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Abstract: Trust plays an essential role in all human relationships. However, measuring trust remains
a challenge for researchers exploring psychophysiological signals. Therefore, this article aims
to systematically map the approaches used in studies assessing trust with psychophysiological
signals. In particular, we examine the numbers and frequency of combined psychophysiological
signals, the primary outcomes of previous studies, and the types and most commonly used data
analysis techniques for analyzing psychophysiological data to infer a trust state. For this purpose,
we employ a systematic mapping review method, through which we analyze 51 carefully selected
articles (studies focused on trust using psychophysiology). Two significant findings are as follows:
(1) Psychophysiological signals from EEG(electroencephalogram) and ECG(electrocardiogram) for
monitoring peripheral and central nervous systems are the most frequently used to measure trust,
while audio and EOG(electro-oculography) psychophysiological signals are the least commonly used.
Moreover, the maximum number of psychophysiological signals ever combined so far is three (2).
Most of which are peripheral nervous system monitoring psychophysiological signals that are low
in spatial resolution. (3) Regarding outcomes: there is only one tool proposed for assessing trust
in an interpersonal context, excluding trust in a technology context. Moreover, there are no stable
and accurate ensemble models that have been developed to assess trust; all prior attempts led to
unstable but fairly accurate models or did not satisfy the conditions for combining several algorithms
(ensemble). In conclusion, the extent to which trust can be assessed using psychophysiological
measures during user interactions (real-time) remains unknown, as there several issues, such as
the lack of a stable and accurate ensemble trust classifier model, among others, that require urgent
research attention. Although this topic is relatively new, much work has been done. However,
more remains to be done to provide clarity on this topic.
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1. Introduction

Trust is an essential factor in all interrelationships [1,2], e.g., relationships between humans within
an organization or between humans and a technical artifact [3–5].

The outcomes of trust include technology adoption, giving up control, being more willing to
take risks, the facilitation of innovation, cooperation, investment, and, sometimes, influences on user
performance [6,7]. Conversely, the absence of trust yields a negative user experience, low adoption,
investment loss, etc. [8–10].

Although trust as a construct has been widely researched in several disciplines, such as sociology,
psychology, cognitive science, and human–computer interactions, among others, effectively measuring
user trust remains a challenge.
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For instance, self-reporting survey instruments, such as those developed in [10–12], that are
predominantly used for measuring trust are subjective and not objective. Thus, it is not possible to
use self-reporting instruments to assess trust in real-time because only after completing one or more
tasks/interactions are such instruments applied [13,14].

However, advances in sensing technologies, leading to the development of low-cost and effective
research-grade psychophysiological sensors, have resulted in a shift from the use of self-reporting
instruments and methods to objective methods for assessing trust using psychophysiological signals.
Typical examples of some standard psychophysiological signals are electroencephalogram (EEG),
electrocardiography (ECG), electrodermal activity (EDA), audio and electromyography (EMG),
and biochemistry markers (e.g., testosterone and oxytocin) (see [14] for a detailed review).

Assessing trust with a psychophysiological signal involves measuring human physiological
responses to psychological states by identifying the underlying physiological patterns during episodes
of psychological experiences (e.g., the decision to rely or not rely on an artificially intelligent agent).
This psychophysiological signal provides an unobtrusive way to measure user trust implicitly and
objectively during an interaction, thereby giving trust researchers the opportunity to tap into the
human mind based on the mind–body connection [15,16].

However, the use of psychophysiological signals for assessing trust can be elusive and
multifaceted [17]. For instance, there is no one-to-one mapping between trust states and
psychophysiological signals. However, there is the possibility to produce one-to-many (one trust state
correlating with several physiological responses) or many-to-one (several trust states correlating to
one physiological response) mappings. This elusive relationship further complicates the interpretation
of the relevant signals [18,19]. Moreover, there are several limitations and advantages associated with
each psychophysiological signal (see [15,16] for more details).

Therefore, it is clear that researchers should approach this topic (assessing trust with
psychophysiological signals) in different ways—for example, adjusting the trust measurement scale
used, the number and types of physiological signals used, the type of trust relationship studied, the
analysis technique/algorithms used to analyze the data to infer the trust state, and the inference
validation technique used.

These different approaches used in studies assessing trust with psychophysiological signals offer
diverse perspectives on how to use psychophysiological signals to assess user trust. However, without a
structured overview of the approaches adopted, this diversity makes the use of psychophysiological
signals for assessing trust unclear and renders it more challenging for academics (e.g., human factors,
multimodal technologies interaction (MTI) and human computer interaction (HCI)) and industry
practitioners to engage in fruitful discussions and compare findings across studies.

Therefore, the primary motivation and aim of this study is to present an extensive survey
and in-depth analysis of systematically selected publications to provide a bird’s-eye view of the
approaches employed in studies assessing trust with psychophysiological signals. In particular,
we examine the outcomes (both the least and most explored) and the use of psychophysiological
signals, inference validation, and analysis techniques. The rest of the article is, therefore, divided into
sections describing the backgrounds, methods, discussions, future research, and conclusions.

2. Background

2.1. Trust Definition

The definition of trust differs from discipline to discipline. Despite these wide disparities,
several comprehensive reviews have offered conceptually similar definitions of trust. For instance,
the authors in [20] define trust as a trustor (evaluator) voluntarily taking a risk (e.g., reliance) based on
the subjective belief that a trustee (evaluatee) will behave as anticipated by the trustor under situations
of uncertainty (e.g., a lack of information or inconsistent information). Moreover, the authors in [21,22]
defined trust as a behavior that makes the trustor vulnerable based on the actions of the trustee.
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The trustor’s belief that the trustee possesses trustworthy characteristics then influences the trustor’s
behavior and intentions. Furthermore, the comprehensive literature review in [10,23,24] describes
trust as a belief, attitude, intention, or behavior.

Following the above definitions and drawing upon previous research [25], we define trust as a
subconscious compound cognitive process (mental deliberation, reasoning, and mental processing,
involving memory, learning, and accumulated knowledge). This subconscious cognitive process (trust)
is a compound because of the numerous related cognitive activities (see Figure 1), henceforth referred
to as the net cognitive state [26].

Figure 1. Conceptualization of the trust definition.

By this definition, trust, as a subconscious net cognitive state, informs what the trustor (i.e., the
trustor’s beliefs) knows about the trustee and elicits conscious and observable events, such as
intentions/behaviors (e.g., the decision to use, cooperation, and dependence) that the trustor exhibits
towards the trustee, acting as bystanders to the trust state.

Therefore, although a trustor’s trust towards a trustee can be assessed by obtaining a self-reported
response (trust belief) or observation (e.g., counting frequencies) of the resulting intentions/behaviors
(e.g., reliance, cooperation, or decision to use or not use) of the trustor towards the trustee.
Notably, the belief (self-reported response) and intentions/behaviors (e.g., reliance, cooperation,
or decision to use or not use) of the trustor towards the trustee is only a means for inferring and
quantifying the trustors’ trust state towards the trustee and does not replace the meaning of trust.

