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Abstract: Recognizing places of interest (POIs) can be challenging for humans, especially in foreign
environments. In this study, we leverage smartphone sensors (i.e., camera, GPS) and deep learning
algorithms to propose an intelligent solution to recognize POIs in an urban environment. Recent
studies have approached landmark recognition as an image retrieval problem. However, visual
similarity alone is not robust against challenging conditions such as extreme appearance variance
and perceptual aliasing in urban environments. To this end, we propose to fuse visual, textual, and
positioning information. Our contributions are as follows. Firstly, we propose VPR through text
reading pipeline (VPRText) that uses off-the-shelf text spotting algorithms for word spotting followed
by layout analysis and text similarity search modules. Secondly, we propose a hierarchical architecture
that combines VPRText and image retrieval. Thirdly, we perform a comprehensive empirical study on
the applicability of state-of-the-art text spotting methods for the VPR task. Additionally, we introduce
a challenging purpose-built urban dataset for VPR evaluation. The proposed VPR architecture
achieves a superior performance overall, especially in challenging conditions (i.e., perceptually
aliased and illuminated environments).

Keywords: visual place recognition; urban place recognition; text spotting; image retrieval; visual search

1. Introduction

We struggle to recognize places in foreign environments due to unfamiliarity or
inability to understand the surrounding language. Modern-day smartphones equipped
with integrated sensors (i.e., camera, GPS) provide opportunities to create intelligent
solutions to aid. There is also an increased demand for such new services [1].

Recognizing places using visual information is studied as Visual Place Recogni-
tion (VPR). It is widely studied for localization and SLAM tasks which demand high
precision [1,2]. In contrast, this work aims to recognize urban places of interest (POI) de-
picted on an image as a visual search task and there has been a scarce focus on it. Landmark
recognition is a closely related task and a number of studies [3–6] have adopted an image
retrieval approach. However, in addition to landmarks that display distinctive features,
urban POIs include business entities (e.g., shops, restaurants) and commercial buildings
(e.g., shopping malls, offices). Additionally, urban environments go through frequent
appearance variances (i.e., structural, seasonal, and illumination changes) and display per-
ceptual aliasing (i.e., two distinct places appearing visually similar) (Figure 1). Therefore,
visual similarity alone is not robust against these challenging conditions [7].

Appearance invariant descriptors [8,9], a continuously growing database [10,11],
and image transformation [12,13] are proposed as solutions to overcome the appearance
variant problem in visual localization tasks. However, these methods demand additional
storage and processing, which is unfavorable to real-world applications.
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(a) (b)

(c) (d)

Figure 1. Examples of urban VPR challenges: (a) Appearance variance—daytime vs. illuminated;
(b) Appearance variance—seasonal; (c) Perceptual aliasing—shops at the same building complex;
(d) Perceptual aliasing—nearby closed shops with metal roll-down gates.

Humans leverage texts available in the environment for place recognition. Texts
remain distinct for perceptually aliased entities and unchanged under appearance variance.
Few studies have used text detectors to create visual descriptors [14–16] for mobile robot
localization tasks. However, due to the difference in task requirement (high precision
localization vs. place recognition), these methods that generate textual descriptors and
topological maps are unnecessarily expensive for the urban place recognition task. To the
best of our knowledge, no studies have exploited the use of scene text spotters (i.e., end-to-
end (E2E) text detection and recognition) for the urban place recognition task.

To this end, we propose a novel VPR through text reading pipeline (VPRText) and then
propose a hierarchical VPR architecture (VPRTextImage) that combines VPRText and image
retrieval. We directly use the transcript produced by off-the-shelf text spotting algorithms to
recognize the place, making the process inexpensive by eliminating the need to extract and
store textual descriptors. Place text identification with layout analysis and text similarity
search modules are proposed to address challenges (i.e., varied layouts, partial readings,
name discrepancies) in place recognition through text reading (Figure 2). To the extent of
our knowledge, no previous studies have proposed a pipeline that fuses visual, textual and,
positioning information for the place recognition task.

oue, golls, sard, girls, santa, ginls, 
monica, come, cappes, monica, 
catalomen, lkip, 

santa monica cappe, oue, ginls 

(1) Word Spotting (2) Identifying Place Texts
Map

[Broadway, Strawbery Fetish, …,
Santa Monica Crepes, Body Line, …. , 
Marion Crepes]

Santa Monica 
Crepes

Scoring 
Function

(3) Text Similarity Search

0.895 MONICA

0.731 Cappes

0.735 SANTA

0.767 MONICA

0.656 ginls

0.828 OUE

0.700 golls
0.728 Sard 0.738 girl

0.769 Come

Santa Monica Cappes

0.564 catalomen

0.514 lkip

oue

ginls

Input
Image, GPS Data

words Place

texts

Figure 2. An example of place recognition through text reading: (1) detection and recognition of all
word instances (oue, golls, sard, girls, santa, ginls, monica, come, cappes, monica, catalomen, lkip);
(2) performing layout analysis (i.e., words into lines/regions) and filtering irrelevant texts (e.g., menus,
banners) to identify the full place display texts (santa monica cappe, oue, ginls); (3) matching display
texts against the listed place names to obtain the top match.

Our contributions are (1) propose a VPR through text reading pipeline (VPRText) that
can accommodate off-the-shelf text spotting algorithms and perform layout analysis and
text similarity search to recognize places using their display names, (2) present VPRTex-
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tImage, an architecture that combines VPRText and image retrieval, complemented with
positioning information to tackle challenging conditions such as appearance variance and
perceptual aliasing, (3) perform a comprehensive empirical study on the applicability of
SoA text spotting, detection, and recognition algorithms for the VPR task, (4) evaluate on
a new purpose-built urban place dataset with challenging text instances, environmental
conditions and, perceptual aliasing. We compare VPRText against the image retrieval
approach on our dataset and demonstrate that VPRText outperforms, especially under
challenging conditions. Through comprehensive analysis, we discuss the limitations of
different approaches to VPR and demonstrate that VPRTextImage can perform well under
challenging conditions as well as textless environments.

