image
is shown superimposed with blue dots that denote the candidate patch positions. The mask
shown in the middle is a binary image with the same dimensions as the source image. Only
candidate patches that fit in the white areas are allowed, and all the others are filtered out.
On the right side, the final extracted patches are shown over the source image.
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Figure 6. Applying a mask in sliding mode: (a) source image with the candidate patch positions
marked with blue dots; (b) a binary mask with the patches that fit in the white (allowed) areas; (c) the
resulting extracted patches.

It should be noted that in sliding mode, the mask values are treated in a two-state
fashion. That is, any non-zero value is considered 1, leading to a binary representation of
the mask.

In random mode, the mask (M) has a different interpretation. The mask is no longer
binary but is considered a probability array denoting image areas that are favorable for
patch extraction. Thus, the majority of the random patches is extracted from image locations
where the corresponding mask values are high. For instance, Figure 7 depicts the results of
the command

patchit(‘sample512.jpg’,[32 32],’Count’,15,’Mode’,’Random’, . . .
‘RandomMaxOverlap’,0, ‘Mask’,’sample512_maskgray.jpg’);

which asks for 15 non-overlapping random patches with dimensions of 32 × 32 based on a
probability mask that is provided by the grayscale file sample512_maskgray.jpg.
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3.2. Patch Indexing and Geometric Transformations

Patches are represented by their intensity values across all the bands of the source
image. Especially when saved in .mat or raw (text) format, these values are easily accessible
by the user, as they are provided either in a matrix form (.mat file) or in a row of values
(raw text files). By default, indexing of these values is column-wise, as shown in Figure 4.
The patchIT tool offers further functionality for the maintenance of patch intensity values,
leading to the creation of various visual results. For example, each patch can be flipped
upside down, mirrored left–right, swapped along the diagonal, rotated, etc. The parameter
PatchIndexing controls this behavior, with various possible values that are detailed in

Table 4. A sample 3 × 3 patch with values

124 128 133
143 143 140
159 158 151

 is used for demonstration.

The default indexing is

1 4 7
2 5 8
3 6 9

, which is column-based and can be modified by the

PatchIndexing parameter, resulting in modified patch values.

Table 4. Patch indexing operations.

Patch Indexing Value Description Indexing Example Patch Values Example

default no change
1 4 7 1 4 7
2 5 8 → 2 5 8
3 6 9 3 6 9

124 128 133 124 128 133
143 143 140 → 143 143 140
159 158 151 159 158 151

mirror horizontal flip
1 4 7 7 4 1
2 5 8 → 8 5 2
3 6 9 9 6 3

124 128 133 133 128 124
143 143 140 → 140 143 143
159 158 151 151 158 159

flip vertical flip
1 4 7 3 6 9
2 5 8 → 2 5 8
3 6 9 1 4 7

124 128 133 159 158 151
143 143 140 → 143 143 140
159 158 151 124 128 133

swap x-y exchange
1 4 7 1 2 3
2 5 8 → 4 5 6
3 6 9 7 8 9

124 128 133 124 143 159
143 143 140 → 128 143 158
159 158 151 133 140 151

spiralout inner-to-outer spiral pattern
1 4 7 7 8 9
2 5 8 → 6 1 2
3 6 9 5 4 3

124 128 133 143 158 124
143 143 140 → 140 159 128
159 158 151 151 143 133

spiralin outer-to-inner spiral pattern
1 4 7 1 2 3
2 5 8 → 8 9 4
3 6 9 7 6 5

124 128 133 124 140 159
143 143 140 → 128 151 143
159 158 151 133 158 143
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For example, in the command

patchit(‘sample512.jpg’,[128 128],’SaveMode’,’images’, . . .
‘PatchIndexing’,’mirror’);

the mirror value is applied; thus, the 16 patches (shown originally in Figure 2a) are saved
as horizontally flipped PNG images. It should be mentioned that multiple PatchIndexing
values can be combined, resulting in an increased number of geometric transformations.
Table 5 demonstrates various simple and combined PatchIndexing operations when ap-
plied to the 11th patch shown in Figure 5a.

Table 5. Examples of patch indexing operations when applied to a 128 × 128 patch.