2.2. Psychophysiology, Trust Assessment, and Challenges

Psychophysiology is the study of human physiological responses to psychological states
(e.g., emotions and trust), thereby leading to the term psycho + physiology [27]. Psychophysiology
involves recording human physiological changes (psychophysiological signals) using physiological
sensors during episodes of psychological experiences (e.g., emotions and trust) [15,19,28].

The physiological sensors continuously monitor and record changes at two broad levels of human
physiology, the peripheral nervous system (e.g., galvanic skin response and heart rate variability) and
the central nervous system (e.g., brain) [15]. Some examples of these physiological sensors include
the following:

• Electroencephalogram (EEG): EEG measures neurophysiological activities by recording
post-neuronal electrical signals using electrodes (dry/wet) connected to an individual’s scalp.
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EEGs are currently available in different form factors ranging from wired to wireless and from
using simple headbands (e.g., muse and neuro link) to complex full head scalp systems with 64 or
more channels.

• Functional magnetic resonance imaging (fMRI): fMRI is a neurophysiological imaging technology
that monitors changes in brain regions using the simple principle that active brain regions
will receive more blood flow than others. At the same time, this method’s primary strength
is its ability to accurately pinpoint the region of the brain that is activated. This advantage
has made it an excellent choice for researchers trying to understand the neurophysiological
mechanisms modulating cognitive and psychological experiences such as trust and emotion.
However, its main limitation is its form factor. An fMRI is the size of a room or half a room.
Moreover, fMRI machines require an individual to lay flat inside their encasements. Above all,
an fMRI machine cost more than an EEG.

• Functional Near-Infrared Spectroscopy (fNIRS): fNIRS measures neurophysiological activation
and deactivation by emitting a near-infrared spectroscope beam into the scalp, and the
resulting resistivity to the emitted near-infrared spectroscope beam as a result of the amount of
oxygenated and de-oxygenated blood in the brain determines the neural activation related to the
tasks/activities that the individual is experiencing or performing. Its functioning is similar to that
of fMRI as an imaging technology but differs in its form factor, cost, and underlying operational
mechanisms. For instance, some fNIRS systems are sold for a few hundred dollars and are mobile
and portable. However, these systems are unable to pinpoint the region of the brain that is active
as accurately as fMRI.

• electrocardiogram (ECG): ECG measures electrical signals related to the heart’s activities
through the use of electrodes placed on an individual’s skin that captures the expansion and
contraction activities of the muscles. ECGs are available in different form factors, making their
application more common in consumer-grade electronics, such as wearable fitness devices.
However, their reliability varies between different electrode placements locations. For example,
medical experts always acquire ECG data with electrodes placed around an individual’s chest
area, while non-medical applications place electrodes on the wrist of an individual to acquire
ECG data.

• Electrodermal activity (EDA): EDA measures the changes in the sympathetic nervous system that
control the sweat glands by recording the electrical resistivity of an individual using electrodes
placed on the surface of an individual’s skin. EDA’s main limitation is that the data collected have
a low temporal resolution, as changes in the sympathetic nervous system are not spontaneous.
However, EDA is available in different form factors and cheap to acquire.

• Electromyography (EMG): EMG measures changes in the muscle cells of an individual by
recording the electrical signals related to the activation of muscle cells (either electrically or
neurologically activated) with skin surface or implanted electrodes placed on various parts of
the body. For example, placing an EMG electrode on the eyebrows can help measure the facial
micro-muscles that are associated with the valence of an individual. Moreover, placing the
electrodes on the arm and elbow area can support muscle measurements (expansion and
contraction) for medical, fitness, or haptics purposes.

• Electrooculography (EOG): EOG measures eye movement (e.g., blinks) by capturing the potential
differences in the electrical signals generated by the back (cornea) and front (oculus fundus) of
the eye.

• Eye-tracker: This method measures the movement of the eye characteristics by focusing on a
visual object through the focal point of the eye at a given moment in time. This systems is available
in different form factors ranging from wearable glasses, such as those manufactured by Tobii,
or fixed/immovable devices, such as those from Miramatrix.
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• Photoplethysmography: This method measures changes in vital physiology, such as heart rate
and blood pressure, using contactless and non-invasive optical lights emitted onto the skin’s
surface from an optical device (e.g., a camera).

The use of psychophysiological signals for assessing trust is motivated by the fact that trust is
a subconscious net cognitive state modulated by human biological systems (central and peripheral
nervous systems). Consequently, the use of psychophysiological signals indeed captures the objective
nature of trust concerning events over time [20,29].

This development has aided researchers in achieving groundbreaking discoveries. For example,
in the context of human–computer interaction (HCI), researchers have developed intelligent interfaces
that enable the adaptation of machines to a user’s trust state using one or more physiological
signals [13,30].

Moreover, HCI research has demystified the relationship between human physiological responses
and user trust states during their interactions with technical artifacts [31]. Furthermore, in the context
of human–human interactions, researchers have unraveled several neurological cortical patterns that
modulate user trust [32].

However, the use of psychophysiological signals for assessing users’ experiences (e.g., trust and
emotions) is still in its infancy and includes numerous challenges accompanied by several solutions
that are not yet standardized. For instance, the authors in [16] suggest that most psychophysiological
signals, except for EMG, are inconsistent and unreliable for measuring users’ experiences (emotions)
during interactions, especially when users interact naturally (e.g., with the free body movements
of participants) compared to non-natural interactions (e.g., with restricted body movement).
The authors in [16] note that noise arising from body movement (e.g., eye movement for EEGs
and electrode placement for other psychophysiological sensors) can corrupt psychophysiological
signals. Although there are robust filtering algorithms that can effectively denoise these signals,
the question of which filtering algorithm to use and under what circumstances remains solely at the
researcher’s discretion.

Moreover, the authors in [33] suggest that the choice of location for psychophysiological sensor
electrode placement has a significant impact on the data quality. Depending on the psychophysiological
sensor, there are several electrode placement locations, which are chosen solely at the researcher’s
discretion based on ethics. For example, placing an ECG sensor electrode on the chest area
is most viable for medical experts, while electrode placement on the arms is most viable in
human–computer interactions.

Furthermore, as a result of the numerous factors associated with the use of psychophysiological
signals, the authors in [34] proposed a guideline for researchers (HCI) using psychophysiological
signals, including studying the differences between individual participants (e.g., age and gender),
bio-signal characteristics (wet or dry conductivity electrode position), using a theory that appropriately
maps the phenomenon (e.g., trust) to physiological responses that are measured, applying sufficient
contextual information to explain noise in the psychophysiological signal, a combination of two or
more algorithms for data analysis to infer a user’s state (i.e., ensemble technique), the use of inference
validation to ensure that the stimuli for the phenomenon yields the desired effect, and the use of
multiple psychophysiological signals justified by the appropriate theory and supported by suitable for
data integration and model training.