The rest of the paper is organized as follows. Section 2 reviews related work followed
by methodology in Section 3. Experimental results are given in Section 4, and the conclusion
is drawn in Section 5.

2. Related Work
2.1. Visual Place Recognition

Visual Place Recognition (VPR), recognizing the place depicted on a given image, has
attracted multiple scientific communities including computer vision, robotics, and machine
learning. It is studied in different domains and can be categorized based on the three key
drivers; (i) Agent (e.g., autonomous cars, mobile robots, aerial vehicles), (ii) Environment
(indoor vs. outdoor, structured vs. open, artificial vs. natural), and (iii) Downstream
task (e.g., localization, SLAM, navigation). These drivers impose the problem definition,
solution design, and evaluation of the spatial artificial system [2]. The majority of the
studies focus on localization and SLAM tasks targeted at mobile robots or autonomous
vehicles [2]. These tasks aim to determine the accurate location or camera pose with respect
to the environment and demand high precision [1]. In contrast, this study focuses on the
identification of the place and is similar to a visual search task. Therefore, it demands high
recall over precision.

Landmark recognition can be considered a sub-task of POI recognition. It is suc-
cessfully approached as an image retrieval problem, retrieving the most similar image to
the given image, from an image database [3–6]. Recent success in landmark recognition
attributes to deep-learned global and local descriptors [1–4,17]. With the advancement
of deep learning and the introduction of large-scale datasets, it is also approached as an
instance recognition task, casting as an extreme classification problem [4–6]. However,
in addition to landmarks, the urban POIs include business entities (e.g., shops, restaurants,
cafes) and commercial buildings (e.g., shopping malls, office complexes). Urban environ-
ments go through frequent appearance variances (i.e., structural, seasonal, and illumination
changes) and display perceptual aliasing (i.e., two distinct places appearing visually simi-
lar). As image retrieval is based on image similarity, it may believe visually similar distinct
places to be the same and visually different instances of the same place to be different.
The instance recognition approach questions the extensibility of the system for a real-world
task, as the addition of a new place may require further training.

Studies have proposed several solutions for the extreme appearance variance challenge.
Solutions include deep-learned robust appearance invariant descriptors [8,9], continuing to
grow the database with newly captured images under different conditions [10,11], using im-
age transformation techniques to replace the query image with an appearance-transformed
synthetic image to align with the database condition [12,13] and supplementing the pipeline
with 3D models [18]. However, these solutions demand additional storage and processing
requirements (i.e., transforming images, constructing 3D models, continuous expansion of
database), which may not be favorable towards real-world applications.

A limited number of studies have used text information to overcome challenging
conditions for visual localization tasks. TextSLAM [15] uses text-level semantic information
to obtain coarse global localization and then obtain fine local localization using the Monte
Carlo localization (MCL) method based on laser data for mobile robots. Textplace [14]
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generates a textual descriptor (set of text strings and their bounding box positions) to
represent each image frame. Then, build a topological map with each node representing
the image with textual descriptor and camera pose. They achieve place recognition by
matching textual descriptors, followed by localization by modeling the temporal depen-
dence of a camera and its motion estimation. Several other studies have also proposed
the use of text information for the downstream task of robot localization [16,19] and valet
parking [20]. These studies leverage text information to overcome challenging conditions,
such as appearance variance and perceptual aliasing. However, their pipelines are intended
for localization and are unnecessarily complex and expensive for our task of interest.

In contrast, we read text instances on a given query image and directly use the tran-
script to search a place directory to find the place. A place directory stores georeferencing
by place name or identifier, in contrast to geotagged image databases. We propose scene
text layout analysis and text similarity search modules to tackle place retrieval challenges.
We then propose to fuse VPR through text reading and image retrieval to support textless
environments. This is a different approach from the textual descriptor-based localization
and pure image retrieval-based VPR. To the best of our knowledge, no previous studies
have fused visual, positioning, and textual information for the urban place recognition task.

2.2. Scene Text Detection, Recognition, and Spotting

Scene text detection and recognition is a topic that has been studied for decades.
Methods before the deep learning era mainly extracted handcrafted image features and
performed repetitive processing. Whereas, recent methods utilize deep learning-based mod-
els that benefit from automatic feature learning. Recent scene-text detection, recognition,
and spotting methods have focused on more challenging aspects such as arbitrary-shaped,
multi-lingual, and street-view texts [21,22]. Thus, these increase the applicability to real-
world applications.

Scene-text detection is the task of detecting and localizing the text instances on an
image. Text detectors initially followed a multistep process, predicting local segments
before grouping them into text instances [23]. Later, methods inspired by general object
detectors directly predict words or text lines [24]. However, text in the wild pose more
specific challenges such as oriented, curved, and vertical-shaped text. Therefore, more
recent methods focus on addressing these challenges by proposing text detectors that can
handle arbitrary shapes using segmentation and sub-component level methods [25–27].

Scene-text recognition is the task of transcribing the detected text into linguistic
characters. Text recognizers are broadly categorized as CTC (Connectionist Temporal
Classification) based methods [28] and encoder-decoder methods [29–32]. Rectification
modules (e.g., TPS [33], STN [34]) are adapted to handle irregular texts. Other techniques
such as the use of language models, lexicons, and semantic information are also used to
further boost performance.

Recently, there has been a surge of interest in building E2E models that perform text
detection and recognition. The unified task is known as text spotting. Earlier text spotting
frameworks used independent detection and recognition modules sequentially. Then, text
spotting frameworks were designed in a way to share the convolutional features among the
two detection and recognition branches. Recent works have proposed E2E trainable frame-
works to perform detection and recognition in a more unified way [35–37]. MANGO [36]
proposes a Mask AttentioN Guided One-stage text spotting, in which character sequences
can be directly recognized without a RoI (region of interest) operation. ABCNet [35] pro-
poses a parameterized Bezier curve adaptation for text detection and a BezierAlign layer
for feature extraction. Text Perceptron [37] proposes a segmentation-based detector and a
novel shape transformation module to handle arbitrary shapes.