PatchIndexing Value Resulting Patch PatchIndexing Value Resulting Patch

default
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Obviously, there is no visual interpretation for patches indexed using the spiralout or
spiralin options. However, they provide a useful insight on patch intensities, especially
when arranged in row vectors, as provided by raw saving mode. Figure 8 depicts an
example in which 16 patches with dimensions of 5 × 5 pixels are indexed according to
the spiralout option and the results are provided in raw format, i.e., one row per patch.
Specifically, for each patch, the row representation starts with the inner pixel, followed
by the eight pixels around it in clockwise direction, which are followed by 16 additional
intensity values of the external pixels. Overall, a table is constructed based on all the
patch intensities, providing a convenient way to process such inner-to-outer values. The
first column of the table consists of the center pixel of all patches, and the next eight
columns of the table consist of the surrounding pixels of all patches, etc. Similar compact
representations regarding outer-to-inner intensities can be obtained by the spiralin option
of the PatchIndexing parameter. This process is readily extended to multispectral images
by considering the raw text files that correspond to the other bands. It should be noted that
both spiral options are available only for square-shaped patches.
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Figure 8. Representation of 16 patches with 25 intensity values per patch. The spiralout option
of the PatchIndexing parameter starts from the innermost pixel and gradually extends to the outer
pixels of the patch in a clockwise direction. The patch pixels are indexed in squares of increasing
distance from patch center.

3.3. Processing Modes

As already mentioned, the number of created patches is a combination of various
parameters that affect the workload both in terms of memory and time requirements. As
shown in Tables 1 and 2, it is fairly easy to exceed the system memory and to reach the
maximum of the processor’s capabilities. The patchIT tool provides a parameter named
ProcessingMode that controls how the tool operates in order to overcome the aforemen-
tioned difficulties. This parameter has two possible values, namely direct and block. The
first option is the default, for which the requested patch extraction computations refer
to the entire procedure as a whole. This approach is the faster of the two and is the ap-
propriate choice for most typical applications. However, in large-scale scenarios (e.g., a
combination of large images/large patch sizes/small stride values), an increasing amount
of memory is required, which may render the extraction of patches infeasible. In this case,
the block option can be used, which splits the process into smaller parts that use a fraction
of the available memory, permitting unobstructed patch extraction, even in very large-scale
scenarios. However, this approach is slower than the first one. Thus, the ProcessingMode
parameter can be seen as a trade-off between efficiency and stability.

Table 6 demonstrates time and memory requirements in a 6 Core AMD Ryzen 5
3600 Processor @3.60 GHz with 16 GB of RAM when applied to an RGB color image
with dimensions of 512 × 512 pixels. The patch size is set to 128 × 128, and the stride
varies from (Sx, SY) = (128,128) pixels, which results in dense, non-overlapping patches,
to (Sx, SY) = (1,1), which corresponds to one pixel sliding in both directions. It can be
observed that the memory requirements increase rapidly, along with the number of patches.
In all cases, saving to a .mat file is the fastest option. For large stride values, the two
processing modes, i.e., direct and block, offer similar timings. On the other hand, the
one-pixel sliding case is not feasible in direct mode due to memory limitations, whereas
the block processing mode still provides a reliable solution.
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Table 6. Time and memory requirements regarding an RGB color image with dimensions of 512 ×
512 pixels and patch size set to 128 × 128 pixels.

Patch
Dimensions

(W × H)

Patches
(N)

Memory
(Bytes)

Time
(s)

Time
(s)

Images .Mat Raw Files

Direct Block Direct Block Direct Block

50 × 50 100 750,000 0.18 0.1 0.3 0.0 0.1 0.3 0.5

50 × 50 200 1,500,000 0.36 0.3 0.7 0.1 0.2 0.7 1.2

50 × 50 500 3,750,000 0.90 3.8 3.9 0.9 1.2 8.5 11.8

4 × 4 9409 462,471,168 57.5 57.9 13.7 15.5 124.6 215.1

1 × 1 148,225 7,285,555,200 - 927.1 - 215.6 - 2077.4

4. Experimental Results of a Use Case in Cartographic Research

In this section, we effectively utilize the capabilities of the patchIT toolbox in order
to address an issue in the field of cartography and mapping. The use case involves the
execution of the introduced toolbox for the automatic generation of image patches using
cartographic backgrounds characterized by different scale levels. The aforementioned
process is vital for investigating map visual heterogeneity, which can be used as an indicator
of map visual complexity. In particular, the described scenario examines the hypothesis
that map visual heterogeneity is affected by map scale level. Shannon entropy is utilized as
an indicator of visual heterogeneity.

