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Abstract: This paper presents a practical human-computer interaction system for wheelchair motion
through eye tracking and eye blink detection. In this system, the pupil in the eye image has been
extracted after binarization, and the center of the pupil was localized to capture the trajectory of eye
movement and determine the direction of eye gaze. Meanwhile, convolutional neural networks for
feature extraction and classification of open-eye and closed-eye images have been built, and machine
learning was performed by extracting features from multiple individual images of open-eye and
closed-eye states for input to the system. As an application of this human-computer interaction
control system, experimental validation was carried out on a modified wheelchair and the proposed
method proved to be effective and reliable based on the experimental results.

Keywords: human-computer interaction; binarization; convolutional neural networks; machine learning

1. Introduction

Human-computer interaction (HCI) has been widely studied since the 1960s with
the rapid development of information systems, which aims to design a human-computer
interface with ergonomic characteristics [1]. HCI systems in automated devices have been
based on the traditional interface with the monitor, keyboard, and mouse for a long time.
However, this manual input HCI was cumbersome to use, and to change this situation,
HCI with gesture-controlled interfaces has been widely studied [2–4]. Nevertheless, there
are many physically disabled people in real life who still are unable to use these devices or
even to travel independently. These physically disabled people are completely dependent
on others for their daily needs [5]. In order to improve the quality of life for people with
disabilities, HCI systems without relying on hands and feet is particularly important.

In recent years, there has been much research on control systems for people with ALS
(amyotrophic lateral sclerosis) and other severe physical disabilities that use biological
information such as eye movements, EEG, and EMG directly for HCI, without the use of
hands and feet [6–12]. As some particular interest research works are studies on eye gaze
input and eye blink, etc., which transmit information through the human eye. Because the
signal conveyed by the eye has greater stability and real-time compared to EEG and EMG,
humans can communicate a great deal of information more quickly and directly through
the eye [13–25]. Additionally, the problem of calibration in eye gaze regarding the difficulty
recognition was obtained due to the method using smooth pursuit motion does not require
calibration, which is of interest for eye gaze input studies because it makes the calibration
of gaze input easy [21].

This paper presents a practical HCI system for wheelchair control. Eye tracking and
eye blink detection based on image processing techniques have been integrated into the

Multimodal Technol. Interact. 2021, 5, 50. https://doi.org/10.3390/mti5090050 https://www.mdpi.com/journal/mti

https://www.mdpi.com/journal/mti
https://www.mdpi.com
https://doi.org/10.3390/mti5090050
https://doi.org/10.3390/mti5090050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mti5090050
https://www.mdpi.com/journal/mti
https://www.mdpi.com/article/10.3390/mti5090050?type=check_update&version=2


Multimodal Technol. Interact. 2021, 5, 50 2 of 15

proposed system. Since subjects can convey incorrect information when they are slightly
inattentive during eye gaze interactions, eye blink detection was introduced to assist
in completing this study. In contrast to some commonly used methods [22–25], image
processing techniques were applied as a new approach, which improved the reliability and
convenience of the system. After the captured image was processed by image processing,
its features were extracted, which made it easier to be recognized and the accuracy of
recognition becomes higher. Similarly, the eye object detection module in the Haar Cascade
(a Face Recognition Module) was used in the program, and as soon as the system turned
on, it was able to quickly capture and locate the eye region from the images captured by
the camera.

In this study, for eye gaze detection, pupil features were extracted from the eye
images using image binarization. The eyeball movement trajectory was tracked by locating
the pupil, based on the eyeball movement trajectory, the subject’s eye gaze area was
determined so that the information that the subject wants to express through eye gaze can
be obtained. For eye blink detection, some machine learning methods have been used
to accomplish eye blink detection in order to solve the problems of low accuracy, lack of
stability, and inconvenience of use of other methods. Machine learning techniques were
used very successfully in the field of computer vision, where it was used to simulate human
intelligence by learning the surrounding environment [26]. Machine learning was used in
this study to extract image features of the open and closed states of multiple individual
eyes to obtain a learning model so that the system could discriminate whether a subject
the eye blink or not by take real-time eye images of the subject. Three methods have been
used to determine the eye blink: pixel ratio [27], support vector machine (SVM) [28], and
convolutional neural network (CNN) [29] to determine eye blink. In comparison, using
CNN had the highest accuracy in detecting eye blink.

The HCI system of this study was mounted on a modified electric wheelchair for
experimental validation. Experiments with many methods to drive wheelchairs for dis-
abled people have been used in many HCI systematic studies, which gives us some
references [30–36]. Based on the data obtained in the experiments, it can be demonstrated
that this integrated multi-domain interaction system is effective. This also provides some
basis for further research on gaze interaction and HCI.