Recently researchers are approaching the problem from a diversity of perspectives,
trying to solve different challenges including arbitrary-shaped text [38], multi-lingual
scene text [39], and street view text [40]. Even though scene-text spotting is rapidly grow-
ing, the generalization ability (training on one set and evaluation on another) and the



Multimodal Technol. Interact. 2022, 6, 102 5 of 20

adaptability to varying environments are less explored [21]. In this study, we evaluate the
generalization and task adaptability of scene-text spotters.

Scene Text spotting has many use cases in real-world applications. It is leveraged
for translations, scene understanding for autonomous vehicles, localization, navigation,
and image retrieval. A limited number of studies have leveraged detection and recognition
methods for visual localization tasks [14–16,19]. The study [41] evaluates the ability of a
few scene-text detection and recognition algorithms in reading street view text for real-
world intelligent transportation systems using a Chinese street view dataset. In this study,
we evaluate the applicability of two-step spotters (detectors and recognizers) and E2E
spotters for English street-view text reading and place recognition tasks. To the best of
our knowledge, no studies have evaluated the SoA E2E text spotting on real-world place
recognition tasks.

2.3. Datasets

Numerous datasets are introduced focusing on different domain tasks, agents, and
environments [1,2,42]. These datasets can mainly be categorized as landmark recognition
datasets and urban VPR datasets.

There are several urban VPR datasets [14,43] available. However, the desired task of
these datasets is to localize a given view (geo-localization and/or camera pose estimation).
For that purpose, datasets comprise sequences of images from selected streets or images
taken at distinct locations to depict the surrounding environment from different viewpoints,
rather than focusing on specific POI(s).

Landmark datasets [4,6] focus on recognizing the landmark depicted on a given
image, which is related similarly to our task. Therefore, these datasets contain images
focusing on landmarks. However, these landmarks do not usually contain visible text and
are distinguishable by their distinctive features. In contrast, this study focus on urban
POI(s), including shops, restaurants, commercial buildings, etc., which often contain textual
information for identification.

Therefore, these datasets do not provide a fair setting for the evaluation of our study.
Additionally, most of the existing VPR datasets comprise query and reference image
sets/sequences with similar images/image sequences as the ground truth. However,
the approach of our study is to achieve place recognition through text reading (eliminate
the need for image retrieval) when place text signs are available. To evaluate our algorithm,
we need a place directory (database where georeferencing is stored by place name or id),
with place identifier as the ground truth.

Various benchmark datasets are introduced to evaluate different challenging aspects
of text detection and recognition algorithms. Large-scale street view [44] dataset evaluate
the street sign reading and is partly related to our task. However, the dataset is limited to
Chinese street signs and the benchmark does not evaluate the VPR task.

Existing datasets limit the implementation and evaluation of the proposed algorithm.
Therefore, we introduce a new dataset with a place directory for VPR through text reading
and a place image database for VPR through image retrieval, to evaluate and compare our
proposed algorithm.

3. Methodology

The study aims to propose a VPR architecture (Figure 3) that is robust under challeng-
ing conditions (e.g., appearance variance, perceptual aliasing). To this end, we leverage
visual, positioning, and textual information. The proposed architecture first attempts to
recognize the POI through text reading and, if unsuccessful, falls back to an image retrieval
approach. The positioning information is used to narrow down the search space.

We approach this systematically. First, the applicability of SoA text spotters in reading
place name signs is evaluated. Then, a generic pipeline for VPR through text reading
(VPRText) is proposed, and finally, a hierarchical VPR architecture (VPRTextImage) com-
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bining VPRText and image retrieval is proposed. In this section, we present the process
and motivation in detail.

Yes

No

Soft Match 
Found?

Word 
Spotting

Place Text 
Identification

Text Similarity 
Search

VPR Text

VPR Image Retrieval

Place Image 
Database

Place 
directory

Databse

location-relevant place name list

location-relevant place image descriptorsGPS Info

similarity 
scores

place
texts

words,
bbox

Feature 
Extraction

Image Similarity 
Search

Reranking
(Optional)

image
descriptor

similarity 
scores

Image
GPS 
Info

Place ID

Figure 3. Proposed VPRTextImage architecture, comprising both text spotting and image retrieval
modules. Given the query image and approximate location, VPR through text reading is attempted,
if unsuccessful (i.e., no matching place names or no text detections) VPR through image-retrieval
is attempted. Positioning information is used to narrow down the retrieval space. (In the diagram,
cuboids represent the usage of deep learning-based algorithms).

3.1. Problem Definition

As the first step, through a thorough literature study and an empirical study, the chal-
lenges and, requirements for VPRText are identified. Place name signs include varied font
styles, sizes, arbitrary shapes (e.g., horizontal, vertical, and curved), languages, layouts, special
characters (e.g., #,-,&), numbers, and accented characters (e.g., č,è). As discussed in Section 2,
ongoing research in scene-text reading attempts to tackle many of these challenges.

Recognizing place texts in their occurring layout is a unique challenge for place sign
reading. Scene-text spotters and detectors commonly detect text instances as separate
words. However, in natural setting, place names appear as single words, lines, or multiple
lines (regions). For example, as depicted in Figure 2, the words—‘santa’, ‘crepe’ and
‘monica’ are separately detected, whereas the actual place name is “Santa Monica Crepes”.
Furthermore, cluttered backgrounds and the high availability of various irrelevant text
instances, including product boards, price signs, banners, billboards, etc., create noise,
making it challenging to identify the place name sign. Moreover, scene-text spotting and
detecting algorithms output various bounding shapes, including quadrilaterals, polygons,
or beziers. Hence, a generic pipeline should support these shapes.

Therefore, based on these observations, when proposing a generic pipeline for VPR
through text reading, we have identified the following requirements:

1. Ability to identify the place name texts (i.e., filter noise);
2. Support varied layouts (i.e., words, lines, or regions);
3. Support a variety of output bounding shapes.

On the surface level, matching the recognized place text against the listed place names
to obtain the place identifier may sound trivial. However, we observe the following
challenges hindering the results. Refer to Figure 4 for examples.