The implementation of the use case is based on the utilization of the dataset described
in a recent study [27]. The dataset involves 100 different maps (cartographic backgrounds)
characterized by five different map scale levels (1:k, 1:2 k, 1:4 k, 1:10 k, and 1:40 k) in twenty
different regions in Greece and was produced using the standard layer of OpenStreetMap
(OSM). The resolution of each image corresponds to 2000× 2000 px. This dataset is a subset
of the corresponding dataset introduced by Kesidis et al. [28].

The experiments are performed in two stages. During the first stage, patchIT is
executed for the automatic extraction of different patches from all images of the selected
dataset using the random mode. Three different patch sizes (50 × 50 px, 100 × 100 px, and
200 × 200 px) and three different numbers (100, 200, and 500) of patches are randomly
extracted all over the image by setting the patchIT parameter Mode to random and the
parameter Count to 100, 200, and 500, respectively. The maximum percentage of allowed
overlap is defined by setting the parameter RandomMaxOverlap to a value of 1 (any patch
position and overlap is allowed). Figure 9 depicts an example in which the first 20 random
patches are shown in the case of a 100 × 100 px patch size for a selected image (map) from
the dataset.

Additionally, all patches are extracted in three different file formats (*.png image
files, MATLAB *.mat file, and raw *.txt files) in order to evaluate the computation time
requirements per processed image. Table 7 demonstrates the average time requirements of
all dataset images with a 6 Core AMD Ryzen 5 3600 Processor @3.60 GHz with 16 GB of
RAM for different patch sizes and saving modes.
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Figure 9. Illustration of the first 20 randomly generated patches on a selected map (2000 px resolution;
map scale level, 1:10 k). The patches shown have dimensions 100 × 100 and are randomly positioned
all over the map image, and full overlapping of patches is allowed.

Table 7. Average time requirements regarding the patch creation process for various combinations of
patch number and size. All three output options are considered, namely saving the patches to image
files, to a MATLAB .mat file, and to raw text files.

Patch
Dimensions

(W × H)

Patches
(N)

Time
(s)

Images .Mat Raw Files

50 × 50 100 0.18 0.03 0.22

50 × 50 200 0.36 0.04 0.44

50 × 50 500 0.90 0.07 1.04

100 × 100 100 0.25 0.06 0.91

100 × 100 200 0.49 0.10 1.76

100 × 100 500 1.20 0.22 4.27

200 × 200 100 0.49 0.21 4.37

200 × 200 200 1.01 0.46 8.53

200 × 200 500 2.61 0.79 21.00

The output from the first stage can be used to compute specific indicators for the
quantification of visual heterogeneity that characterizes each (map) image based on the
selected patches. Hence, in the second stage, Shannon entropy is derived from the patches
of each image (patch-based entropy) as an indicator for every map in order to evaluate
the effect of map scale on map visual complexity. Patch-based entropy is estimated for the
case of a 100 × 100 px patch size and 200 samples of patches per image, similar to [27].
Specifically, the indicator is calculated based on the probability of observing similar mean
RGB values in the 200 samples (patches) of each map (image). In order to evaluate the
efficiency of the proposed patch-based entropy indicator, box plots are utilized, as shown
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in Figure 10. It is evident that scale level significantly affects the visual heterogeneity of
maps, as decreasing the map scale level results in increased median values of the indicator.
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Figure 10. Box plots of the patch-based entropy for 100 sample images at five different scale levels.
The red mark corresponds to the median, and the bottom and top edges indicate the 25th and 75th
percentiles, respectively. The whiskers indicate extreme data points, and the outliers are denoted by a
red cross symbol. The indicator is estimated based on probability of observing different mean RGB
values for the 200 patches that are randomly generated with patchIT for each image (map).

In the above use case, the patchIT tool is applied to a large-scale image dataset in
order to automatically produce randomly distributed samples; as shown in Table 7, the
performed task is executed efficiently. Considering the functionality provided by the tool,
it would be easy to change the patch sampling method from random to systematic by
changing the Mode parameter from ‘Random’ to ‘Sliding’, allowing for a grid-like or even a
dense, non-overlapping patch creation process, as depicted in Figure 2.

