
Multimodal Technologies 
and Interaction

Article

Using High-Performance Computers to Enable Collaborative
and Interactive Composition with DISSCO

Sever Tipei 1,*, Alan B. Craig 2 and Paul F. Rodriguez 3

����������
�������

Citation: Tipei, S.; Craig, A.B.;

Rodriguez, P.F. Using

High-Performance Computers to

Enable Collaborative and Interactive

Composition with DISSCO.

Multimodal Technol. Interact. 2021, 5,

24. https://doi.org/10.3390/

mti5050024

Academic Editor: Insook Choi

Received: 2 February 2021

Accepted: 25 April 2021

Published: 5 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Music Project, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
2 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,

Champaign, IL 61801, USA; a-craig@illinois.edu
3 San Diego Supercomputer Center, University of California, San Diego, CA 92117, USA; prodriguez@sdsc.edu
* Correspondence: s-tipei@illinois.edu

Abstract: Composers do not usually collaborate with other composers but, for the last half century,
open works were created that invite performers to implement details left undetermined or even
decide the order in which various sections of the composition are to be played. Chance operations
were also used in the writing of musical pieces and, in music generated with the assistance of
computers, controlled randomness found its place. This article proposes a platform designed to
encourage collaborative and interactive composition on high-performance computers with DISSCO
(Digital Instrument for Sound Synthesis and Composition). DISSCO incorporates random procedures
as well as deterministic means of defining the components of a piece. It runs efficiently on the Comet
supercomputer of the San Diego Supercomputing Center and uses the Jupyter notebook environment
to integrate the end-to-end processes with a user. These tools, the implementation platform, and the
collaboration management are discussed in detail. Comments regarding aesthetic implications of the
partnership between one or more humans and computer—considered a bona fide collaborator—are
also provided. Possible future developments are supplied at the end.

Keywords: collaborative composition; algorithmic composition; digital sound synthesis; high-
performance computing

1. Introduction

DISSCO (Digital Instrument for Sound Synthesis and Composition) is computationally
intensive software for algorithmic composition and additive sound synthesis. In this
work we used high-performance computers to enable DISSCO to synthesize and play
sounds in near real-time with many simultaneous users. This makes it possible for an
arbitrary number of participants to cooperate interactively in creating a musical event—a
collaborative composition. The product of this joint effort in DISSCO could be a finished
and distinct work or a continuously evolving output.

Currently, in the classroom, for example, student composers using DISSCO can interact
and collaborate on sound design and compositions, namely by just showing each other
their work, then incorporating suggestions from their peers. That is a multistep sequential
batch process managed by one person. Here, with modifications described in the paper,
we have formalized some of that interaction and communication onto a high-performance
computing platform. Our goal is to enable end-to-end composition, sound design, and
performance cycle to occur in near real-time, with multiple, or even many, possibly remote,
participants each interacting directly and simultaneously with all the steps from sound
design to listening to the composition.

This article will present the platform and how we see the potential for composers to
collaborate and interact with each other and the computer, and how the computer can
have an expanded role, namely because it might help composers plan differently, greatly
speed up the end-to-end process, and even semi-automate some of the experimentation

Multimodal Technol. Interact. 2021, 5, 24. https://doi.org/10.3390/mti5050024 https://www.mdpi.com/journal/mti

https://www.mdpi.com/journal/mti
https://www.mdpi.com
https://doi.org/10.3390/mti5050024
https://doi.org/10.3390/mti5050024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mti5050024
https://www.mdpi.com/journal/mti
https://www.mdpi.com/article/10.3390/mti5050024?type=check_update&version=2


Multimodal Technol. Interact. 2021, 5, 24 2 of 16

or performance phases, with guidance from the composers. Using a high-performance
platform also opens the possibility of having many users involved, as either listeners,
participants, or both.

We are not claiming that what gets composed is necessarily different, or that the
nature of creativity is altered, but that the process of collaborating is facilitated so that
composers interact with DISSCO, each other, and the computer, in a more effective and
possibly enhanced manner.

1.1. Background

Composers do not usually collaborate with other composers. In rare occasions, an
unfinished work is completed by somebody else as in the cases of Mozart’s Requiem or
Alban Berg’s last scenes of his opera Lulu. There are also orchestrations of piano pieces
and operatic transcriptions for piano created by people different from the original authors.
Common to these examples is the fact that, in most cases, the original composer is no
longer available to collaborate with the second one.

On the other hand, jazz musicians do collaborate and improvise on already existing
tunes, in real time. In such cases, melody, chord changes or both are retained in the
background and the overall formal structure is preserved or amplified. How strictly such
rules are followed depends on each particular style, though, and the free jazz of the 1960s
chose to ignore most of them. At roughly about the same time, Karlheinz Stockhausen and
others wrote pieces that employed a set of instructions or graphics without offering any
purely musical elements: performers were simply asked to react to each other’s actions.

The collaborative and interactive composition project takes advantage of computer
technology in order to facilitate the combined effort of two or more participants to build a
valid musical construct, a composition. The software also allows for random operations
to be introduced at all structural levels of a composition and choices made by the human
users are realized only with probabilistic precision. They could produce unexpected and
surprising results since the computer has an ability that humans do not possess: to model
chance in an unbiased way. The collaboration is then extended and the “electronic brain”,
as the computer was sometimes called in early computer music, becomes part of the
process not only by performing a vast number of operations very quickly, but also as a
consequential contributor to the creative effort.

1.2. Indeterminacy: Chance and Randomness in Music Composition

Around 1951, influenced by Far-Eastern thinking, John Cage started to use chance
procedures (the ancient I Ching book, a sky atlas, coin or dice throwing, blotches in poor
quality manuscript paper, etc.) when composing his pieces. A few years later, Iannis
Xenakis produced the first work in which durations, pitch intervals, density of textures,
and the slope of glissandi were determined through stochastic distributions (normal,
Poisson) or other probabilistic means. In later pieces, he also used Markov chains, random
walks, and additional mathematically inspired tools [1]. The term “controlled randomness”
came to describe situations in which the rule—distributions—and the ranges within which
the events/sounds could exist are controlled by the composer while the actual details are
indeterminate.