• Partial detections caused by occlusion (e.g., Velt gelato vs Eisewelt Gelato);
• incompetency of the spotter (e.g., candy vs. candy a go go!);
• Inaccurate readings (e.g., allbirds vs albirols);
• Discrepancies between the display name and listed name (e.g., Noa Coffee vs. Noa

Cafe Harajuku);
• Commonly used words leading to incorrect matches (e.g., cafe, salon, Harajuku);
• Mismatching spaces (e.g., Gustyiestudio vs. Gu Style Studio Harajuku);
• Repetitive words among texts (e.g., Body Line, LINE, Body Shop);
• Occurrences of symbols (e.g., -,&, #, emojis);
• Accented characters (ć,è);
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• Separate identification of place name and tag-line.

Therefore, we aim to propose a scoring method to perform text search while tackling
these challenges in retrieving the top matching listed place name.

(b) Candy
CANDY A GO GO!

(d) Gustyiestudio
GU STYLE STUDIO Harajuku

(a) Velt gelato
Eiswelt Gelato Harajuku

(c) ha
H&M

(e) Frozen popcoun sweeth giod grief
SweetOX Good Grief

(f) Noa Coffee
Noa Café Harajuku

Figure 4. Examples of observed place retrieval challenges: (a) Partial recognition due to occlu-
sion; (b) Partial detection by the text spotter; (c) Occurrence of symbols; (d) Mismatching spacing;
(e) Challenge in separating place name and tag line; (f) Occurrence of common words (Coffee) and
discrepancies between display name and listed name. (Recognized display text and listed place name
is given below each image).

3.2. VPRText Pipeline

In this section, we present the details of the VPR through text reading pipeline, re-
ferred to as VPRText (Figure 5). VPRText accepts a query image containing positioning
information (longitude, latitude, and positioning error). First, it performs word spotting
to obtain all visible texts. Then, these instances are further processed to identify the place
text candidates. Finally, the recognized place texts are matched against a location-relevant
place name list from a directory to retrieve top K place recognition results.

Occupancy 
Area Filtering

Bounding 
Fitting

Layout Analysis
(Lines/Regions)

Bezier 
Curve

Convexhull

Place Text Identification

Image
Bounding Boxes
Word Transcript

Text Similarity 
Search

Place Text
Candidates

Word
Spotting Place ID

Place 
Directory

Location-relevant
Listed place names

Figure 5. The proposed VPR through text reading pipeline (VPRText). Given a query image, the
pipeline goes through 3 main stages to output the place identifier. (1) Word spotting—detection
and recognition of all word instances; (2) Place text identification—(i) transform bounding shapes
into bezier curve fitting, (ii) performs layout analysis (i.e., words into lines/regions appropriately),
and (iii) removal of irrelevant words by occupancy area (e.g., product boards, banners, etc.) to
obtain display place texts candidates; (3) Text similarity search—performs iterative similarity scoring
between place text candidates and listed place names to obtain the top matching place identifier.

3.2.1. Word Spotting

Word Spotting can be achieved using a unified E2E text spotter [35–37,45] or a two-
step method by combining independent text detection [26,27], and recognition [29–31]
modules. Based on our experimental results, we propose to use an the E2E text spotters.
Text spotting algorithms accept a query image and output both bounding boxes and
transcripts of text instances. Current SoA methods commonly produce word-level instances.
The proposed pipeline supports off-the-shelf text spotters as a drop-in replacement in the
word spotting module.

3.2.2. Place Text Identification

The process aims to eliminate noisy text (e.g., product/price boards, banners, bill-
boards, etc.) and recognizes place text according to the layout (words, lines, or regions).
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This is achieved through three sub-steps: bounding fitting, layout analysis, and filtering by
occupancy area.

Bounding Fitting: The study [35] empirically demonstrates that a cubic Bezier curve
is sufficient to fit different formats of curved scene text. Therefore, the bezier curve is
chosen as the common representation, since it can represent varied bounding shapes
(e.g., quadrilateral, polygons) produced by different text spotting algorithms, with a fixed
number of points. The Bezier curve is a parametric curve, that defines a smooth, continuous
curve with a set of discrete control points (refer to Equation (1a)).

C(t) =
n

∑
i=0

bi,n(t)Pi, 0 ≤ t ≤ 1 (1a)

bi,n(t) =
(

n
i

)
ti(1− t)n−i, i = 0, . . . , n (1b)

where, n is the degree , Pi is the ith control point and bi,n is the Bernstein basis polynomials
of degree n (refer Equation (1b)).

We employ the bezier ground truth generation procedure performed in [35] to fit the
{Xi}N

i=1 set of contour points representing different bounding shapes into a cubic Bezier
(n = 3) representation. This is achieved by minimizing the linear least squares fitting error
(Equation (2)).

S =
N

∑
k=0
‖C3(tk)− Xk‖2 (2)

Fitting output bounding shapes into Bezier curve representations, enables the use of
off-the-shelf text spotters as a drop-in replacement to the word spotting module. Further-
more, the 8-point cubic Bezier curve representation provides a structured understanding of
the text position on the image for layout analysis.

Layout Analysis: As discussed in Section 3.1, the display place name texts exist in
different layouts: words, lines, and multiple lines. Therefore, we propose to appropriately
concatenate the detected word instances. We use the Bezier curve representation of the
bounding shape to determine whether two word instances are in the same line or region.
This step allows to recognition of full-place text according to the displayed layout.

Area-based filtering: The line/region level instances are then converted into a convex
hull to calculate an area score (Equation (3)). Instances below an area score of 0.1 are
discarded and remaining instances are ranked based on the area score to obtain the top N
occupying instances as place text candidates. This is based on the observation that place
name signs tend to be larger. This step helps eliminate irrelevant text instances, minimize
the place text candidates, and improve the results by minimizing false positives.

Areascore =
TextArea

ImageArea
∗ 1000 (3)

3.2.3. Text Similarity Search

In this stage, previously identified place text candidates are matched against the
location-relevant listed place names to obtain top K place recognition results. The location-
relevant subset is obtained by filtering places within a radius value (r) from the query
location (Equation (4)).

PQ = {P ∈ PDB | distance(Q, Pl) ≤ r}

distance(Q, Pl) = R ∗

√(
∆λ ∗ cos

(
ϕQ + ϕP

2

))2
+ ∆ϕ2

Where, Q = (λQ, ϕQ) and Pl = (λP, ϕP)

(4)
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where PDB is the full place directory, Pl is the place location, and PQ is the location-relevant
subset at query location Q.