Moreover, because there is no consensus on a single perfect measurement system
(psychophysiological or self-reporting instrument), the authors in [33] strongly recommend a
combination of several measurement techniques (e.g., self-reporting and psychophysiological signals).

Despite the objectivity and novelty of the findings made using psychophysiological signals, it is
clear that researchers employ diverse approaches to assess trust using psychophysiological signals.
However, it is unclear how much progress this diversity has yielded, especially considering the
research gaps left unattended due to this diversity.
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2.3. Related Work and the Need for a Systematic Mapping Study

To clarify and enhance the understanding among academics on the topic of assessing trust using
psychophysiological signals, some researchers have reviewed prior studies exploring the physiological
correlates of trust by addressing different issues.

Firstly, to establish what trust is and is not, the authors in [25] conducted a review,
which established that trust goes beyond rational decision making and includes subconscious processes
that inform and elicit rational activities, such as decision making. This led to the conclusion that trust
involves a highly subconscious process that informs rational activities like decision making, which act
as mere bystanders.

Moreover, the authors in [14] conducted a review on extensive biological evidence (fMRI,
oxytocin, and testosterone) of trust to establish that trust is a behavior and not just a mere perception,
as widely acclaimed by some researchers who mostly assess trust using self-reporting instruments.
Therefore, since behavior is strongly rooted in human biology, trust should be measured using
psychophysiological signals.

However, these reviews have not investigated the approaches used in studies assessing trust
with psychophysiological signals (i.e., fMRI, fNIRS, EEG, ECG, EDA, audio, etc.). By “approaches”,
we refer to:

• The nature and choice of data analysis techniques used to analyze the data to infer trust in
studies assessing trust with psychophysiological signals, such as ensemble (the combination
of two or more machine learning algorithms), dynamic (single machine learning algorithm),
or static (a basic statistical test for the patterns, significance, or relationships between variables)
methods [17,35,36].

• The measurement scale used for measuring trust in studies assessing trust with
psychophysiological signals. As trust and distrust are opposite [37–39], each is measured
differently on a scale from low to high.

• The most frequently used and maximum number of combined psychophysiological signals used
in prior studies assessing trust with psychophysiological signals, as the trade-off between the
accuracy and obtrusiveness of physiological sensors could influence the researcher’s choice of
physiological sensors and, ultimately, the results [17,40].

• The number and type of inference validation methods for validating the psychophysiological
signals used in studies assessing trust with psychophysiological signals, as finding appropriate
reference measurements is likely to remain an application-specific affair [17,40].

Therefore, the goal of this review is to show the current gaps in approaches for the use of
psychophysiological signals to assess trust. This gap in approaches will help further the understanding
of trust assessment using psychophysiological signals among researchers by providing a bird’s-eye
view of the approaches used in studies assessing trust via psychophysiological signals.

3. Materials and Methods

We followed the guidelines for systematic mapping studies used in [41] and adopted from [42–44]
to conduct this study, as illustrated in Figure 2.

Systematic mapping studies are preferred over systematic reviews or scoping studies because
systematic mapping can help examine prior studies and provide a bird’s-eye view of existing issues
(e.g., gaps in the approaches used in previous studies focused on assessing trust with psychophysiological
signals) [43]. This supports our primary goal, which is to provide a visual summary of the approaches
used in studies exploring psychophysiological signals for assessing trust. The outcomes of this study
will further fruitful discussion among researchers and academics across disciplines.
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Figure 2. The systematic mapping study process adopted from [41] as adopted from [42–44].

3.1. Identifying the Research Questions

The research questions in this study are based on the four components in [45] (also used in [42]).

• Population: Peer-reviewed literature that attempts to assess trust using
psychophysiological signals.

• Intervention: Empirical and non-empirical studies that attempt to assess trust using
psychophysiological signals (i.e., context (human–human or human–technology relationships),
the number and types of physiological sensors, analysis techniques used, and inference
validation techniques).

• Comparison: Similarity of approaches used in studies that attempt to assess trust using
psychophysiological signals—that is, the most and least frequently used psychophysiological
signals, inference validation techniques, and analysis techniques.

• Outcomes: Types of outcomes from studies that attempt to assess trust using psychophysiological
signals to identify research gaps.

The questions raised for this study based on the four components above are presented in Table 1.
These questions are aimed at providing a bird view of the approaches used by researchers assessing
trust using psychophysiological signals.

Table 1. Research questions.

Research Question Goals

RQ1 What are the most frequently used and
maximum numbers of combined
psychophysiological signals in studies
assessing trust with
psychophysiological signals?

To provide a broad overview of the most
commonly used psychophysiological signals and
the minimum and maximum number of
psychophysiological signals in studies assessing
trust with psychophysiological signals.

RQ2 What are the most frequently used and
maximum numbers of combined inference
validation methods in studies assessing
trust with psychophysiological signals?

To provide a broad overview of the most
commonly used inference validation methods,
the minimum and maximum number of inference
validation methods in studies assessing trust with
psychophysiological signals.

RQ3 What are the types and most common data
analysis techniques used to analyze
psychophysiological data to infer trust in
studies assessing trust with
psychophysiological signals?

To provide a broad overview of the types of data
analysis and/or fusion algorithms used to
infer trust.

RQ4 What are the scales used in studies
assessing trust with psychophysiological
signals?

To provide a broad overview of the scales used to
measure trust to establish if these scales are
consistent or inconsistent across studies that assess
trust with psychophysiological signals.

RQ5 What are the outcomes from studies
assessing trust with
psychophysiological signals?

To provide an overview of the outcomes (e.g.,
models, tools, and processes) of previous studies
assessing trust with psychophysiological signals
and to identify the gaps in existing contributions.
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3.2. Identifying Relevant Studies

We searched seven electronic databases using keywords derived from our research questions
outlined in Table 2. Trust and psychophysiology are the most crucial concepts in this study, from which
our keywords were derived. The search included literature published between January 1970 and
April 2019 to identify the origin of this subject. The search results and search strings are detailed in
Table 3.

Table 2. Keywords and synonyms.

S/N Concept Synonyms

1 Psychophysiology EEG(electroencephalogram),
ECG(electrocardiogram), EDA(electrodermal
activity), fMRI(functional magnetic resonance
imaging), FNIRS (functional near infrared
spectroscopy), psychophysiology, physiology

2 Trust Trust

Table 3. Papers retrieved from the selected digital libraries.