Concurrently, aleatory pieces made up of standalone modules which can be performed
in any order such as Stockhausen’s Klavierstücke XI [2] appeared. Umberto Eco, a semioti-
cian and writer, in a 1962 an essay, published Opera Aperta (the Open Work, now a chapter
of his book The Role of the Reader) [3], in which he talks about musical works that offer
multiple ways in which they can be presented to audiences and be understood by them. A
composition then is no longer one particular object but consists of a multitude of variants
of an archetype, all equally valid.

Early computer-assisted composition (algorithmic composition realized with the
assistance of a computer) made possible the families of compositions like the ST [4] pieces
by Xenakis and algorithms [5] by Lejaren Hiller; each generated by the same code (the logic)



Multimodal Technol. Interact. 2021, 5, 24 3 of 16

reading different versions of the data. Moreover, in the case of a program that includes
random choices, changing the seed of the random generator produces a new version of the
same piece as in the case of manifold compositions [6]. The following examples show two
variants of the same short piece realized with exactly the same code and data but whose
computations were triggered by different seed numbers. Figure 1 shows the amplitude
(and, indirectly the texture density), on the vertical axis vs. time, on the horizontal axis.
The duration of each example is 2 min and 26 s.

Figure 1. (a) Variant of a stereo manifold composition. Left and right channels are shown. (b) A different variant of the
same manifold. The beginning, the ending, and a small area in the middle are the same while the rest is quite different.

More than 150 different variants of this manifold were generated and performed in
public. Twelve other separate manifold compositions were generated and their variants
performed during the last two decades.

1.3. Collaboration in Music

The dictionary defines to collaborate as: “to work jointly with others or together
especially in an intellectual endeavor” [7] and as shown above, in a computer supported
musical collaboration, the computer joins the other participants in a musical endeavor.

The team work can happen synchronously, in real time as in the case of jazz performers
who improvise together on stage, or it can take place asynchronously as in the case of
sound designers who work on sound files separately, at their convenience, and merge the
results at a later time. Likewise, it can take place in the same geographic location or at a
distance, with the participants stationed at faraway sites, using the Internet.



Multimodal Technol. Interact. 2021, 5, 24 4 of 16

Musical collaborations can fall into a number of different categories, a non-exhaustive
list of which could include:

• Composition;
• Performance;
• Instrument design or sound design;
• Arrangement or orchestration;
• Notation of scores and editing.

In the case of computer music, instrument design takes the form of sound design, and
is particularly suitable for team work.

There are various tools that support collaboration in several of the categories listed
above. Many of them support asynchronous collaboration, such as when one partner saves
a document (such as a score or a sound file) and another one opens it later to contribute
to it. The participants might not even know who the other person is. Other tools support
synchronous collaboration, for example, JamKazam [8], which promises the ability to
perform together, at a distance, and live, in real time.

As shown by the class use example, DISSCO allows multiple users to present entire
works or only fragments, to exchange ideas and solutions and even collaborate. This
became obvious when it was used in the classroom.

2. Methods: The DISSCO Software Tool

DISSCO (Digital Instrument for Sound Synthesis and Composition), the software on
which the project is based, was developed over of number of years at the Computer Music
Project (CMP) of the University of Illinois, Argonne National Laboratory (ANL), National
Center for Supercomputer Applications (NCSA), and San Diego Supercomputer Center
(SDSC). A first version, DIASS (Digital Instrument for Additive Sound Synthesis), was
created at CMP and ANL in the mid 1990s and it was used both as a tool for sonification and
in conjunction with other computer-assisted composition software; results were displayed
in a virtual environment (CAVE) [9]. In 2004, a first embodiment of the composition
component was added followed in 2013 by the attachment of a graphic user interface
designed at CMP. More recently, many features were added due to the work of NCSA SPIN
(Students Pushing Innovation) program [10] and to ongoing work performed at San Diego
Supercomputer Center (see below). DISSCO is a reliable tool in continuous transformation
that has been extensively tested as a medium for the creation of original music, performed
at international festivals and conferences, and as an education tool, in classrooms at the
University of Illinois.

The collaborative composition represents a major new step in enhancing the capacities
of the software and in extending the area of potential applications.

2.1. DISSCO Structure

DISSCO has three main modules: LASS, a library for additive sound synthesis; CMOD,
a composition module; and LASSIE, a graphic user interface through which the users
enter data. DISSCO is written in C++ and is available on GitHub [11]. The backbone
of the composition module is the implementation of an acyclic directed graph, a rooted
tree, whose vertices or nodes represent “Events” at different structural levels (Figure 2).
There is a top event—the entire piece—as well as high, medium, low and bottom events—
sections and subsections—placed on vertices further and further away from the root. A
parent-children relationship operates between structural levels and an analogy could be
established with a set of matryoshka, the Russian dolls nested inside each other. If the
top is the entire composition, the bottom events, the nodes at the end of the last edges or
branches of the tree, are the places where actual sounds are created.

All events are assigned a start time, a duration and a type. Bottom events require
extra information for sound definition which comprise frequency, loudness, vibrato (FM)
and tremolo (AM), transients, filters as well as the position of sound sources in space
(spatialization) and reverberation. Each sound is linked to a spectrum object in which a



Multimodal Technol. Interact. 2021, 5, 24 5 of 16

spectral envelope is created when each partial receives a relative strength value and an
envelope that trace its evolution in time.