2. HCI Control System of Wheelchairs
2.1. System Overview

The HCI system of this study was applied to control the movement of an electric
wheelchair (see Figure 1). The testing system included a blink detection device, head-
mounted eye gaze tracking device (see Figure 1). Wireless communication was used
between the interactive system and the wheelchair, and the subject used eye gaze direction
and eye blink to control the wheelchair movement. Throughout the process of controlling
the movement of the wheelchair, the subject interacts with the computer, communicating
information to the computer through the eyes, and the computer communicates commands
to the wheelchair drive unit to control the wheelchair movement.
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2.2. Hardware Systems for Wheelchairs

In this study, an aluminum AR-200 wheelchair manufactured by Matsunaga Seisakusho
Ltd. was used. The hardware part of the wheelchair was improved and we designed a
drive unit for the wheelchair. This allows us to control the travel of the electric wheelchair
by eye gaze in the direction or by eye blink. In the modification, the rocker control unit
of the wheelchair was still retained so that the wheelchair could still be controlled by the
rocker when switching to manual operation. Figure 2 shows the hardware of the improved
power wheelchair.
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Figure 2. Modified electric wheelchair hardware display image.

In order to be able to drive the wheelchair through the interactive system, a driver
board was designed and developed for the wheelchair. Figure 3 shows the circuit schematic
of the drive circuit board. This is very important as it makes our interactive system highly
portable without having to consider the complex communication protocols of the controlled
devices. A wireless communication serial port has been used in the driver board so that
wireless communication could be made between the computer and the wheelchair.
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3. Eye Movement Recognition Methods
3.1. Eye Gazes Detection Method

The eye gaze tracking device (see Figure 4) used contrast to locate the center of the
pupil and used infrared non-columnar light to generate corneal reflections, capturing the
black area of the pupil by illuminating the eye with infrared light [17]. In order to be able
to use in a variety of light environments like sunlight, a filter was added to the lens, which
is to be able to filter out light other than infrared light.
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Figure 4. Diagram of corneal reflection eye tracking technology.

The image binarization method was used to process the captured eye images. Image
binarization was the process of converting an image with shadows into two shades of black
and white. A threshold was preset, and if the value of each pixel was above the threshold,
it was replaced with white, and if it was below the threshold, it was replaced with black.

f ′(x, y) =


255 f (x, y) ≥ θ

0 f (x, y) < θ
(1)

Here, the threshold is θ, the coordinate system is (x, y), the concentration value is
f (x, y), and the transformed concentration value is f′(x, y). The flow of the eye tracking
technique is shown in Figure 5. The pupil in the eye image was extracted by binarization,
and the pupil center coordinates were calculated. The gaze direction can be computed
based on the motion trajectory of the pupil center coordinates.
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Figure 5. Flow chart of eyeball tracking technology.

The image of the eye’s moveable range was divided into five regions, and the five
regions were labeled 2, 4, 5, 6, and 8 according to the numeric keypad. These 5 regions can
be used to represent different commands for different driving devices, and of course more
regions can be delineated depending on the driving device, so that more commands can be
obtained. In this article, when controlling the wheelchair movement, the commands for
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these 5 zones are: backward, left turn, stop, right turn and forward. The five areas set up
are shown in the Figure 6.
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Figure 6. The command chart corresponding to the eye gazes area.

3.2. Eye Blink Detection Method
3.2.1. Pixel Ratio

The value of each pixel in the image is represented by 8-bit unsigned characters
(value range: 0–255), which can be converted to 0 values by binarization if it is below the
threshold, or to the highest value of 255 if it is above the threshold. The image is shown
in Figure 7a shows a black-and-white image of the open-eye state and Figure 7b shows a
black-and-white image of the closed-eye state. By comparing the two images below it can
be seen that the binarised image varies according to the open/closed state of the eye. Thus,
if different values are obtained from the two images, the images can be discriminated.

Multimodal Technol. Interact. 2021, 5, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 5. Flow chart of eyeball tracking technology. 

The image of the eye’s moveable range was divided into five regions, and the five 

regions were labeled 2, 4, 5, 6, and 8 according to the numeric keypad. These 5 regions can 

be used to represent different commands for different driving devices, and of course more 

regions can be delineated depending on the driving device, so that more commands can 

be obtained. In this article, when controlling the wheelchair movement, the commands for 

these 5 zones are: backward, left turn, stop, right turn and forward. The five areas set up 

are shown in the Figure 6. 

 

Figure 6. The command chart corresponding to the eye gazes area. 