As discussed in the requirement definition (Section 3.1), retrieval of the listed place
name using the recognized place text is not straightforward. Therefore, listed place names
are pre-processed to remove special characters, convert accented characters (e.g., è to
e), and remove common repetitive words. Given a nearby place name list for a query,
words that occur more than N (=3) times are considered repetitive common words; this
removes false positives by eliminating words such as cafe, salon, city name (Harajuku,
Omotesando), etc.

For the similarity score calculation between the two strings, we use an iterative scoring
function that uses the Levenshtein edit distance [46] as the basis to measure similarity
(Equation (5)). In the iterative scoring function, for each display, the place text candidate
segment-wise similarity is calculated against each nearby listed place name to obtain the
place with top matching segment-wise score. This addresses the challenges caused by
partial or imperfect detections, mismatched spacing, and differences between the display
name and the listed name (Figure 4).

Simscore(si, s̄i) = 1− D(si, s̄i)

max(si, s̄i)
(5)

where D(:) stands for the Levenshtein distance [46], and si and s̄i are the recognized display
place text and listed place name, respectively. The Levenshtein distance between two words
is defined as the minimum number of single-character edits (insert, delete, and substitute)
required to change one word to another.

Additionally, irregular layouts make the place name identification challenging. For in-
stance, some places may have the name in multiple lines, whereas others will have the
place name and a tagline in multiple lines (Figure 4e) . Therefore, based on experimental
results, we separately consider top N text instances of words, lines, and regions to obtain
the overall top K results.

3.3. Hierarchical VPR Architecture

As depicted in Figure 3, the proposed architecture first attempts the VPRText. In case
of failure (i.e., no matching place names or no text detections), it attempts place recognition
through image retrieval. The top matching similarity score determines VPRText’s success;
if it is below a given threshold, image retrieval is attempted. The motivation behind this is
that there are text-less environments, text can be fully occluded, or the text spotting module
may fail to detect/recognize challenging text instances (e.g., complicated font styles, blurry
text, oriented views).

Image Retrieval Pipeline: The image retrieval module follows the popular pipeline
of retrieving the top matching images from a place image database using global image
similarity and optionally re-ranking for result refinement [1,2,4]. Deep learned feature
extractors [4–6] can be used to create global image descriptors; this is conducted offline for
the database images. Given a query image and positioning information, a global image
descriptor is created for the query image and matched against the nearby places’ database
images to find the top matching images to obtain the top K place recognition results.
For feature extraction, we use the DELG [5] model. We do not use a reranker in this study
as previous studies indicate that geometric verification-based reranking does not improve
place recognition results in urban environments [7,47].

4. Dataset
4.1. Tokyo Place Text

As discussed in Section 2, existing datasets limit the evaluation of the proposed method.
Therefore, we introduce a purpose-built dataset to evaluate the SoA text spotting algorithm
in reading place names and the proposed VPR architecture under various challenging
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conditions. Therefore, we have three subsets of images; text spotting query set, place
recognition query set, and places database set.

Place Recognition Query Set: comprises 130 day-time and 50 night-time images (180 im-
ages in all). The images are further divided into four subsets: general day—80 images,
general night—35 images, perceptually aliased day—50 images, and perceptually aliased
night—15 images. These query images contain the place identifier(s) as the ground truth.
The set aims to evaluate the performance of proposed methods in accurately recognizing
the place.

Places Database Set: comprises 960 images of 240 unique POIs. Each POI contains
1–5 images, annotated with a place signature. Place signature corresponds to a place entry
in the place directory. The set serves as the database for image retrieval.

Place Directory: is a database where place id, place name, and georeferencing are stored.
For evaluation purposes, we generate a static directory sourced from OpenStreetMaps [48].
It comprises place entries from our experimental areas. Each entry contains the place id,
place name, longitude, latitude, and optionally other details. Entries are not limited to
places depicted on the query images.

Text Spotting Query Set: comprises 150 day-time and 100 night-time images (250 images
in all), with only the visible place name text (transcript) and respective language as the
ground truth. This set aims to evaluate the ability of text-spotting algorithms in reading
the visible place name on the query image.

All images are collected from Tokyo, Japan, in several rounds. Specifically, they were
collected in Harajuku, Omotesando, and Yanaka areas using the mobile devices Sony SO-04J,
Apple iPhone X, and 13 Pro Max. The images contain GPS information, including latitude,
longitude, and horizontal positioning error in metadata. The dataset includes a variety of
challenging instances (Figure 6), including varied font styles, font sizes, arbitrary shapes
(including horizontal, curved, and vertical), environment conditions (general, illuminated,
and seasonal), and perceptually aliased. Perceptually aliased images are collected from
a shopping complex with more than 15 stores (with similar storefronts) facing the street.
Night-time images are collected during the Christmas season and therefore, display both
illumination and seasonal appearance variances. Even though both English and Japanese
texts are available in the environment, the presented query set is limited to English place
name texts.

(a) (b)

(c) (d)

Figure 6. Examples from the TokyoPlaceText evaluation dataset: (a) General day-time images;
(b) Night-time images including illumination and seasonal changes; (c) Perceptual aliased day time;
(d) Perceptually aliased night-time/illuminated.
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5. Experiments and Results

This section presents the experimental setup and results. We conduct a series of ex-
periments to evaluate the applicability of text spotting algorithms, detection unit, scoring
function and place recognition under varied conditions including day, night, illuminated,
seasonal, and perceptually aliased. Experiments are presented under the three subsec-
tions; the evaluation of (i) text spotters, (ii) the VPRText pipeline, and (iii) the hierarchical
VPR architecture.

5.1. Evaluation of Text Spotters

The key component of the proposed pipeline is the word spotting module. The pipeline
allows the use of an off-the-shelf text spotter and it is responsible for the detection and
recognition of word instances on the query image. The number of studies have proposed
E2E text spotting [35,37] models as well as detection [26,27], and recognition [29,32] models.
Yet, limited studies have evaluated the applicability of SoA methods in place recognition
tasks. Therefore, first, we evaluate the performance of some of these SoA text spotting,
detection, and recognition models in accurately recognizing the display place name texts.