Figure 2. (a) A small example of the tree structure concept used in CMOD, with only one intermediate event layer between
top and bottom events. (b) A moderately complex example of a tree structure from an actual script for a piece called “ghioc”.
Only the 61 unique edges out of a total of 216 are shown. Event names are shown for the top three layers only. Because of
randomness and repetition, over 42,000 sound events are created by CMOD from this script.

DISSCO can produce both audio files and music notation. If sounds are sent from the
bottom event to LASS to be synthesized, an audio file is created; if they are sent to the note
class, a text file is generated with instructions for LilyPond [12], open-source software for
editing and printing music.



Multimodal Technol. Interact. 2021, 5, 24 6 of 16

2.2. LASS: Synthesis Features

The extra information necessary to define a sound is entered through LASSIE, processed
in CMOD by the bottom class, and then implemented by LASS, the “synthesis engine”.
Users have many options when determining these additional features. For example,

• frequency can be assigned as an equal temperament pitch, as a partial of a given
fundamental (just intonation), as a Hertz value or as a power of 2;

• for frequency and amplitude modulations (FM and AM), users control the probability
of occurrence and the standard elements of FM synthesis: the magnitude of the
distortion or the index factor (amplitude of the modulator) and the oscillation rate
(modulator frequency);

• transients of frequency and amplitude add to this list the number of samples affected
by the transient;

• spatialization options are stereo and multi-speaker diffusion through polar coordinates
or through specific values assigned to individual speakers;

• there are many ways to control reverberation from room size, to a combination of
delay, hi-low frequencies ratio, and proximity to the source, to accessing all values for
the comb and allpass filters involved (DISSCO uses the model described by F. Richard
Moore [13]); and

• there are seven types of general filters available:

o Low pass
o High pass
o Band pass
o Notch
o Peaking band EQ
o Low shelf
o High shelf

Almost all these parameters can be either static o dynamic through the use of envelopes.

2.3. CMOD: Utilities

The composition module is based on the proposition that same or similar procedures
can be applied at different time scales (meaning: at all structural levels of the composition),
from the entire piece to sound attributes. Such procedures are translated into utility
functions that can be nested: a function may call another which may call another one in a
cascade of successive calls resulting in more and more precise and sophisticated situations.

There are two broad categories of choices available: deterministic and random. The
simplest in the first group selects values from a list according to some criteria, usually an
order constraint. A family of random functions picks out values from within a defined range
or adds a fuzzy area around the possible selection. It is joined by a random density function.
More involved, “Stochos Range” distribution specifies dynamic minimum and maximum
limits and a distribution within these limits, while “Stochos Functions” (inspired by an
example from Xenakis’ Formalized Music) stacks a number of envelopes whose combined
values add up to 1 at all times, in order to determine the probability of each area comprised
between them. While “Stochos” deals with floating-point numbers, “ValueCheck”, a close
relative, deals with integers and it is also used in “Sieves” (see below).

Higher level tools include Markov chains which build sequences of values (melodies,
rhythms) and “Patterns” which apply or distort a given series of intervals grounded in an
origin specified by the users.

Finally, Sieves are logical filters built with the help of modulo and Boolean operations,
first introduced in music by Xenakis. Part of number theory, Sieves select a subset of values
from a continuum, for example, a diatonic scale from the chromatic space. An abstract tool,
Sieves can be applied to any sound parameter, not only to frequencies. The users specify
modulo numbers, their offsets and the operations (union, intersection, etc.) along with a



Multimodal Technol. Interact. 2021, 5, 24 7 of 16

dynamic range and a distribution within this range—in operations similar to ValueCheck
described above.

2.4. CMOD: Building Children Events

There are three methods through which a parent event can spawn children events:
“Continuum”, “Sweep”, and “Discrete”. They all determine the start time, type, and duration
of each child event and make sure it rests within the confines of the parent’s time span.

Continuum assigns the start time of individual sounds either in orderly fashion,
through a deterministic operation such as a specific list, a sieve, et cetera, or by scattering
them with the help of random functions.

Sweep ensures that no sound begins before the preceding one has ended thus ensuring
the creation of a continuous sequence (melody-like). These two methods accept both integer
and floating-point values for start times or durations.

Discrete builds a three-dimensional matrix (start time, duration, type) and ensures
that children with incompatible types do not collide. For example, two instrumental sound
production techniques such as bowing a string and plucking it—two sound types—cannot
exist at the same time. This method admits only integer values.

There are also three time units that can be used: seconds, “Elementary Displacement
Units” (EDUs) and percentages of the parent’s duration. EDUs form a grid of equally
distanced points from which a utility such as a sieve will select the relevant ones. In the
frequency domain, one EDU could be the equivalent of a semitone and in the time domain,
one EDU could equal 1/LCM, the least common multiple of all subdivisions of the beat
that are employed.

2.5. LASSIE: User Input for Sound Design and Composition

The graphic user interface LASSIE is written in C++ and implemented using gtkmm, the
connection between C++ and the GTK library. It creates an XML file (a DISSCO script) that is
read by CMOD and reflects all the features available in DISSCO that the users can control.

In a collaborative execution, participants are creating their own version of the project
script file, always updating the latest script file from among all users. Collaborators have
to get a lock before editing the file. The file lock is released when a user saves his/her file
and it is up for grabs by somebody else. A Jupyter notebook, described next, is continually
looping through the steps of running CMOD and playing audio files, and will look for
the latest script file (from any user) before starting CMOD again. Thus, the amount of
coordination can be up to the users, or the notebook can be modified to impose an order.

2.6. Jupyter Notebook to Control DISSCO and LASSIE

A Jupyter notebook [14] is an editing environment for Python (or other languages)
that allows segments of code and mark-up text to coexist in one file. The environment
provides extra functionality to run code cells, which can just be chunks of a program. The
Jupyter environment can be executed within a single machine, like a personal laptop. It can
also be executed over an http connection in which the code is run on a host computer and
the output is displayed through a browser, even without a dedicated web server. In this
sense, Jupyter provides a lightweight, graphical interface for shared distributed computing
environments, like high performance computers, in which there is no fixed URL address.