S/N Digital
Library

#Papers
Found

Search Strings

1 ACM 119 +(“EEG” “EDA” “ECG” “Physiology” “FMRI”
“FNIRS” “eye tracker” “speech”
“Psycho-physiology”) + trust

2 IEEE Xplore 84 (“Abstract”: Trust*) AND (“Abstract”:
psychophysiology OR physiology OR
electroencephalogram OR electrodermal OR EEG
OR electrocardiogram OR ECG OR EDA OR FMRI
OR fNIRS)

3 Scopus 169 TITLE(Trust) AND TITLE-ABS-KEY ( physiology
OR psychophysiology OR electroencephalogram
OR electrocardiogram )

4 Sage 106 [Title trust] AND [[All electroencephalogram] OR
[All electrocardiogram] OR [All eeg] OR [All ecg]
OR [All eda] OR [All emg] OR [All physiology] OR
[All psycho-physiology]]

5 Science Direct 170 Title, abstract or author-specified keywords: (Trust)
AND (electroencephalogram OR
electrocardiogram OR EEG OR ECG OR eda OR
emg OR physiology OR psychophysiology OR
FMRI OR fNIRS)

6 Nature 59 Trust AND (electroencephalogram OR
electrocardiogram OR EEG OR ECG OR eda OR
emg OR physiology OR psychophysiology)

7 Web of science 153 (TS = (Trust) AND TS = (electroencephalogram OR
electrocardiogram OR EEG OR ECG OR eda OR
EMG OR physiology OR psychophysiology OR
FMRI OR fNIRS))

Total 585

3.3. Study Selection

The criteria set for including a paper required that the paper be peer-reviewed and published
between January 1970 and April 2019 to enable us to investigate the history of the topic’s origin.
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Moreover, the paper had to be empirical, written in English, and focus on assessing trust with
psychophysiological signals. Since the task was to analyze the approaches used in studies assessing
trust with psychophysiological signals and to identify existing gaps in the literature, the criteria for
excluding a paper were not being written in English, assessing trust using either only self-reporting
instruments or biochemical features (such as oxytocin or testosterone), being based on tutorials,
panel discussions, short papers (<=3 pages), newsletters, magazine articles, and personal blogs.
We also excluded studies that, although relevant, could not be accessed, such as non-empirical papers,
e.g., experience papers, opinion papers, and philosophical papers.

The inclusion and exclusion criteria were applied to all five stages of the study screening method
outlined in Table 4 (adopted from [46]). This method was also used in [41]. Screening of all 585 papers
found in the automatic search by title resulted in 105 articles. This screening ensured that the titles
included one or all the keywords and that the other inclusion criteria were satisfied. A further manual
search through a backward and forward examination of the selected studies’ related work sections
and reference lists yielded 24 more studies, leading to a total of 129 articles. After excluding duplicate
articles (32), the list was reduced to 97 articles. After reading the abstracts of the remaining articles
(97), the articles were reduced to 51. Finally, we thoroughly read through these 51 articles, all of which
were found to be relevant, leaving a total of 51 articles included in this study.

Table 4. Screening process for finding the relevant papers (Adapted from [46]).

Phase Process Result

I Automatic search in digital libraries 585
II a Screen by paper titles 105
II b Manual search of selected article references 24
III Excluding duplicates 97
IV Screening by paper abstracts 90
V Screening by reading the whole content of the primary papers 51

3.4. Classification Themes, Keywords, and Scheming Process

We followed the key-wording process adopted in [41,43] to build a classification scheme by
reading the abstract and entire content of each included primary study. For each article we read,
the relevant keywords (see Table 5) were extracted and used to build the themes in the schema.
We continued to update the schema containing the classification schemes until all articles had been
read completely.

Table 5. Article classification themes and corresponding keywords.

Phase Classification Themes and Keyword

I Publication.

• Year.
• Type/venue (conference or journal).

II Type of trust relationship studied (context)

• Interpersonal trust.
• Trust in technology.
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Phase Classification Themes and Keyword

III Types and numbers of psychophysiological signals used [15].

• Central nervous system monitoring psychophysiological signals (EEG,
fMRI, and fNIRS).

• Peripheral nervous system monitoring psychophysiological signals (EDA,
ECG, EOG, and eye-tracker).

IV Types and numbers of inference validation techniques [17,40].

• Self-reporting (e.g., questionnaires).
• Behavioral inference (e.g., task activities, such as choice-based

decision making).

V Type of technique used for analyzing the psychophysiological signals [17,35,36].

• Static (t-test, ANOVA, etc.).
• Dynamic (support vector machine, linear/quadratic

discriminant analysis).
• Ensemble (the combination of two or more dynamic algorithms).

VI Contribution (adapted from [43]).

• Model: Representation of trust with psychophysiological signals using
semantics and notations.

• Metric: Measuring or quantifying trust with psychophysiological signals.
• Process: A series of events or activities or tasks performed when assessing

trust using psychophysiological signals correctly.
• Method: Procedures or techniques used to assess trust using

psychophysiological signals.
• Tool: Tools developed to assess trust with psychophysiological signals.

3.5. Data Extraction

Based on the themes and keywords in Table 5 that we extracted during the schema process
described above, we created a spreadsheet to record the following data extracted. This same method
was employed in previous research [41]:

• Publication year and type/venue.
• The data analysis technique or algorithm used to infer trust.
• The type and number of inference validation method used.
• The type and number of psychophysiological signals used.
• The type of contribution made.
• The type of scale used for assessing trust with psychophysiological signals.
• The type of trust relationship being studied to classify articles as either interpersonal trust

(human–human or human–organizational) or trust in technology (human–computer–human or
human–computer).
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3.6. Data Synthesis

Data synthesis was done in two ways, as suggested in [41]. The manual data synthesis involved
an iterative classification of studies into groups (e.g., the type of data analysis technique, the scale used
for assessing trust, and the type of trust relationship studied), while the automatic process involved
coding the study data numerically into an excel spreadsheet to enable a fundamental descriptive
statistical analysis to produce some of the charts reported in this study.

4. Discussion

4.1. Origin and Publication Venue/Year

Figure 3 shows that the use of psychophysiological signals for assessing trust began in 2002.
However, the trend for the publication years in Figure 3 indicates that there was increase in
contributions or research interest from 2007 onward.

Between these periods (2007 to present), the increase in the number of publications could be the
result of more disciplines becoming involved in the study of trust using psychophysiological signals,
such as sociology, psychology, and cognitive science, to help foster trust relationships between humans
(interpersonal trust: human–human and human–organization) and HCI researchers alongside human
factor engineers seeking to foster trust relationships between users and technological artifacts (trust in
technology: human–technology and human–technology–human).

Therefore, this topic is relatively new and highly multi-disciplinary. However, since our search
ended on April 2019, the publication trends in Figure 3 do not include papers published after April 2019.

Furthermore, as illustrated in Figure 4, most (58.5% of the 51 included articles) scientific
contributions that employ psychophysiological signals for assessing trust are journal publications.
In comparison, 41.2% of the articles were published in conference/symposium proceedings.