5. Discussion

The functionality provided by the patchIT tool is designed to facilitate the implementa-
tion of patch-oriented operations. Indeed, the combination of patch creation modes (sliding
and random), image region masking, and patch indexing operations provides the potential
to implement a wide spectrum of tasks in various domains.

One of the basic strengths of the tool is its suitability for spatial sampling, which is
used to describe the activity of sampling when the population is spatially or geographically
distributed by obtaining representative spatial attribute data from the population [29–31].
The PatchIT tool, through its provided functionalities of random and sliding modes for
patch creation, along with region image masking with varying parameter values (e.g., Count,
Stride, Mask) can facilitate various spatial sampling methods. In this sense, the most im-
portant methods of spatial sampling methods, namely (i) simple random spatial sampling,
(ii) systematic spatial sampling, and (iii) stratified random spatial sampling [30,32,33], can
be efficiently supported. Specifically, simple random spatial sampling can be enabled by
patch creation in random mode (as presented in the Experimental Results section), system-
atic spatial sampling is supported by patch creation in sliding mode, and the combination
of patch creation in random mode with properly formed region image masking can utilize
stratified random spatial sampling. The latter method can be particularly useful when
there are regions within a georeferenced image (e.g., remote sensing image) or a map, and
it is essential that the attributes of these regions are sampled. For instance, in geographic
regions where there are water bodies (e.g., lakes) that are prone to be severely contaminated
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and should not be omitted from the sampling procedure [29], the stratified random spatial
sampling method is often suggested. In this context, recent research studies employed
several spatial sampling methods and designs to capture spatial and temporal water quality
variations in a lake environment utilizing remote sensing data [34].

Another domain in which the functionalities of the tool can be particularly useful
is image denoising. Local denoising methods can be limited in images in which the
correlations of neighboring pixels are greatly disturbed by high-level noise, mainly because
such images contain extensive similar patches at different locations [35]. Techniques such
as non-local means (NLM) based on a non-local averaging of all pixels in the image [36]
aid in overcoming certain denoising limitations. In essence, NLM is a patch-based filter
dividing the input image into sub-images in order to filter each sub-image separately (in a
patch-wise manner) [37]. The algorithm for this filter is based on similarity comparisons,
e.g., Euclidean distance between the centers of the patches and/or luminance distance
between the patches of each sub-image within a search window. In this context, patches
with similar luminance levels contribute with higher weights when averaged [37]. NLM is
based on patch similarity comparisons, and the value of each estimated pixel occurs as a
weighted average of pixels in the search window. Therefore, patch creation operations and
patch indexing provided by patchIT can be of great use for image denoising. In particular,
spiralout patch indexing can be harnessed, enabling comparisons in the vicinity, i.e., the
surrounding pixels (one-pixel distant neighbors, two pixels distant neighbors, etc.) of pixels
all over the image.

The proposed tool was developed with MATLAB software. Hence, the tool can be
executed in all modern operating systems, including Windows, Mac OS, and various Linux
distributions, if MATLAB is installed. Moreover, all the functionalities of the tool are fully
supported by only one function and can be imported in any other MATLAB software,
working either in a command line environment or in a graphical user interface (GUI).

6. Conclusions

PatchIT constitutes an integrated framework that serves as a complete software tool
towards automatized patch creation processes. It offers extended functionality regarding
the creation of patches in both a sliding and random manner that can be exported either
as images, MATLAB .mat files, or raw text files. Patch creation can be further refined by
involving masking techniques that act as spatial filters identifying candidate patch areas.
Moreover, geometric transformations at the patch level are also provided by applying patch
value indexing. The patchIT tool efficiently handles memory issues that arise in large-scale
patch processing scenarios. It can be applied to all common image file formats and supports
bitonal, grayscale, color, and multispectral images.

The applicability of the tool is demonstrated in a realistic scenario in which a large
dataset of cartographic backgrounds is used to estimate visual heterogeneity with a patch-
based entropy indicator. The patchIT tool follows an “easy-to-use” and “easy-to-adapt”
approach that can be fully incorporated into applications and adjusted according to the
particular user requirements. The source code of the tool is freely distributed to the
scientific community under the third version of the GNU General Public License (GPL v3)
on the GitHub platform (Supplementary Materials, https://github.com/taskes11/patchIT,
accessed on 9 November 2022), providing the opportunity to perform any modification for
further extension and development.

Supplementary Materials: https://github.com/taskes11/patchIT.
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