Python with Jupyter has several modules that specifically provide audio and graphic
widgets for user interaction, which includes the ability to modify or enhance code. Given
that the present DISSCO users are tech savvy with some level of coding knowledge,
Python with Jupyter was selected for this implementation of the collaborative environment
described below. In the future, the project could be expanded to a broader class of users,
dedicated servers could be acquired, thus using a more restricted, but easier to access,
client-server environment.



Multimodal Technol. Interact. 2021, 5, 24 8 of 16

3. Methods: Collaborative DISSCO Platform and Environment

Originally, DISSCO modules were executed separately and in sequence from LASSIE
to CMOD/LASS, with the user managing files between modules and for audio playback.
In order to create a collaborative and interactive environment, a Jupyter notebook is used
to tie together all the pieces (Figure 3). The notebook helps control the flow of data between
modules and presents the audio files for play, thereby enabling more dynamic, interactive,
and continuous execution, as described next.

Figure 3. Platform overview also shows the data and workflow. Sounds are synthesized as “slices”
of the entire score and played in near-real time for one to many users on their personal computers.
All users can also modify the sounds throughout the process.

3.1. The Human-Computer Interaction

The human-computer information flow can be regarded as an iteration of an
evolving loop:

design-> build-> synthesize-> play-> design-> build-> synthesize-> play . . . et cetera.
Functionally, a DISSCO user creates events as different nodes on a tree (see Figure 2),

where all nodes have start times and durations that may or may not be completely random,
but also depend on the boundaries set up by the parent node, which may also span the
entire piece. The sound events may or may not have other randomness in their sound wave
parameters as well. In this sense, a composer is potentially working with the entire piece
as one potential unit, or even the entire set of all possible pieces, given the parameters.
However, the user does not have to think about linear sequences, perhaps only about
patterns and relationships.

The computer running DISSCO must translate events into sound sequences. In fact,
facilitating this translation for multiple users is what makes this platform implementation
very different than organizing an online group of musicians with physical instruments.
The CMOD program reads through the events tree, applies random functions, and realizes
a set of start times and durations for each sound, and then synthesizes sounds with LASS.
For an interactive and streaming playback, the program will produce the score in temporal
sequence, as opposed to sequence of tree events. Because the synthesis is computationally
expensive, the operations are parallelized to organize sounds into sequence as soon as
possible. To make it interactive and efficient, it can now do all of that in almost real-time,
or as close as possible to when it should be played, and then output sounds in small slices
of the piece to stream over the Internet.

With streaming, the composer has more flexibility in how they interact with DISSCO.
They can work with the piece as a global unit, hear the piece as one complete score, and
develop or edit the piece as such. Or, they can work with only 1 or 2 score slices, that cover



Multimodal Technol. Interact. 2021, 5, 24 9 of 16

a few to many seconds at any point in the piece, and iteratively develop the lower (in the
tree) sound events that occur in those slices—without necessarily knowing which of the
higher nodes are involved, or if the sound events are also repeated at other times.

Moreover, because we have exposed DISSCO to take some input in real-time, one
could also expand the computer’s role by programming the computer to handle meta-
processes. For example, one could have the computer build-synthesize-play the entire tree
of events, or just certain branches. In this sense, a composer who is a programmer might
also consider those possibilities for designing events in DISSCO.

3.2. The HPC Platform

There is another aspect to the human-computer interaction, which is the mechanics
and logistics of execution, such as acquiring high-performance computing (HPC) resources
and setting up execution parameters. Here we describe the advantages and options for
running on an HPC platform.

As described above, the events can be short (milliseconds) or long (10s of seconds
or even minutes), and they are organized as a tree of hierarchically ordered types, where
the last leaf nodes are the final and fully specified sound events. CMOD translates the
tree into overlapping sequences of events in time. The ultimate phase of the process takes
place in LASS, the additive synthesis module, and consists of the physical instantiation
of single sine waves. These partials are then mixed into complex sound waves, which are
represented as arrays of float values, and mixed together into audio tracks. The tracks are
further mixed into audio files (wav or aiff format) which can be rendered through an audio
device on the users’ computer.

The remote, multi-user, collaborative setting adds a layer of complexity which is medi-
ated by the computer and is both enabling and restrictive. It is enabling since it nurtures an
exchange of ideas between collaborators and a way to test them expeditiously or almost im-
mediately. At the same time, it can be restrictive because remote users have to be coordinated.
Unlike editing a shared Google Doc, the edits are not the end result itself, and cannot be
instantaneously fed back. For example, to hear the result of changing a randomness parameter
might require replaying the entire piece or a substantial portion of it.

The Comet supercomputer, which is part of the NSF funded XSEDE network [15,16]
is used. Comet is a shared distributed computing environment with over 1900 compute
nodes available, each with 24 CPU cores and 120 GB RAM. We typically run DISSCO with
1 to 8 nodes.

There are two main computational burdens that motivate the use of high-performance
computing resources. One is that DISSCO pieces, especially those with granular sounds
and high sampling rate (e.g., 44,100 Hz) are computationally expensive and benefit greatly
from multi-node and multi-core parallelization. In the example DISSCO piece described
above (Figure 2b), which has about 60 bottom events, and more than 42,000 sound events
created, there are approximately 10.9 million random functions calls. Using 44,100 Hz,
for an approximately 13 min piece, there are about 35 million float values per track in the
computer sound file. Adding up all the durations for all 42,000 sounds results in about
10,300 s of sound calculations, which imply that about 450 million float operations were
executed. This would take many hours on a standard laptop computer—negating the
possibility for interactive execution.