3.2. Eye Blink Detection Method 

3.2.1. Pixel Ratio 

The value of each pixel in the image is represented by 8-bit unsigned characters 

(value range: 0–255), which can be converted to 0 values by binarization if it is below the 

threshold, or to the highest value of 255 if it is above the threshold. The image is shown in 

Figure 7a shows a black-and-white image of the open-eye state and Figure 7b shows a 

black-and-white image of the closed-eye state. By comparing the two images below it can 

be seen that the binarised image varies according to the open/closed state of the eye. Thus, 

if different values are obtained from the two images, the images can be discriminated. 

  
(a) (b) 

Figure 7. Binarized black and white images of the eye with the eye open and closed. (a) Open eye
binary image; (b) Close eye binary image.

First, acquire the following eye image with a resolution of 64 × 64 pixels. The number
of pixels will be 4096. Next, count the number of black pixels in the image. If there are
1024 pixels, the percentage of black pixels is (1024/4096) × 100, or 25%. This ratio was
higher when the eye is open and lower when the eye is closed, so when the eye blink, this
ratio changes. Figure 8 shows the Data waveform of eye blink image pixel ratio change.
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3.2.2. Support Vector Machine

One of the oldest methods used in image classification is the SVM [28]. It is one of the
pattern recognition models that uses supervised learning. It differs from ordinary pattern
recognition models in that it performs margin maximization and kernel tricks.

A. Margin maximization

Margin maximization is the shortest distance between the boundary and the data.
Figure 9 shows the image of marginal maximization, the idea of margin maximization is to
draw the boundary as far away as possible from the data that is closest to the boundary
between the two classes.
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B. Mapping of feature space

In encountering nonlinear separation, it is necessary to use kernel tricks in SVM to map
the data from the original space to the new space (see Figure 10, mapping 2-dimensional
feature space to 3-dimensional feature space), and then the training data are used in the
new space to get the learning model using linear methods.
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Figure 10. The 2D feature space is mapped to the 3D feature space.

To find a map to feature space, we need to find the inner product ϕ(x)T ϕ(y) on the
feature space. The kernel trick allows us to calculate the inner product on the feature space
without knowing what the feature space is and what ϕ is.

Discriminant function:

f (x) = sign[
n

∑
i=1

aiyi ϕ(xi)
T ϕ(x)] (2)

(a: Weight; y: Label (1 or −1); xi: i-th learning data; x: Input data)
Kernel function:

k(x, y) = ϕ(x)T ϕ(y) (3)
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(Inner product in feature space: ϕ(x)T ϕ(y))
Replace the inner product of the discriminant function:

f (x) = sign

[
n

∑
i=1

aiyik(xi, x)

]
(4)

3.2.3. Convolutional Neural Network

The Convolutional Neural Network (CNN) is an important method in the field related
to pattern recognition [29]. This research constructed a learning model with CNN and used
it to detect blinks of the subject. Figure 11 shows the CNN model constructed in this study.
In the constructed CNN model input images of open and closed eyes with a resolution of
64 × 64 were subjected to convolutional operations, the feature values of the input images
were extracted, and a recognition model was built based on these feature values and it was
applied to the system.
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In this experiment, the well-known VGG-16 discriminative model has been used as
a reference. Since only two types of images (open-eye and closed-eye) need to be feature
extracted and classified, the model was finally reduced from the original 16 layers to 10
layers and the convolutional layers from 13 layers to 8 layers after continuous experiments
in order to balance high efficiency and high accuracy. The relevant parameters of each layer
are shown in Table 1.

Table 1. Relevant parameters of each layer.

Layer Name Layer Type Relate Parameters

Conv1_1 convolution 3 × 3, 8, relu, stride1
Conv1_2 convolution 3 × 3, 8, relu, stride1

Pool1 Pooling 2 × 2, 8, max pool, stride2
Conv2_1 convolution 3 × 3, 16, relu, stride1
Conv2_2 convolution 3 × 3, 16, relu, stride1

Pool2 Pooling 2 × 2, 16, max pool, stride2
Conv3_1 convolution 3 × 3, 32, relu, stride1
Conv3_2 convolution 3 × 3, 32, relu, stride1

Pool3 Pooling 2 × 2, 32, max pool, stride2
Conv4_1 convolution 3 × 3, 64, relu, stride1
Conv4_2 convolution 3 × 3,64, relu, stride1

Pool4 Pooling 2 × 2, 64, max pool, stride2
Fuc1 Fully-connected 512, sigmoid
Drop Dropout dropout-ratio 0.5
Fuc2 Fully-connected 2, softmax