Figure 3. Distribution of article publications by year.
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Figure 4. Distribution of articles by publication type/venue.

4.2. RQ1: Most Frequently Used and Combined Psychophysiological Signals Used for Assessing Trust

Regarding the use of the central nervous system psychophysiological signals sensors, Figure 5
shows that the most frequently used type of psychophysiological signal for assessing trust is EEG.
In comparison, fMRI is the second most frequently used type of psychophysiological signal in
studies assessing trust with psychophysiological signals. Next most common are EOG and fNIRS,
which appear to be rarely used. These findings are most likely due to the wide variability and
availability of low-cost and effective EEG systems, such as those from Muse, Neuro-kit, Brain-amp,
and G.tech. This was reinforced by the authors in [14], who, despite suggesting that fMRI signals are
the most popularly used psychophysiological signals in studies assessing trust, also anticipated an
increase in the use of other neurophysiological devices, such as EEG.

Furthermore, regarding the use of the peripheral nervous system psychophysiological signals
sensors (EDA, ECG, and eye-tracker), the most frequently used types of psychophysiological signals
for assessing trust are electrocardiography (ECG) and electrodermal activity (EDA). In comparison,
audio and video are the second most frequently used psychophysiological signals in studies
assessing trust with psychophysiological signals. The third most frequently used type of
psychophysiological signal is eye tracker. Other seldom-used methods include photoplethysmography
(PPP), impedance cardiography (ICG), piezo-electric belt pneumatoraces, and potentiometers.

These peripheral psychophysiological signals have become predominant in studies assessing trust,
likely due to their unobtrusiveness, low cost, ease of accessibility, and simplicity in signal analysis.

Furthermore, as explained in Figure 5, irrespective of context, EEG is clearly the most widely
used type of psychophysiological signal in studies assessing trust with psychophysiological signals.
Moreover, fMRI is mostly used in studies assessing trust with psychophysiological signals in the
context of interpersonal trust. This result could be due to the large size of fMRI machines, which makes
them unsuitable for assessing trust in a technological context (human–computer interactions).



Multimodal Technol. Interact. 2020, 4, 63 13 of 29

Figure 5. (1) Psychophysiological signal usage frequency study for study and context (trust in
technology and interpersonal trust).

Figure 6 below identifies the number and type of the most commonly combined and not yet
combined psychophysiological signals based on the 51 included primary studies that assessed trust
with psychophysiological signals. One reason for combining psychophysiological signals is because
they have varying temporal resolutions that ultimately influence the depth and breadth of the results
obtained [15].

The maximum number of psychophysiological signals combined in any study that assessed trust
with psychophysiological signals was three (3). For instance, combinations of ECG + EDA + eye
tracker and photoplethysmography (PPP) + a piezo-electric belt pneumatorace + a potentiometer were
reported in two studies (SM11 and SM38). However, all the combined psychophysiological signals are
peripheral nervous system monitoring signals that are limited in temporal resolution [15].

Double psychophysiological signals (EDA, ECG, eye tracker, audio, EOG, and EEG) are the
next most commonly found combinations in studies assessing trust with psychophysiological signals.
For instance, some studies combined two peripheral nervous system psychophysiological signals
sensors. For example, two studies (SM43 and SM48) combined EDA and ECG, one study (SM15)
combined ECG and eye tracker, one study (SM16) combined ECG and video, and five studies (SM3,
SM6, SM26, SM44, and SM50) combined audio and video. Moreover, one study (SM5) combined EDA
and EMG, and one study (SM20) combined ECG and impedance cardiography (ICG), while other
studies assessing trust combined psychophysiological signals monitoring both the peripheral and
central nervous system. For instance, only two studies (SM4 and SM8) combined EEG and EDA,
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four studies (SM2, SM25, SM27, and SM33) combined EEG and EOG, and one study combined eye
tracker and FMRI (SM31).

Most studies, moreover, used single psychophysiological signals. For instance, thirty-seven of the
fifty-one included studies employed single psychophysiological signals for assessing trust, as explained
in Figure 6. For example, fourteen studies (SM18, SM19, SM9, SM10, SM12, SM14, SM24, SM22, SM51,
SM49, SM47, SM42, SM39, and SM1) used only EEG signals, twelve studies (SM28, SM29, SM30, SM21,
SM23, SM34, SM35, SM36, SM37, SM40, SM41, and SM45) used only fMRI signals, one study (SM7)
used only EDA signals, two studies (SM32 and SM17) used only eye tracker signals, one study (SM13)
used only audio signals, one study (SM46) used only ECG signals, and one study (SM1) used only
fNIRS signals.

These findings suggest that very few studies have attempted to provide a comprehensive
assessment of trust based on the brain–body relationship (the central and peripheral nervous system)
by combining a central nervous system psychophysiological signals (e.g., EEG, fMRI, fNIRS) to
more than one peripheral nervous system psychophysiological signals when assessing trust. Indeed,
each psychophysiological signal has a varying temporal resolution and measures unique physiological
factors. For example, EDA measures skin conductance, ECG measures heart rate related to stress,
EEG measure cognitive activities, and facial expression measure valence [15].

Moreover, because only one study attempted to use audio signals to assess trust, little is known
about the potential of audio psychophysiological signals for assessing trust. The same is true for
signals from eye tracking, among others.

Figure 6. Bubble plot of psychophysiological signal combinations in studies assessing trust using
psychophysiological signals.

4.3. RQ2: Most Frequently Used and Combined Inference Validation Methods Used in Studies Assessing Trust
with Psychophysiological Signals

As illustrated in Figure 7, out of the fifty-one included primary studies that assessed
trust using psychophysiological signals, 47.1% used only self-reporting inference validation
methods, while 33.3% used only behavioral inference. Only 11.8% combined both behavioral
inference (i.e., task/activity such as decision making, among others) and self-reporting inference
validation methods. However, 7.8% used neither the self-reporting method nor used the behavioral
inference method.

This finding suggests that it is a common practice among researchers investigating trust with
psychophysiological signals to compliment psychophysiological signals with other data sources to
confirm that the recorded signals represent actual human cognitive or affective states, such as trust.
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Figure 7. Commonly used inference validation methods.

Further contextual analysis, as illustrated in Figure 8, showed that interpersonal trust studies
employed more self-reporting inference validation methods than behavioral inference methods.
In contrast, there is little difference between the frequency of usage of self-reporting and behavioral
inference validation methods among trust in technology studies.

Further, more trust in technology studies than interpersonal trust studies did not employ any
inference validation method, as illustrated in Figure 8. This could be because the topic of trust
originated from psychology and cognitive science. Considering that trust in technology researchers
are mostly HCI or human factor researchers, it can also be assumed that there is a lack of methodology
transferability from classical psychology and cognitive science to applied domains, such as HCI.
Moreover, the authors in [33] suggest that the entry barrier could be a factor responsible for the
less-common usage of psychophysiological signals in HCI research.