We benchmarked DISSCO with several pieces and found that, some of the larger pieces
that took hours on one node can be reduced to minutes with many nodes in parallel. Table 1,
2nd column, shows performance time for a medium size score with about 216 events, about
42,000 sounds, that is about 13 min long, depending on randomness.

The second computational burden for running DISSCO in near real-time is to translate
the non-sequential tree into small slices of the sequential output for streaming. As the leaf
nodes of a tree are processed, sound events for that leaf are realized and made immediately
available to be synthesized. However, those sounds’ start times are not in sequence and
need to be sorted. A global sort is impossible at this point because all sound events have



Multimodal Technol. Interact. 2021, 5, 24 10 of 16

not even been created, and it would be time consuming to wait. Instead, a local sort is
performed within each CPU core with a smaller set of sounds. The strategy here is that
every core holds onto sounds in small sets that are sorted in place by start time, so that
they can be locally processed in that core at an appropriate window of time before they are
played. In this sense, the local sequence is an approximation of the global sequence that
works in practice, as long as you have enough computer nodes and CPU cores.

Table 1. Performance in batch vs. real-time for a medium size piece on Comet supercomputer. The wall clock time is the
user experienced time (as measure by a clock on the wall) for a job to start and finish.

Number of Computer Nodes
(Each with 24 CPU Cores)

Wall Clock Time for All 42 K Sounds
(Where No Sorting Required)

Number of Sounds Built and Synthesized in
Real-Time (~13 min Score; Sorting by Start Times

Is Required as Sounds Are Built; Sounds Are Only
Synthesized in a Time Window Just before

Their Start Times)

1 30:30 (min:s) 1425 (out of 42,000)

2 18:15 3184

4 9:45 13,178

8 5:30 27,402

In general, the more nodes we use the more sounds will be generated and synthesized
before they must be played. Otherwise, if sounds are queued for synthesis after a time-
window has passed it will be skipped. In other words, if a user asks to stream 10 s chunks
of the score, then the program has about a 9.5 s time-window for rendering, mixing, and
loading into the browser in order to produce the next 10 s worth of sounds. This will
allow for some transmission delay and result in near real-time build-synthesize-streaming.
However, if a time-window size is too small, say less than 2 s, then the overhead of taking
out slices, mixing, and streaming can limit the ability to render all the sounds that were
expected. Using Comet, it was found that having a reasonable window size to render
sounds, and having enough nodes, will enable pieces to be mostly processed and streamed
in nearly real-time, see Table 1, 3rd column. It is worth noting that sound design is more
likely the slower process, as the user must navigate the LASSIE interface and has many
options for sound parameters.

4. Collaborative DISSCO Implementation Results

As detailed above, DISSCO offers a large array of options; it was designed as a
“Rolls Royce bulldozer”, a flexible instrument that offers sophisticated control along with
brute force: unrestricted number of event nodes (structural sections), of sounds or of
sound components (partials). Thus, for a collaborative implementation, there are several
practical considerations for setting up, managing, executing, and organizing a collaborative
composition in DISSCO, which we describe here. There is also a demonstration video
available in Supplementary Materials (see below).

4.1. User Requirements

Perhaps the main, overarching need is that at least one user needs to be proficient
in running DISSCO, Unix, Comet, and the information that the notebook uses to control
DISSCO. This user would be a designated host that coordinates execution. In the current
implementation, other users need to have some basic knowledge of DISSCO, access to
Comet, and appropriate permissions. However, in the future, it could be that only the
designated host needs access.

• Designated host: The designated host can acquire one to many Comet compute nodes
for a reasonable amount of time, to run the Jupyter notebook, CMOD, and LASS. The
host also acquires one node to execute LASSIE (see Figure 3). The host should specify



Multimodal Technol. Interact. 2021, 5, 24 11 of 16

all run-time parameters for Comet execution and for the notebook execution. The host,
or other users, can also run optional pre- and post-cleanup or saving of files.

• Other users: All users need to access one compute node of Comet to run their own
session of both the Jupyter notebook and LASSIE if they plan to edit scripts as they
hear them.

• Planning the collaboration: DISSCO was initially conceived around the notion of pre-
compositional work, making decisions ahead of time about structure and materials. Such
groundwork facilitates the execution of the musical piece while being amenable to change
if necessary. Thus, each user should come to a collaboration with some knowledge or
plans or prior notions of what they can do with DISSCO. However, in this implementation,
there is also the possibility to experiment and thrash around without strong or definite
plans. In this sense the composition task is potentially very different.

4.2. The Script

An initial XML file (“___.dissco”) is created via LASSIE, preferably through consul-
tations between collaborators. It could either be fairly complex and detailed, a tree with
many branches and leaves, or it could be simple and sparse, comprised of a top event and
of only one bottom event. Such a basic script could serve as a platform for experimenta-
tion, for instance, in the sound design arena, since concerns about the formal architecture
will be absent. In this case, the output is obtained swiftly and the conversation between
users proceeds at a fast pace. By contrast, an intricate initial script requires involved
pre-compositional deliberations and takes longer to execute and to appraise the result.

A library of envelopes that dynamically control the data must be built from the
beginning. They define the behavior of sound and partials in time and are necessary to
any attempt to design sounds. Likewise, pre-existing scripts could also be helpful when
constructing the architecture of a piece. They are best suited for events of higher level
(structural nodes) than for bottom events.

There is only one “___.dissco” file, for example, a shared script. Using LASSIE,
collaborators are constantly updating, editing the latest version of the file which contains
the contributions of all the other users. Participants have to get a lock before editing the
file. When a user saves the file, the lock is released and it is up for grabs by somebody
else. Additionally, users can update an “Events-to-Use’ list with each CMOD iteration so
that only a limited set of events will be built-synthesized-played. Thus, users can appraise
small parts of intricate pieces as they are also updating script files.