3.2.4. The Eye Blink Detection Device and Its GUI

The graphical user interface of the eye blink detection system is shown in Figure 12,
which displays the camera image, the eye status picture area, the eye blink waveform, and
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the number of consecutive eye blinks by the user. In the upper left area, the camera image
was displayed. The eye status picture was displayed in a rectangular area, and the position
of the eye area was updated every 10 frames. The two waveforms at the bottom represent
the open and closed state of the eye, 1 when the eye is open and 0 when it is closed. The
image at the top right shows the state of the eye in the form of an image. The text string
at the bottom indicates the number of consecutive eye blinks. The symbol (*) increases
with each blink of the eye. The face and eyes object detection module in a face recognition
module (Haar Cascade) was used in the program in order to quickly capture the face and
locate the eye area, so that the capture frame in the screen always firmly captures both eyes.
During the control of the wheelchair, the wheelchair moves forward after the subject eye
blinks three times rapidly. After the subject blink once with the right eye, the wheelchair
turns right. After the subject blink left once, the wheelchair turns left. After the subject eye
blinks four times quickly, the wheelchair moves backward. After the subject eye blinks
twice quickly, the wheelchair stops moving.
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Figure 12. Diagram of blink detection device and its graphical user interface. The red symbol (*) in
the interface increases with each blink of the eye.

4. Results and Discussion
4.1. Results of Eye Gaze Direction Recognition Experiments

Figure 13 Comparison of eye images in various states during the experiment. Figure 13a
shows the eye image without infrared light irradiation, and Figure 13b shows the image
of the eye under infrared illumination. A comparison between the two can be found in
Figure 13b, where the pupil contour was more well-defined. Because corneal reflection is a
way to detect pupils darker, the iris colours can be compared by separating the infrared
light from the optical axis of the eye-tracking camera. Figure 13c shows the eye image after
the binarization process. To highlight the binarization changes, the background color was
set to blue instead of white. After binarization there were only two colors left in the plot,
the next step was to adjust the threshold to make the pupil outline more prominent and
obvious in the image.
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4.2. Eye Blinks Recognition Experimental Results

A. Pixel Ratio

In this experiment, a 5% change in the pixel ratio was used as an eye blink condition.
In addition, some changes can be obtained from the image four frames ago, since the
changes were not significant compared to the image one frame ago. Figure 14 shows the
judgment waveforms of eye blink detection by the pixel ratio method in this study. During
the experiment, a total of 20 blinks was made, only two blinks were detected in the left eye
and 10 blinks were detected in the right eye.
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B. Support Vector Machine

In the experiment using the SVM approach to detect eye blink, the testers blinked
both eyes the same 20 times. Figure 15 shows judgment waveforms for eye blink detection
by SVM, and we can see that 15 blinks were detected in the left eye and 19 blinks were
detected in the right eye.
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C. Convolutional Neural Network

Convolution layers can combine different local structures to present more useful
features in a region. By convolving the input image, the input image is rendered with more
feature maps. Figure 16 shows the convolutional layer feature map data of this study in
the experiment. In the first and second layers, there does not seem to be much change.
However, in the third layer, the brightness becomes more diversified, indicating that the
network can adapt to changes in the brightness of the input image. In the fourth layer, the
extracted features were different from those in the previous layers, and the contours were
emphasized. Five to six layers show that the contours were greatly emphasized. In the
seventh layer, more features were extracted. In the eighth and final layer, the features were
extracted to the extent that the original form was no longer visible to the eye.
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Figure 16. The feature map of convolution layer.

Figure 17 shows the judgment waveforms of eye blink detection experiment with
CNN. The testers performed 20 blinks in both eyes. Based on the data waveform plot it can
be seen that all 20 blinks in the left and right eyes were detected by the system.
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D. Comparative Discussion of Results

One hundred experiments were done for each of the three methods of identifying
blinks. Table 2 shows the results of the number of detections for 100 blinks, and Figure 18
shows a comparison between the experimental data of the three detection methods. Ac-
cording to the experimental results, the recognition rate using CNN is the highest with 99%
accuracy. This indicates that CNN method is still optimal, and the next step is just to adjust
each parameter to further improve the accuracy rate. In comparison, the Pixel ratio method
is the simplest of the three methods, which does not require the acquisition of human eye
images of the subject for learning and runs relatively fast, however, the detection rate is the
worst. Although a neural network was built in the SVM method, however it also does not
perform image convolution and has the second fastest running speed and has the second
lowest detection rate. Finally, the convolutional neural network has the highest detection
rate among the three methods, and it is also the most complex of the three methods. In
operation, subjects can use different methods depending on the conditions and are able to
collect a wider range of data.