This is further reinforced by the greater number of interpersonal trust studies than trust in
technology studies that combined inference validation methods, as outlined in Figure 8 below.
To ameliorate this issue, the scientific community could investigate the transferability of methodologies
between psychology/cognitive science, HCI/human factor science, and physiological computing in
assessing trust using psychophysiological signals.

4.4. RQ3: Analysis Techniques Used for Analyzing and Inferring Trust from Psychophysiological Signal Data

As illustrated in Figure 9, most (74.5%) studies assessing trust with psychophysiological signals
adopted static techniques like basic statistics (e.g., t-test or ANOVA) for analyzing psychophysiological
data to infer a trust state. However, only 17.6% of the 51 included primary studies assessing trust
with psychophysiological signals employed dynamic techniques such as those commonly used in
the machine learning or data science fields for high-level predictive analytics in either classification
or regression problems—for example, support vector machine(SVM), linear/quadratic discriminant
analysis(L/QDA), logistic regression(LR), and naive-Bayesian(NB) classification.

Further, only 7.8% of the 51 primary included studies assessing trust with psychophysiological
signals used ensemble techniques to overcome the limitations of previous dynamic algorithms
by combining two or more dynamic algorithms to enhance the accuracy of the predictions in the
classification or regression problems associated with assessing trust [30,47].

This finding further suggests that most researchers assessing trust with psychophysiological
signals either lack sufficient knowledge on data science/machine learning methods to explore the
psychophysiological signal data values or have low awareness of how to use data science/machine
learning methods. This provides an opportunity to examine challenges in the transferability of
data science/machine learning methodologies between researchers, such as HCI/human factor
scientists, psychological researchers, cognitive science researchers, sociologists, etc., to assess trust
with psychophysiological signals. A potential review of the dynamic and ensemble algorithms used
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in studies assessing trust with psychophysiological signals is also desirable to help trust researchers
identify the best algorithms to adopt in their research.

Moreover, as illustrated in Figure 9, interpersonal trust studies employed more static techniques
for analyzing psychophysiological signal data to infer trust than dynamic techniques. In contrast, trust
in technology studies employed more dynamic techniques for analyzing psychophysiological signal
data to infer trust than static techniques/algorithms.

Trust in technology studies also used more (3) ensemble techniques for analyzing
psychophysiological signals to infer trust compared to interpersonal trust studies.

This result further re-affirms the lack of knowledge or awareness of data science/machine learning
methods among researchers using psychophysiological signals to assess trust. However, this gap is
predominant among non-HCI/human factor researchers, as HCI/human factor researchers also have
more technical skills compared to researchers in psychology or the cognitive science field.

Figure 8. Inference validation methods and usage frequency in studies assessing trust with
psychological signals across contexts.

Figure 9. Most frequently used techniques for analyzing psychophysiological signals to infer trust.
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4.5. RQ4: Trust Scales Used for Inferring Trust from Psychophysiological Signal Data

As explained in Figure 10 below, among the 51 included primary studies assessing trust
with psychophysiological signals, 29.4% used a low–high trust scale, 35.3% used a trust–distrust
scale, 13.7% did not define (undefined) any scale, and 5.9% used a low–neutral–high trust scale.
Low–medium–high, trust–neutral–distrust, initial–later, low–medium–neutral–high, 0 to 7, 0 to 100%,
over–under, and trust–mistrust trust scales were each used by 2% of the 51 included primary studies
assessing trust with psychophysiological signals. However, the most appropriate scale to be used by
researchers investigating trust with psychophysiological signals remains uncertain.

Figure 10. Classification of trust scales used in studies assessing trust with psychophysiological signals.

To clarify the issue of scales, below we outline the definitions of some vital keywords:

• Misdistrust: Distrusting a trustworthy person/trustee [48]. This is also commonly referred to as
under-trusting.

• Mistrust: Trusting an untrustworthy person/trustee [49], also commonly referred to as over trust
resulting from misinformation.

• Untrust: Being unable to establish trust [49].
• Undistrust: Being unable to establish a distrust state [50].
• Trust involves desirable expectations based on beliefs that contribute to behavior. That is,

trust verifies trustworthiness [51]. However, distrust involves undesirable expectations.
For example, a trustor may not trust a trustee due to a lack of information, but this does not imply
that the trustor distrusts the trustee. Moreover, users may not use the object of trust (e.g., the
technical artifact) a few times during a series of interactions, which does not mean that the user
distrusts the object of trust (e.g., the technical artifact) [52]. However, when entity A believes that
entity B presents potential undesirable consequences, a distrust state is formed.
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Moreover, using the summary of numerous trust scales from different studies presented in [20],
we present a comprehensive trust scale in Figure 11. This scale is used to clarify the consistency of the
diverse trust scales found in studies assessing trust with psychophysiological signals.

As illustrated in Figure 11 below, the first scale shows that trust can be measured on a scale of
trust–untrust, while distrust can be measured on a scale of undistrust–distrust.

The second scale is a multi-class scale that measures trust on three categorical levels, each further
subdivided into three subscales (high, medium, and low). Similarly, the second scale measures distrust
on a scale of three categorical levels that are further divided into three subscales (high, medium, and low).

The third scale measures trust on six categorical levels (CT = complete trust, VHT = very high
trust, HT = high trust, HMT = high medium trust, LMT = low medium trust, and LT = low trust).
Distrust is similarly measured using six categorical levels (CD = complete distrust, VHD = very high
distrust, HD = high distrust, HMD = high medium distrust, LMD = low medium distrust, and LD =
low distrust).

The fourth scale is a discrete scale that measures trust from 0 to 6 and distrust from 0 to −6. The fifth
scale measures trust on a continuous scale from 0 to 1, while distrust is measured as a continuous scale
from 0 to −1. The sixth scale is a binary scale that measures trust as 1 and distrust as 0.

Based on the above definitions of terms and the descriptions of the comprehensive trust scales,
only the sixth scale remains contentious among trust researchers, as some trust researchers suggest
that trust and distrust are opposite ends of the same scale but not conceptually different [37,39,53].
Other researchers disagree with this line of thought and suggest that trust and distrust are not inverses
of each other and are not conceptually the same, citing that the process of trust violation is more
heavily weighted to human than trust-building processes, which further implies that the way trust
is learned/built is different from the way distrust is learned/built, as explained by the principle of
symmetry [38,54].

Therefore, the validity of the results reported in 37.3% of the 51 included primary studies assessing
trust with psychophysiological signals on scales of trust–distrust and trust–neutral–distrust are unclear
due to their scale disparities, despite the quality of their research. Moreover, the results of 4%
of the studies that assess trust with psychophysiological signals on scales of trust–mistrust and
over–undertrust remain unclear because mistrust is not a variation of trust and does not belong to the
same evaluative category as trust. Similarly, over-trust and undertrust, also referred to as misdistrust
and mistrust, are not the same as trust or a variation of trust. A potential research opportunity exists in
investigating these various scales and areas of potential convergence.