Evaluation Metrics: As our interest lies in the ability to accurately recognize the place
name text, E2E text spotting evaluation is performed using Normalized Edit Distance
(NED), which is formulated as in Equation (6).

N.E.D = 1− 1
N

N

∑
i=1

D(si, s̄i)

max(si, s̄i)
(6)

where D(:) stands for Levenshtein distance [46], and si and s̄i are the predicted and ground
truth transcription, respectively. Levenshtein distance between two words is defined as the
minimum number of single-character edits (insert, delete, substitute) required to change
one word to another. Therefore, higher N.E.D. values indicate higher reading accuracy.

Evaluation Dataset: The Text Spotting Evaluation Query Set presented in Section 4.1,
comprising 150 day-time and 100 night-time images, are used.

Text Spotting Models: Text spotting can be implemented as a unified E2E module or as
a two-step module comprising separate detection and recognition modules. Four openly
available SoA E2E text spotters (ABCNet [35], Mango [36], Mask RCNN [45] and Text
Perceptron [37]) are evaluated on the day and night conditions and using word, line and
region level detections. Results are provided in Table 1. Openly available pre-trained
models are used for evaluation. We selected the models fine-tuned on the Total Text
dataset [49], as it contains 1555 images with 11,459 text instances including horizontal,
multi-oriented, and curved texts. For the evaluation of MaskRCNN Detector, Mango,
and Text Perceptron, we utilized the DavarOCR framework [50] and the provided pre-
trained models fine-tuned on the Total-Text dataset.

Additionally, two-stage text spotters implemented as a combination of recently intro-
duced detector and recognizer modules are also evaluated. Ten text spotters implemented
as a combinations of the detectors—DBNet [27], DRRG [26] and recognizers—ABINet [32],
SATRN [31], SAR [30], Robust Scanner [29], NRTR [51] are evaluated. Results are presented
in Table 2. For the evaluation, we utilized the MMOCR framework [52] and used the
provided pre-trained models. Layout analysis module is also evaluated based on different
units: word, line, and region.
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Table 1. Evaluation of E2E text spotters.

Condition Method
N.E.D.

Word Line Region

Day

Mango 0.668 0.757 0.746
ABCNet 0.679 0.778 0.684
Text Perceptron 0.684 0.782 0.692
Mask RCNN 0.668 0.688 0.746

Night

Mango 0.684 0.757 0.738
ABCNet 0.652 0.726 0.689
Text Perceptron 0.704 0.820 0.759
Mask RCNN 0.684 0.718 0.738

Table 2. Evaluation of two-step text spotters.

Detector Recognizer
N.E.D.

Word Line Region

DRRG

ABINet 0.633 0.630 0.533
RobustScanner 0.613 0.605 0.508
SATRN 0.590 0.589 0.488
NRTR_1/8-1/4 0.505 0.502 0.423
SAR 0.622 0.615 0.512

DB_r50

ABINet 0.621 0.645 0.586
RobustScanner 0.604 0.638 0.573
SATRN 0.605 0.639 0.571
NRTR_1/8-1/4 0.540 0.568 0.515
SAR 0.602 0.637 0.569

5.2. Evaluation of VPRText

Next, we evaluate the performance of our proposed VPRText pipeline. The exper-
iments presented in this section evaluate the place recognition result. The goal is to
identify the place from the map/directory using the recognized transcript. As described in
Section 3, the pipeline support any off-the-shelf text spotter and output word, line, or region
level recognition.

Evaluation Metrics: As for our downstream task, higher recall is more important than
precision (as it is not a critical task); we evaluate this using the recall@K metric. We
formulate recall@K as in Equation (7c) for the place recognition task.

rel(Q)@K =

{
1 if |RK ∩ Rgt| ≥ 1
0 if |RK ∩ Rgt| = 0

(7a)

rel(Q)@K =
|RK ∩ Rgt|

min(K, |Rgt|)
(7b)

µRecall@K =
1
N

N

∑
i=1

rel(Qi)@K (7c)

where rel(Q)@K is the relevance function, which is the availability of ground truth Rgt
among the retrieved top K results (RK) for a query image. In addition, µRecall@K is
relevance averaged over for N query images. Equations (7a) and (7b) refers to the cases of
single and multiple POI evaluation, respectively. The study uses the single POI evaluation.

Evaluation Dataset: The Place Recognition Evaluation Query Set presented in Section 4.1 is
used. The dataset comprises general, illuminated, seasonal, and perceptually aliased instances.

Baseline: Image retrieval approach is used as the baseline. The image retrieval pipeline
is implemented using the DELG [5] global image descriptors with dot product similarity.
We use the DELG feature extractor with ResNet101 backbone trained on Google Landmark
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Dataset V2 [6]. Image scales given in the original configuration and a 2048 sized global
image feature vector are used. The database set described in Section 4.1 is used.

Parameters: VPRText pipeline uses Text Perceptron [37] as the word spotting module,
all (line, word, and region) as layout unit, N = 3 for top place text candidate selection, and
location filter value(r) of 100 m, and an area threshold of 0.1 is used. Table 3 presents the
evaluation of submodules for parameter selection.

Table 3. Evaluation of submodules.

Criteria Unit
µRecall@K (%)

K = 1 K = 3 K = 5 K = 10

Word Spotting

Text Perceptron 87.28 88.44 88.44 89.02
ABCNet 83.24 87.28 87.28 87.28
MANGO 82.08 86.71 87.86 87.86
Mask RCNN 81.50 86.71 87.86 87.86

Text Unit

Word 78.95 85.53 85.53 86.84
Line 82.89 86.84 86.84 86.84
Region 80.26 86.84 86.84 86.84
Alll 84.21 90.79 90.79 90.79

Iterative Scoring with 84.21 90.79 90.79 90.79
without 39.47 39.47 40.79 40.79

Place Text ID with (N = 3) 84.21 90.79 90.79 90.79
without 76.32 82.89 88.16 88.16

5.2.1. Appearance Variance—Day and Night Condition

We evaluate the performance of VPRText under appearance variance using day and
night query image sets and compare it with the image retrieval approach. Table 4 presents
the results. It can be observed that the VPRText performs significantly better (11% in the
day-time and 24% in the night-time) than the image retrieval approach.