4.3. Coordinating Users

The Jupyter notebook (see Figure 3) is continually looping through the steps of running
CMOD and creating audio files, and will look for the latest script file (from any user). Thus,
the amount of coordination can be up to the host, the users, or the notebook can be modified
to impose an order.

The length of time before Jupyter starts CMOD again using a revised script may
be modified. It could be short in the case of a synchronous collaboration, simulating an
almost real time improvisation or it could be of an arbitrary duration in the case of an
asynchronous process similar to the time (possibly many hours) needed by a composer to
consider new changes or to the extent of time taken by a chess player before making the
next move.

A distinct situation arises when the computer is regarded as one of the collaborators.
The indeterminacy embedded in the system through randomness will trigger changes in
the output independent of the latest modifications of the script operated by humans. If the
process is allowed to run continuously, the computer will generate variant after variant of
the output, all different to some degree and the humans can stop the operation and assess
the outcome at a convenient moment. Because of this, the so-called "electronic brain" is
actually a bona fide collaborator, and part of the experiment.



Multimodal Technol. Interact. 2021, 5, 24 12 of 16

4.4. Composition Results

Two possible outcomes are apparent: a piece, in the traditional sense of a musical
object of definite duration which can be performed time and again in the same form and
an installation of an arbitrary duration that changes to some extent constantly. The first is
more likely the result of an asynchronous collaboration due to the complexity of the process
although being the result of a synchronous operation cannot be excluded. The second
outcome, an installation, is the result of a synchronous scenario in which both humans and
a computer running unremittingly participate.

In both instances the output evolves over a period of time, in the case of a piece during
its construction and in the case of an installation both during its assemblage and during
its performance. The real life-like aspect could be enhanced if the process started with a
directed graph tree with few leaf nodes and branches to which new ones are added in time
until a much more complex structure is achieved and, after a while, the tree is “pruned”,
branches and nodes removed, and the entity is left to die.

At the present time, only humans can direct such transformations, but the computer
can provide the everchanging content of the leaves.

4.5. Potential Collaboration Use Cases

This is a research project, an experiment seeking to encourage experimentation. Its
primary focus is to create musical events through teamwork. Participants in this effort
have to have an interest—and some knowledge—in at least one of the fields of music
composition, sound design, or informatics and computation. As stated above, at the
present time, the collaboration requires familiarity with the software and ways of running
it. By developing friendlier ways of accessing it in the future, such as building collections
of pre-existing scripts, larger categories of users can be included.

The original motivating use case came out of an advanced music theory course at
UIUC. Students learn to create a short DISSCO piece that demonstrates certain synthesis
and compositional techniques. Each student does this on their own and then there is a
listening and feedback session held in the classroom where each student plays their piece
for the other students. Traditionally, students would provide feedback to the creator, who
could then choose to alter the piece, or not, after the session. With collaborative disco,
however, the listening session may be a completely interactive session in which, rather
than giving verbal comments to the student whose piece is being discussed, the class of
students could, rather, inject their ideas for changes in real time, and ask “what about this?”
and hearing the results in real time as the piece is performed. Depending on the setting and
goals, the exchanges could be coordinated and negotiated, or it could be more free-form
and dynamic in which one student creates a “seed” script and all students alter, expand,
and grow the script in real-time with minimal constraints.

In addition to advanced music students, the system could be made attractive to non-
professionals who wish to experiment. Already, students majoring in fields as diverse as
architecture, finance, visual arts or psychology who worked with DISSCO were able to
design original sounds and short compositions in less than one semester although they had
no previous musical training. It could also be used as an education tool with the teacher
in the role of the host asking for input from students about ways to assemble already
existing building blocks or how to design sounds. Like the UPIC (Unité Polyagogique
Informatique CEMAMu) tool devised by Xenakis [17], it has the potential to stimulate
creativity in people without musical training, especially children.

Musical collaboration could also be construed as a game, with some kind of com-
petition to get the lock on the script. Instead of the host arbitrating the process, chance
operations or the use of game theory matrices could decide the next contribution. The
participant who supplies a more appropriate solution to a particular situation could receive
the right to edit the script next.



Multimodal Technol. Interact. 2021, 5, 24 13 of 16

5. Discussion

The collaborative composition on HPC projects allows the participants to take turns in
adding, modifying, or rejecting previous contributions, a situation that resembles both the
completion of a work by another person and the dialogue established during a collective
improvisation. It is also similar to the exquisite corps [18] method practiced by surrealist
artists and poets by which participants add elements in sequence to a painting or poem
according to some rule.

Compositions generated with either the assistance of a computer, containing digitally
synthesized sounds, or in combination, are usually the result of some degree of collabo-
ration, in any case. Unlike the pioneering times when composers of computer music had
to have programming skills in order to produce anything, the present-day complexity of
the task makes it difficult for one person alone to be, at the same time, an accomplished
musician, efficient at writing code and knowledgeable about acoustics. The author is
somewhat in the position of a movie director: in charge of an entire team. This project
divides that top responsibility between participants and replaces a solitary operation with
an exercise in cooperation.

As shown before, the computer also contributes to this activity. Its role has been
discussed before and may be presumed as a composer’s collaborator [19]. Humans are
better than machines at inventing and organizing (musical) structures while computers
are better at making random choices, unbiased by human preconceptions. DISSCO has
a hierarchical structure and makes deterministic operations available, while, at the same
time, many of its features are probabilistic. It was designed as a "black box": the user inputs
the data in the form of the dissco script and retrieves the output but does not interfere
in the computations and does not modify the results. This is still true once a modified
script has been submitted. Between edits, the computer is completely in charge, making
choices according to an internally generated sequence of random numbers—a good reason
to include it in the partnership.

Then, two questions present themselves: can computers be creative? and who is the
author/composer of music originating from a collaboration between more than one person
and a computer?