Interestingly, the other 43.3% of the 51 included primary studies assessing trust with
psychophysiological signals on a scale of low–high (29.4%), low–neutral–high(5.9%), low–medium–high
(2%), low–medium–neutral–high (2%), continuous scales from 0 to 7, and percentages from 0 to 100 are
consistent with the conceptual definition of trust, as each study fits into one of the scales ranging from 1
to 5 (see Figure 11).

Furthermore, 13.7% of the 51 included primary studies assessing trust with psychophysiological
signals had no defined scale. This is a further testament to the lack of understanding of what trust
means and how trust should be scaled and measured.

Furthermore, as illustrated in Figure 12 below, the issue of appropriate scale utilization is not
unique to trust in either an interpersonal or a technological context, as there are more studies
in both contexts that utilize scales such as trust–distrust, trust–neutral–distrust, trust–mistrust,
and over–undertrust (also referred to misdistrust and mistrust).
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Figure 11. Comprehensive trust scale adopted from [20,55]: H = high, M = medium, L = low,
CD = complete distrust, CT = complete trust, VHD = very high distrust, VHT = very high trust,
HD = high distrust, HT = high trust, HMD = high medium distrust, HMT = high medium trust,
LMD = low medium distrust, LMT = low medium trust, LD = low distrust, and LT = low trust.

Figure 12. Frequency of usage of different trust scales in studies assessing trust with
psychophysiological signals by context (trust in technology and interpersonal trust).

4.6. RQ5: Contributions and Potential Research Gaps

As illustrated in Figure 13, there are no studies focused on bridging the gap between the various
disciplines (physiological computing, psychology, cognitive science, HCI/human factor science,
among others) by identifying the challenges in the transferability of methods/knowledge. This is
evident in the fact that none of the 51 included primary studies contributed to the methodology,
irrespective of context (trust in technology or interpersonal trust).

Moreover, only one (SM46 in Appendix A) study provided contributions related to process which
is focused on how to foster trust between two humans during their interactions with the use of
psychophysiological signals. However, this study did not measure trust with psychophysiological
signals; instead, it presented the physiological signals of both interacting individuals.
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In addition, only one study (SM47) proposed the development of a tool for assessing trust.
This particular study proposed the development of a real-time trust assessment tool that can help a
potential investor assess the trustworthiness of an investment adviser’s information.

Furthermore, 17 of the 51 included primary studies assessing trust with psychophysiological
signals developed a model as their contribution. Among the 17 models, five studies focused on the
context of interpersonal trust (SM21, SM40, SM44, SM28, and SM36) developed models using static
techniques (i.e., models developed using static techniques), two studies (SM26 and SM39) developed
models using dynamic technique ( i.e., models developed using algorithms such as SVM, LDA etc.),
and one study (SM50) developed an ensemble model (i.e., models developed using the combination
of two or more algorithm from dynamic technique). In contrast, in the context of trust in technology,
two studies (SM19 and SM13) developed models using static technique (i.e., models developed using
statistical test such as ANOVA, t-test etc.), three studies (SM12, SM18, and SM1) developed dynamic
models (i.e., models developed using dynamic techniques), and four studies (SM3, SM4, SM6, and SM8)
developed ensemble models (i.e., models developed using ensemble techniques).

However, the ensemble models reported in the five studies that employed ensemble techniques for
analyzing psychophysiological signals to infer a user trust state were either fairly accurate (with room
for significant improvement), suffered instability issues (as reported in SM4), or did not satisfy the
primary goals of ensemble algorithms.

For example, using a supervised approach, SM4 (trust in technology context) developed a
voting ensemble trust classifier model that combined five different algorithms using EDA and
EEG psychophysiological signals. The resulting classifier model was fairly accurate but unstable
(the minimum accuracy was 43% and 46%, and maximum accuracy was 61% and 72%), despite being
trained with first 40 signals samples and all 100 signal samples.

Likely as a result of the challenges faced by SM4 when combining several distinct algorithms,
other researchers developing trust classifier models with the ensemble method have only combined the
same algorithms. Consequently, the resulting models do not satisfy the reasons for combining multiple
algorithms (e.g., reducing prediction errors, increasing generalizability, decreasing bias, improving variance
sensitivity, overcoming the limitations associated with each algorithm, and increasing accuracy) [17].

Furthermore, using an unsupervised approach, SM50 (interpersonal context) developed a voting
ensemble neuro-fuzzy neural network-based trust classifier model. The resulting model accuracy
ranged between 45% and 98%, depending on the trust factor with the same psychophysiological data.
This also indicates that the model is unstable. SM6 (interpersonal context) also developed an ensemble
neuro-fuzzy neural network trust classifier model. Despite optimizing the classifier model with an
evolutionary algorithm, the resulting model attained an accuracy of only 66.8%; stability was neither
assessed nor reported. There is, therefore, substantial room for improvement, and the resulting model
is also subject to neural network algorithm limitations. Moreover, SM3 developed an ensemble neural
network trust classifier model optimized with a genetic algorithm. Although the resulting model
attained an accuracy of 83%, its stability was not assessed, and it is unclear what accuracy value was
reported (minimum, mean, or maximum), as the cross-validation method was used for model training
and validation. Moreover, this model is subject to the limitations of the neural network algorithm.

Therefore, a significant gap on the extent to which trust can be assessed in real-time remains
unaddressed. Bridging this gap will require the availability of a stable, accurate, bias free,
and variance-sensitive ensemble trust classifier model suitable for the automatic classification of
user trust from psychophysiological signals.

Addressing the issue of stability and accuracy could require more data samples, as SM4 was
short-lived and used a limited sample size. In addition, SM18 proved that the temporal characteristics
of psychophysiological signals are another potentially important factor, as psychophysiological
signals are continuous and not discrete like the data obtained with self-reporting instruments.
Moreover, four ensemble techniques exist: voting (soft and hard) boosting, bagging, and stacking.
However, it is not clear which ensemble method is most suitable, because all prior studies used
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the voting ensemble method [47,56,57]. Further, several feature selection techniques are employed
(e.g., filter, wrapper, embedded, and hybrid techniques), which could result in variable feature sets.
Therefore, finding the most useful feature selection method is another factor that could influence
ensemble model performance.

Furthermore, it can be inferred from Figure 13 below that the use of psychophysiological signals
for assessing trust, irrespective of context (trust in technology or interpersonal trust), is generally
perceived as simply another measurement instrument. This is reinforced by the fact that 32 of the
51 studies contributed metrics, possibly because most studies used static techniques, as expected.
Studies in the context of interpersonal trust that employed static techniques are two-times more
common than studies on trust in technology that used static methods. This further highlights the issue
of methodological knowledge transferability between the various disciplines researching trust using
psychophysiological signals.