Table 4. Comparison between VPRText vs image retrieval approaches in day/night conditions.

Condition Method
µRecall@K (%)

K = 1 K = 3 K = 5 K = 10

Day VPRText 84.13 84.92 84.92 85.71
Image Retrieval 73.44 75.78 82.03 92.19

Night VPRText 95.74 97.87 97.87 97.87
Image Retrieval 71.43 81.63 85.71 93.88

5.2.2. Perceptual Aliasing

We further evaluate the performance of VPRText in a perceptually aliased environment.
As described in Section 4.1, our evaluation dataset is divided into four subsets: general day,
perceptually aliased day (Day-PA), general night, and perceptually aliased night (Night-PA).
Table 5 shows the comparative results for these conditions separately.

It can be observed that VPRText performs well under perceptually aliased environ-
ments, while image retrieval struggles. VPRText perform better by 40% and 64% for day and
night (perceptually aliased), respectively. VPRText performs better in night/illuminated
conditions as well, by more than 5%. Yet, image retrieval has performed better in general
day conditions by about 8%.

5.3. Evaluation of Hierarchical Architecture

To perform robustly in text-less environments, we propose the hierarchical architecture
combining VPRText and image retrieval (referred to as VPRTextImage). For the VPRText
component, we follow the same implementation used in the VPRText evaluation. For the
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image retrieval component, we use the DELG [5] image descriptors and dot product
similarity score. In cases of no text detections or the top matching similarity score being
below a threshold of 0.65, the system falls back to the image retrieval approach. Results
are presented in Table 5. It can be observed that VPRTextImage performs the best overall.
Combining VPRText with image retrieval has improved the performance under appearance
variance, perceptual aliasing as well as general day-time.

Table 5. Comparison between general and perceptually aliased environments.

Condition Method
µRecall@K (%)

K = 1 K = 3 K = 5 K = 10

Day-General
Image Retrieval 96.15 100.00 100.00 100.00
VPRText 88.16 88.16 88.16 89.47
VPRTextImage 90.79 94.74 94.74 94.74

Day-PA
Image Retrieval 38.00 38.00 54.00 80.00
VPRText 78.00 80.00 80.00 80.00
VPRTextImage 80.00 82.00 88.00 92.00

Night-General
Image Retrieval 91.18 94.12 94.12 100.00
VPRText 96.97 96.97 96.97 96.97
VPRTextImage 96.97 100.00 100.00 100.00

Night-PA
Image Retrieval 28.57 57.14 71.43 85.71
VPRText 92.86 100.00 100.00 100.00
VPRTextImage 92.86 100.00 100.00 100.00

Overall
Image Retrieval 72.88 77.40 83.05 92.66
VPRText 87.28 88.44 88.44 89.02
VPRTextImage 89.02 92.49 94.22 95.38

6. Discussion
6.1. Text Spotters

The study evaluates several SoA text spotting methods for the task of place recognition
under challenging conditions including varied font styles, layouts, viewpoints, environ-
mental conditions (day, night, illuminated), occlusion, etc. It can be observed that the
evaluated E2E text spotters perform significantly better compared to two-step implemen-
tations (Table 1 vs. Table 2). In E2E algorithms, the sequential detection and recognition
modules share information and are jointly optimized to improve the performance. This
provides an example of the easy adaptation of E2E method to a new domain [22].

Among the E2E text spotters Text Perceptron [37], ABCNet [35], Mango [36] and
MaskRCNN [45], Text Perceptron performs the best. It is interesting to note that this
performance ranking is different from the popular benchmarking datasets such as Total-
text [49]. Thus, this emphasizes the need for the evaluation of real-world tasks. Considering
the evaluation layout unit, line-level has performed best in most cases (Table 1). This is
explainable by the fact that the majority of place name boards are in multiple words in
single-line format.

It is observed that these spotters commonly struggle with text instances including
complicated font styles (uncommon, cursive), vertical texts, single characters, wide-spaced
texts, and oriented views (Figure 7). We encourage researchers to explore techniques robust
against these challenging conditions as well as the performance gains that can be achieved
in current algorithms through fine-tuning with synthetic data/real-world data comprising
the above challenging instances.
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1 2 3 4 5

6 7 8 9 10

Figure 7. Instances where VPRText fails to accurately detect or recognize the place names. (1,2,3)—
oriented views, (4,5)—challenging font styles, sizes, and symbols, (6,7)—oriented illuminated views,
(8,9)—vertical texts, and (10)—misleading textures.

6.2. VPRText

We propose a pipeline catered towards the VPR through text reading. Since the
pipeline supports off-the-shelf text spotters with varied output bounding shapes, it can
leverage the latest SoA algorithms without a hassle. This will also allow the pipeline to be
used as a benchmark in evaluating text spotters for VPR tasks. Additionally, it can also be
adapted to automate the dataset annotation process for VPR tasks by replacing the manual
image annotation process.

VPRText pipeline is evaluated under challenging conditions, including illuminated,
seasonal, perceptually aliased, cluttered backgrounds, occluded, etc., and compared against
the image retrieval approach. Compared to the image retrieval approach [5], the VPRText
demonstrates superior performance under challenging perceptually aliased environments,
under illumination, seasonal changes and competitive performance under general day
conditions (Tables 4 and 5). This could be explained by the fact that visual similarity alone
is insufficient when two entities look similar or different instances of the same entity looks
different. Figure 8 shows some instances where VPRText performs better to the image
retrieval approach. In summary, VPRText performs well overall, whereas image retrieval
struggles in challenging conditions. VPRText failure cases indicate that word spotting
has failed (Figure 7) in challenging font styles, vertical texts, and some oriented views.
Therefore, further improving the word spotting module can lead to enhanced performance.