The answer to the first question depends on what definition of creativity one endorses.
In a short essay, “Musique et Originalité” [20], Iannis Xenakis distinguishes between three
types of originality (which we interpret as meaning creativity). In a succinct paraphrased
formulation, they are:

• combining, rearranging existing information into something new
• observing critically, comparing with stored information and discerning rules and patterns
• inventing something from nothing, something that is unlike anything observed before

Although not using the terminology favored by present authorities in this matter,
Xenakis comes very close to Margaret Boden’s classification: combinatorial (“unfamiliar
combinations of familiar ideas”), exploratory, and transformational (“transformation of
conceptual spaces in people’s minds”) [21].

Computers are quite adept at satisfying the first condition and partially good at
fulfilling the second one: comparing existing things and, sometimes, even discovering
rules. For now, though, the third type of creativity belongs to humans only. What Xenakis
means by “unlike anything observed before” is the equivalent of establishing different
laws of physics that would create a different universe and, at the present time, as far as we
know, computers can not invent such new rules of the game.

The answer to the second question is in the name of the project: collaboration, although
presumably, no computer, not even a high-performing one, will receive royalties.

A more serious discussion should focus on the nature of the output. DISSCO was
created with the goal in mind of generating manifold compositions, multiple variants
of a piece. Like faces in a crowd, they share basic features while displaying unique
characteristics. As such, a manifold is not a composition but a composition class, a family



Multimodal Technol. Interact. 2021, 5, 24 14 of 16

of similar related works, and the composer does not engender a single, well defined object,
but conceives an entire species with all actual and potential members.

It is also worth considering that there are some important elements of any collabora-
tion, such as: the objects or products, the medium of exchange, the nature of the teamwork,
and timing of interactions. Computers can be used to enhance collaborations in many
contexts by servicing these elements. For example, in collaborative design or collaborative
work there is typically a shared explicit goal and a primary concern is to achieve some
form of success through communication and teamwork. A good computing platform
supports flexibility in the way participants communicate and share content [22]. On the
other hand, in collaborative art, a final goal is perhaps less important than supporting
cognitive processes and artistic styles [23].

For the case of composition, there are of course many ways to collaborate—face-to-face,
over virtual meetings on the internet, perhaps with special tools to synchronize remote
musicians. In the present case, the computer is a cocreator, producing/synthesizing and
generating sound details, as well as providing an interactive environment. The goal of this
current implementation is to allow for a variety of exchanges and enable fast processing,
no matter the nature of the collaboration.

In summary, the collaborative composition project is a substantial extension of DISSCO.
It supports the participation of more than one author in the creative process and removes
the limitation of having a unique, exclusive designer of both pieces, architecture and its
construction materials—the sounds themselves. The team activity changes the very nature of
composing from a rather romantic and lonely operation performed by a prodigious genius
into a collective enterprise of active synergy. Finally, the present version of DISSCO works in
parallel on a high-performance computer and empowers the collaborators to experiment faster
and, at the same time, work with an increased volume of data in close to real time.

6. Future Work

Our next step is to bring the system into the classroom with advanced students to
observe it in actual use and gain feedback as they test out collaborating and interacting
with each other on small pieces. We have already done this ourselves in a testing and
demonstration environment. In the classroom, with new and unbiased users, we anticipate
finding new details or modes of interactions that will drive our short-term development
and generate ideas for further refinements.

In the longer term, one direction that is we can pursue is that of turning the collabora-
tive DISSCO system into a science gateway [24] and enable use cases beyond the classroom.
As the system sits now, it requires someone involved to have an allocation on the high-
performance computing system and to serve as a host for the session. A science gateway
can shield the participants from needing an allocation on the HPC system. Rather, the
principal investigator can apply for such an allocation and then anyone who the principal
investigator allows to use the gateway can participate. The gateway can run persistently,
thus allowing the users to spin up their own collaborative sessions without the intervention
of a specific host person. Additionally, the gateway can be built to be fault tolerant in order
to reduce the possibility of participants in a session from breaking the system. It can also
provide sample sessions and simple starting points to allow new users to begin right away
and learn the system, while providing more savvy users more flexibility.

Another area considered for possible future work is to allow other types of devices
and interfaces that participants can use with the system. For example, a session might
consist of a heterogeneous mixture of Jupyter notebooks, real time physical interaction
employing sensors in a smartphone, some participants with midi keyboards or other midi
devices, and some with traditional acoustic instruments or microphones to control the
system with audio signals.

Real time visualization of the resulting piece as it is being composed/performed could
become a compelling display especially when used in (semi) permanent installations in
concert venues, museums, schools, and other facilities. The visualization could be provided



Multimodal Technol. Interact. 2021, 5, 24 15 of 16

on large screens or could be displayed in a virtual reality system that also furnishes input
opportunities to the system. The visualization could also be made more utilitarian in a
sense by creating a graph of the state of the system and allowing the participant to click on
different parts of the tree and make modifications at that point.

One of the current limitations of the system is the requirement that a knowledgeable
person serve as a host and that every time a session is invoked, it involves a technical setup.
A further development would create a science gateway which would hide some of that
complexity and make it more straightforward to roll out to new users and use cases.

Likewise, currently the collaborators are directly tweaking the DISSCO execution via
Jupyter. A future task would be to hide the complexity by integrating other interfaces that
are more familiar to a broader range of users.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mti5050024/s1, Video S1: Supplementary Video to demonstrate and introduce.