Figure 13. Bubble plot of prior research contributions by context and the number of psychophysiological
signals used.

4.7. Limitations

The main limitations of this review study are outlined below:

• The search period did not include articles that were published after April 2019.
• Only seven electronic databases were included in the search.
• Focus on trust could have excluded some cybersecurity and network communication articles that

also deal with trust topics.
• Our search was not exhaustive for all existing electronic databases.

5. Future Work

Trust definitions differ among researchers. Some define trust as a belief or intention and measure
trust by operationalizing some of its characteristics with sets of questions that result in self-reporting
instruments. Other researchers define trust as a rational and cautious decision-making process and
measure it implicitly with psychophysiological signals or behavioral inferences during controlled
experiments. Irrespective of the schools of thought, there are no generally accepted self-reporting
instruments, psychophysiological signals, or inference validations for assessing trust.
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This could be the reason for the lack of a generally acceptable scale for measuring trust when
using psychophysiological signals, as highlighted in RQ4. As weight is measured in kilograms on a
continuous decimal scale, so too should a trust scale be defined and validated. Therefore, a potential
future research opportunity exists in investigating the most appropriate scale for assessing trust when
using psychophysiological signals.

Furthermore, the lack of a general definition and understanding of what trust means could also
explain why the majority of self-reporting trust measurement instruments differ significantly (i.e., in
what trust-related attributes they measure). This could also explain why some studies assessing trust
with psychophysiological signals combined both inference validation and self-reporting methods,
used a single inference validation method, or did not use any inference validation method.

Therefore, a potential research gap remains in developing self-reporting trust assessment instruments
that are generally acceptable from context to context (human–human, human–computer–human,
and human–computer relationships) and place to place (surveys, lab experiments, and the wild).
This type of instrument would serve as a more reliable inference validation to complement the use of
psychophysiological signals. In addition, the behavioral inference methods commonly used in experimental
studies (e.g., economic investment games) are yet to be standardized. For example, it is unclear if
behavior such as cooperation, dependence, and decision to use all elicit the same evoked potential in
psychophysiological signals. That is, the changes in ECG signals (e.g., heart rate variability, peaks, and
troughs) when a user exhibits high trust during various experiments (e.g., through economic trust games
or human–computer simulation) could be compared to see if the dependence resulting from trust is the
same irrespective of context.

The continuous disagreement on trust definitions/meanings has far-reaching consequences,
as evident in the slow uptake of implicit measurements of trust using psychophysiological signals.
This is evident in the fact that although the topic of assessing trust with psychophysiological signals is
relatively new (see Figure 3), most psychophysiological signals were invented long ago:

• EEG was developed in 1924 by Hans Begger [58].
• ECG was developed in 1895 by Willem Einthoven [59].
• Eye-tracking was developed in 1908 by Edmund Huey [60].
• Audio was developed in 1877 by Thomas Edison [61].
• Video was first discovered in 1951 by a research team led by Charles Ginsburg [62].
• EDA was founded in 1889 in Russia by Ivane Tarkhnishvili [63].
• fMRI was invented in 1990 by a group at Bell laboratories led by Seiji Ogawa [64].

Therefore, an important unanswered question is why the uptake of the objective measurement
of trust (psychophysiology) has been slow and how we can improve this uptake among research
communities (HCI, MTI, and human factors). Although psychophysiological signal techniques require
specialized skillsets to use, these knowledge gaps could be bridged through conference workshops
and tutorial sessions/papers. However, without a clear distinction between what trust is and how to
measure trust, the issue of uptake will remain unsolved.

Furthermore, there is a consistent imbalance when comparing the usage frequency of
psychophysiological signals for assessing trust—for example, comparing the commonly used
techniques of EEG and fMRI to other psychophysiological signals, such as audio, EDA, eye tracking,
and video. These findings could be due to the topic of trust assessment using psychophysiological
signals still being relatively new and attracting growing research interests. A potential opportunity for
future research could be to empirically investigate which psychophysiological signal is most suitable for
assessing trust, irrespective of context. Moreover, the maximum number of psychophysiological signals
ever combined in studies assessing trust with psychophysiological signals (based on the 51 included
primary studies) is three (3), all of which were peripheral nervous system psychophysiological
signals monitors. Another important research opportunity exists in investigating the significant
differences (if any exist) when one or more signals are combined in studies assessing user trust.
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An investigation that combines one central nervous system psychophysiological signals monitor with
two or more peripheral nervous system psychophysiological signals monitors is especially necessary.
This method could provide a broader, more comprehensive understanding of user trust based on the
brain–body relationship.

In addition, there are no stable or accurate ensemble trust classifier models, irrespective of
the context (i.e., interpersonal trust or human–computer trust), or methods for model development
(supervised and unsupervised). This leaves the question of to what extent trust can be assessed
with psychophysiological signals unanswered. This factor is important because a stable, accurate,
unbiased, and highly generalizable ensemble trust classifier model is required to achieve real-time
trust assessment. However, to address this question, substantial and diverse research efforts will be
required, such as investigations into psychophysiological signal pre-processing methods (e.g., electrode
references, placement locations, and signal filtering frequencies), ensemble methods (e.g., voting,
stacking, bagging, and boosting), feature selection methods (e.g., filter, wrapper, embedded, and hybrid
methods), psychophysiological signal epoch lengths, and predictive machine learning methods
(supervised vs. unsupervised and classification vs. regression). Without addressing all these issues,
it is highly unlikely that we will be able to develop a tool for assessing trust in real-time.

6. Conclusions

In conclusion, this systematic mapping review provided a bird’s-eye view of the approaches
used in studies assessing trust with psychophysiological signals, especially the number of
psychophysiological signals combined together, the most frequently used psychophysiological signals,
and the inference validation methods used, as well as the types of analysis techniques employed in
these studies alongside the outcomes from prior studies. The goal was to provide a quick fact book to
facilitate entry for researchers seeking to use psychophysiological signals to assess trust, in addition to
identifying some potential gaps. Some of the most intriguing findings and potential future research
opportunities highlighted includes: (1) The lack of a stable and accurate ensemble trust classifier model
to enable real-time trust assessment with psychophysiological signals leaves the question of what
extent can trust be measured in real-time unattended. (2) Little is known about the potential of trust
assessment with psychophysiological signals such as audio, despite being less obtrusive. (3) The lack
of a common understanding of what is trust and a distinction between it and how to measure trust
has steered several issues such as: the lack of methodology transfer between the various disciplines
involved in trust research using psychophysiological signals for assessing users, the low uptake of
psychophysiological signals among researchers seeking to assess users trust objectively despite the fact
that psychophysiological signals were invented several decades ago, and the lack of common scales to
adopt when assessing trust with psychophysiological signals.
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