Most text spotters commonly output at the word level. Yet, when considering the place
names in the real world, they occur in different layouts including words, lines, or multi-
lines (regions). Therefore, concatenating word level spottings into line or region levels,
to obtain the best match, has helped improve the results. Accurate place name prediction is
challenging in some instances due to the differences between display name and listed name,
partial or inaccurate recognition, inability to separate place name and tagline, common
words, repetitive words, special characters, accented characters and spacing. Cleaning
listed names by removing symbols, accents, and frequent words, adapting an iterative
scoring algorithm and considering different units (words, lines, and regions) have helped
overcome these challenges and improved performance by more than 44% (Table 3).
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f.

b.

a.

Text:
VALENTINO
Place:
VALENTINO 
Omotesando 
Store

GT: Valentino MM6 Maison Margiela Dior Shu Uemura

Text:
YESAANTIAUR
ENT
Place:
Yves Saint 
Laurent Beaute

GT: Yves Saint 
Laurent

Chloé Shu Uemura Jimmy Choo

Image Retrieval Approach Text Spotting ApproachQuery

Text:
Dior
Place:
DIOR Perfume 
& Beauty 
Omotesando 
Store

GT: Dior Jimmy Choo Omotesando Hills Shu Uemura 

GT: Harry Winston Omotesando Hills Jimmy Choo Shu Uemura 

Text:
Harry winston
Place:
Harry Winston

Text:
the sheltier
Place:
The 
SHEL’TTER 
TOKYO

GT: The Shelter Tokyo Softbank ABC-Mart Sembikiya

Text:
GUESS
Place:
GUESS 原宿

GT: GUESS Undefeated Tokyu Plaza New Balance

Figure 8. Image retrieval approach vs. VPRText. Examples where VPRText performs better compared
to image retrieval in challenging conditions: (a,b)—perceptually aliased—day, (c,d)—Perceptually
aliased—night, and (e,f)—general night/illuminated. First column shows the query image, followed
by the top 3 image retrieval results, and the last column shows the VPRText output.

VPRText has many advantages over an image retrieval approach. The image retrieval
approach’s success highly depends on the quality of the database; it requires several
images of a place from different viewpoints and under varied conditions [11]. In addition,



Multimodal Technol. Interact. 2022, 6, 102 17 of 20

image descriptors should be created and stored [3,5]. Therefore, the creation, maintenance,
and storage of the database is an extra overhead. In contrast, the text-based approach only
requires a simple directory of place names and locations. The coverage is easily expandable
since text search queries can easily be made to a third-party service (e.g., search engine,
mapping service) to retrieve information, without depending on a single database. Image
retrieval is an expensive process, given a query image; it requires the descriptor creation,
image similarity measuring against the database, and optionally further re-ranking for
result refinement [3–5]. Whereas, the text-based approach requires only the processing of
the query image, followed by simple post-processing, which is cost-efficient. Additionally,
the image retrieval approach fails to separately identify multiple POIs located in the same
building [7]; the text-based approach is capable of handling the challenge.

Text-based methods proposed for visual localization or camera pose estimation tasks
use text augmented topological maps and text descriptors depending on the task require-
ment [14,15,20]. We demonstrate that for place recognition, direct text transcripts can be
matched against a place directory to obtain the place identifier.

6.3. Hierarchical System

VPR through text reading and image retrieval has its own strengths; thus, they are
complementary. Therefore, we propose a hierarchical VPR architecture that leverages
VPRText and image retrieval together with the positioning information.

Approximate positioning information alone is not capable of recognizing the place
accurately due to the difference between query and POI location; at a given position,
different viewpoints may depict different POIs, and retrieval by location may result in
multiple POIs [7]. Even though the image retrieval approach has advanced significantly
with the adaptation of deep learned image features [5,6] , it still struggles under extreme
appearance variance and perceptually aliasing [2]. Text-based VPR performs well under
these challenging conditions. However, it is not applicable to a textless environment and
may struggle when the text is fully occluded or fails to detect the text instances. Therefore,
combining these three types of information (positioning, texts, and visual), can provide a
robust and cost-effective solution (Table 5).

The proposed architecture performs well under the extreme appearance variance, per-
ceptual aliasing as well as text-less environments. Initially, it will process the query image
and attempt VPRText and will fall back to image retrieval only if unsuccessful. Therefore
the average processing time will be lower compared to the image retrieval approach. When
implemented as a real-world application, the system can be improved to identify the failing
instances of VPRText and textless POIs to minimize the place image database.

6.4. Limitations

One of the limitations of the text-based method is that text spotters need to be trained
to be able to adapt to different languages, whereas image retrieval is language-independent.
Yet, this will be a one-time preparatory process, and synthetic data generation methods [53]
can be used to easily supplement the required training data. Other limitations include
text-less environments, the inability to recognize some text instances, and occlusion of the
text instances. Therefore, we propose to combine the VPRText and image retrieval.

In this study, our VPR dataset is limited to a urban environment with textual informa-
tion. Therefore, we encourage further evaluation under a varying setting. The evaluation
of the text spotters were limited to monolingual setting (e.g., English). Multilingual perfor-
mance is another aspect that need to be further explored. In this study, our main aim was
to propose a solution that performs well under challenging conditions. We understand that
the latency is an important factor in real-world applications and can be further improved.

7. Conclusions

This study proposes a VPR architecture that fuses positioning, textual and visual
information. The pipeline first attempts VPR through text reading and falls back into
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image retrieval if unsuccessful. We introduce a new purpose-built dataset and evaluate
the proposed pipeline under challenging conditions (i.e., appearance variance, perceptual
aliasing, challenging font styles, occlusion). The proposed VPRText method performance
is superior under perceptual aliasing and extreme appearance variances. Furthermore,
we demonstrate that by combining the VPR through text reading and image retrieval,
we can achieve a robust performance under challenging conditions as well as text-less
environments. Through empirical evaluation, we demonstrate that scene-text spotters
are capable of generalization. However, they can further be improved to accommodate
challenging text instances. As latency is essential for real-world applications, we plan
to investigate the applicability of mobile-friendly models for text spotting and feature
extraction in future work. We believe our proposed architecture can be implemented as an
application to support users and explore unfamiliar areas with ease. Such implementations
will also benefit cities and business owners by increasing the visibility and accessibility
of POIs.
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