Author Contributions: Conceptualization, S.T.; Methodology, writing, S.T., A.B.C., P.F.R.; Software,
P.F.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number ACI-1548562. This work used
the Extreme Science and Engineering Discovery Environment (XSEDE) Comet at the San Diego
Supercomputer Center through allocation TG-ART150003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This project was made possible through the XSEDE Extended Collaborative
Support Service (ECSS) program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xenakis, I. Formalized Music; Pendragon Press: Stuyvesant, NY, USA, 1992.
2. Stockhausen, K. KlavierstückeXI Nr. 7; Universal Edition: Vienna, Austria, 1956.
3. Eco, U. The Role of the Reader; Indiana University Press: Bloomington, IN, USA, 1979.
4. Xenakis, I. ST Pieces; Boosey and Hawkes: London, UK; New York, NY, USA, 1967.
5. Hiller, L. Music Composed with Computers—A Historical Survey. In The Computer and Music; Lincoln, H., Ed.; Cornell University

Press: Ithaca, Greece; London, UK, 1970.
6. Tipei, S. Conceiving Music Today: Manifold Compositions, DISSCO, and Beyond, Recent Advances in Acoustics & Music. In

Proceedings of the 11th WSEAS International Conference on Acoustics & Music: Theory & Applications (AMTA ’10); WSEAS Mechanical
Engineering Series; World Scientific and Engineering Academy and Society (WSEAS): Stevens Point, WI, USA, 2010.

7. Merriam-Webster. Collaborate. Available online: https://www.merriam-webster.com/dictionary/collaborate (accessed on
26 January 2021).

8. JamKazam. Available online: https://jamkazam.com (accessed on 26 January 2021).
9. Cruz-Neira, C.; Sandin, D.; DeFanti, T.; Kenyon, R.; Hart, J.C. The CAVE: Audio Visual Experience Automatic Virtual Environment.

Commun. ACM 1992, 35, 64–72. [CrossRef]
10. NCSA SPIN. Students Pushing Innovation. Available online: http://spin.ncsa.illinois.edu/ (accessed on 26 January 2021).
11. Gousios, G.; Vasilescu, B.; Serebrenik, A.; Zaidman, A. Lean GH Torrent: GitHub Data on Demand, International Working Conference

on Mining Software Repositories (MSR); Association for Computing Machinery: New York, NY, USA„ 2014.
12. LilyPond. Available online: http://lilypond.org/ (accessed on 13 March 2021).
13. Moore, F. Elements of Computer Music; Prentice Hall: Englewood Cliffs, NJ, USA, 1990.
14. Juypiter. Available online: https://en.wikipedia.org/wiki/Project_Jupyter9 (accessed on 16 January 2021).
15. Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G.; et al.

XSEDE: Accelerating Scientific Discovery. Comput. Sci. Eng. 2014, 16, 62–74. [CrossRef]
16. Wilkins-Diehr, N.; Sanielevici, S.; Alameda, J.; Cazes, J.; Crosby, L.; Pierce, M.; Roskies, R. Proceedings of the High Performance

Computer Applications 6th International Conference, ISUM 2015, Mexico City, Mexico, 9–13 March 2015; Revised Selected Papers;
Gitler, I., Klapp, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 3–13; ISBN 978-3-319-32243-8.
[CrossRef]

https://www.mdpi.com/article/10.3390/mti5050024/s1
https://www.mdpi.com/article/10.3390/mti5050024/s1
https://www.merriam-webster.com/dictionary/collaborate
https://jamkazam.com
http://doi.org/10.1145/129888.129892
http://spin.ncsa.illinois.edu/
http://lilypond.org/
https://en.wikipedia.org/wiki/Project_Jupyter9
http://doi.org/10.1109/MCSE.2014.80
http://doi.org/10.1007/978-3-319-32243


Multimodal Technol. Interact. 2021, 5, 24 16 of 16

17. Raczinski, J.; Marino, G.; Serra, M. New UPIC System Demonstration. In Proceedings of the International Computer Music
Conference, Glasgow, UK, 10–15 September 1990.

18. Breton, A.; Breton Remembers. Exhibition catalogue, Le Cadavre Exquis: Son Exaltation; La Dragonne: Galerie Nina Dausset, Paris,
France, 1948.

19. Tipei, S. The Computer a Composer’s Collaborator. LEONARDO J. Int. Soc. Arts Sci. Technol. 1989, 22, 189–195. [CrossRef]
20. Xenakis, I. Musique et Originalité; Nouvelles Editions Seguier: Paris, France, 1996.
21. Boden, M. The Creative Mind: Myths and Mechanisms, 2nd ed.; Routledge: Milton Park, Milton, Abingdon, UK, 2004.
22. Davis, N. Human-Computer Co-Creativity: Blending Human and Computational Creativity. In Proceedings of the Ninth Artificial

Intelligence and Interactive Digital Entertainment Conference, Boston, MA, USA, 14–18 October 2013.
23. Idi, D.B.; Khaidzir, K.A.M. Critical perspective of design collaboration: A review. Front. Archit. Res. 2018, 7, 544–560. [CrossRef]
24. Wilkins-Diehr, N.; Zentner, M.; Pierce, M.; Dahan, M.; Lawrence, K.; Hayden, L.; Mullinix, N. The Science Gateways Community

Institute at Two Years. In Proceedings of the Practice and Experience on Advanced Research Computing (PEARC ‘18), Pittsburgh,
PA, USA, 22–26 July 2018; ACM: New York, NY, USA, 2018. [CrossRef]

http://doi.org/10.2307/1575227
http://doi.org/10.1016/j.foar.2018.10.002
http://doi.org/10.1145/3219104.321

	Introduction 
	Background 
	Indeterminacy: Chance and Randomness in Music Composition 
	Collaboration in Music 

	Methods: The DISSCO Software Tool 
	DISSCO Structure 
	LASS: Synthesis Features 
	CMOD: Utilities 
	CMOD: Building Children Events 
	LASSIE: User Input for Sound Design and Composition 
	Jupyter Notebook to Control DISSCO and LASSIE 

	Methods: Collaborative DISSCO Platform and Environment 
	The Human-Computer Interaction 
	The HPC Platform 

	Collaborative DISSCO Implementation Results 
	User Requirements 
	The Script 
	Coordinating Users 
	Composition Results 
	Potential Collaboration Use Cases 

	Discussion 
	Future Work 
	References