Table 2. Number of detections per 100 blinks.

Methods Detection Count Undetected Count False Positives
Count

pixel ratio 28 72 0
SVM 74 26 11
CNN 99 1 0
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4.3. Drive Experiment Results and Discussion

A. Drive Experiment Results

Figure 19 shows the roadmap for driving the wheelchair movement during the ex-
perience, and some obstacles were set up in the test site in order to increase the difficulty.
Twelve subjects controlled the wheelchair movement by eye gaze and eye blink according
to the path plan in Figure 19 and each experimented once. All 12 subjects successfully com-
pleted the experiment and were able to control their wheelchairs very smoothly to avoid
obstacles during the experiment. The shortest time was 2 min and the longest time was
3 min for all 12 subjects to complete the experiment. Figure 19a shows the subjects driving
the wheelchair clockwise, and after reaching that end point, the subjects turned around
in the same place and moved counterclockwise according to the route in Figure 19b, and
completed the whole process after reaching the end point. Figure 19c shows the subject’s
remotely controlled wheelchair moving according to the route in the figure. The subject
first controls the wheelchair straight ahead to reach the preset point, and then controls the
wheelchair backward to the starting point, the subject then controls the wheelchair to turn
90◦ left, and then 180◦ right to complete the process.
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Figure 19. Drive wheelchair movement route planning map. (a) Clockwise driving route; (b) Counter-clockwise driving
route; (c) Remote control of driving routes.

Figure 20 shows a combined image of experimental data using eye gaze to drive the
wheelchair movement, where subjects controlled the wheelchair to move along the route
planned in Figure 19a,b. The subject sat in the wheelchair and controlled the wheelchair
to move clockwise from the starting point by eye gaze. When the controlled wheelchair
reachs the preset end point, it was controlled to stop, turn around in place, and continue to
move counterclockwise to the preset end point, thus ending the process.
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Figure 20. Eye gaze direction control wheelchair movement experiment.

In the experiment using eye blink controlled wheelchair movement, in order to differ-
entiate the experiments using eye gaze controlled wheelchair movement, the subject sat in
front of a monitor with the eye blink detection device placed in front of the eyes, and re-
motely controlled the wheelchair to move along the route planned in Figure 19c. Figure 21
shows a data set plots of eye blink controlled wheelchair movement experiment. In the
figure set, the first row of images (number: 1–4) shows the blink controlled wheelchair
moving forward, the second row of images (number: 5–8) shows the blink controlled
wheelchair moving backward to its original position, the third row of images (number:
9–12) shows the blink controlled wheelchair turning 90◦ to turn left, and the fourth row of
images (number: 13–16) shows the blink controlled wheelchair turning 180◦ to turn right.
This concludes an experimental cycle.
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Figure 21. Eye blink control wheelchair travel experiment.

B. Discussion of Results

The experimental results show that gaze and eye blink could effectively control
the wheelchair to complete the related movements. However, the test subjects had to
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concentrate on controlling the wheelchair movement throughout the experiment, which
was a problem. As a future research topic, the controlled device can provide some feedback
to the human body so that it can be alerted in time when the operator is not focused enough.

5. Conclusions

In this paper, the extraction of eye movement information to control relevant mechani-
cal movements was investigated. An eye-movement based HCI system that communicates
information to the machine through the human eye was developed in this research. The
binarization of the image was used to localize the pupil in this study. Since the difference
between the two colors in the eye was apparent, binarization of the pupil image enables
the localization of the black pupil, and based on the localization of the pupil, the direction
of eye gaze could be determined. Similarly, pixel ratio modelling has been fully used in
the eye blink detection. Through operational experiments, it could be confirmed that the
eye blink state could be detected, however, the recognition rate could be further improved.
Therefore, the machine learning methods SVM and CNN were used for eye blink detection
and the accuracy was significantly improved, especially the eye blink detection using CNN
method, was tested to reach 99% accuracy.

To further validate these, the system was ported to a power wheelchair. We first
modified the hardware of the wheelchair and developed a hardware drive system for the
electric wheelchair. This allowed the wheelchair to receive commands from the subject
through eye movements. In the experiment, the subject sat in the wheelchair to control its
movement, or controls the wheelchair movement remotely. The wheelchair was controlled
and followed a set route, successfully avoiding obstacles along the way to the end point,
and was tested repeatedly and successfully. The experiments proved that the method
of obtaining information expressed by human eyes through image parsing and machine
learning has been effective. Future research can optimize the model on this basis to obtain
more information conveyed by the human eye, for example, the fatigue level and mental
state of a person can be judged by the human eye.
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