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Abstract: Reliable data on slums or deprived living conditions remain scarce in many low- and
middle-income countries (LMICs). Global high-resolution maps of deprived areas are fundamental
for both research- and evidence-based policies. Existing mapping methods are generally one-off
studies that use proprietary commercial data or other physical or socio-economic data that are
limited geographically. Open geospatial data are increasingly available for large areas; however, their
unstructured nature has hindered their use in extracting useful insights to inform decision making.
In this study, we demonstrate an approach to map deprived areas within and across cities using
open-source geospatial data. The study tests this methodology in three African cities—Accra (Ghana),
Lagos (Nigeria), and Nairobi (Kenya) using a three arc second spatial resolution. Using three machine
learning classifiers, (i) models were trained and tested on individual cities to assess the scalability for
large area application, (ii) city-to-city comparisons were made to assess how the models performed
in new locations, and (iii) a generalized model to assess our ability to map across cities with training
samples from each city was designed. Our best models achieved over 80% accuracy in all cities. The
study demonstrates an inexpensive, scalable, and transferable approach to map deprived areas that
outperforms existing large area methods.

Keywords: open geospatial; GIS; Africa; slums; deprived area; machine learning; remote sensing;
OpenStreetMap; poverty mapping; informal settlements; LMIC

1. Introduction

Between 2014 and 2018, the global slum population increased from 23% to 24% [1].
Worse still, evidence from 2020 and 2021 indicated that slums or deprived urban population
increased due to the interrelated challenges of high population growth, localized impact
on climate change, COVID-19 pandemic, and economic crises [2,3]. The majority of urban
residents in Africa live in deprived areas that lack basic services, and household assets,
located in environmental high-risk areas, such as flood zones, which are vulnerable to
climate change [4]. The World Bank estimates that nearly 574 million people will still be
living below the poverty line (USD 2.15 a day) globally if no action is taken by 2030 [5].

In response to the Sustainable Development Goals (SDGs) and related agendas, the
United Nations, the World Bank, non-governmental organizations, other international
organizations, and local governments requires adequate information about the location and
characteristics of deprived areas to “develop plans, monitor progress and consider how
existing programs can better address the specific vulnerabilities of different populations” [6].
Such information includes the growth of deprived areas; socioeconomic characteristics,
such as access to social services; and physical characteristics, such as the durability of
building materials. This information is necessary to plan coordinated citywide renewal and
development projects and to target poverty alleviation interventions [7].
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Effectively planning and monitoring specifically requires timely, accurate, and city-
wide data at the block or neighborhood scale. However, this information is rarely available
in many low- and middle-income countries (LMICs).

Existing data are often piecemeal about single communities, inaccurate, and divorced
from local context or they are outdated or aggregated at district or national level [8,9].
The four broad sources of data about deprived areas are produced by mostly siloed slum
mapping traditions: (1) censuses and/or household surveys, (2) field-based mapping,
(3) the manual digitization of areal/satellite imagery, and (4) the modeling of remotely
sensed imagery [10]. Censuses and/or household surveys collect socioeconomic indicators
that are used to characterize deprived households and are aggregated by district, city, or
all urban areas nationally. Not only is this type of data expensive and resource-intensive
to produce, but household-level deprivations (e.g., access to a private improved toilet)
are different from area-level deprivations (e.g., whether a public sewage system exists,
serves most/all households, and successfully treats all waste without leakage) [6]. Field-
based mapping is primarily conducted in a participatory manner, working with individual
communities to map their settlement [11]. For example, the map Kibera project in Nairobi
(Kenya) [12] and more than 7000 communities across Africa, Asia, and Latin America
within the Slum/Shack Dweller International network [13]. Community members collect
detailed area- and household-level data to jointly define challenges and resources and
use this information to plan and prioritize internal upgrading initiatives as well as to
advocate for basic public services. Although community-generated data are rich with
local context information, they are resource-intensive to collect, not scalable to every
deprived community, and have low temporal granularity. The manual digitization of
satellite imagery, for example in OpenStreetMap, by global volunteers or local experts
can produce some reliable information about citywide physical characteristics (e.g., roads
and building footprints), but these data are incomplete, especially in LMICs [14], and a
majority of the most relevant features (e.g., water taps or “slum” boundaries themselves) are
impossible to map accurately without intimate local context knowledge or field verification.

Similarly, machine learning models based on remote sensing can provide information
about many of the physical characteristics of deprived areas, including building and road
morphology and landcover [15,16], and they are cost-efficient compared to the methods
mentioned above. However, a major limitation is that remote sensing ignores important
socioeconomic indicators and requires some context knowledge and decent training data
to train accurate models [17].

The “Integrated Deprived Area Mapping System (IDEAMAPS)” Network was es-
tablished by members of these diverse slum mapping groups to integrate the strengths
of each approach to produce routine, consistent, accurate maps of deprived areas across
cities [18]. A key aspect of the project is to utilize open geospatial data and low-cost tools
that are scalable and transferable in multiple cities. The use of geospatial data for deprived
area mapping is yet to be fully exploited [19]. Major reasons relate to unstructured data,
data quality, data completeness, and varying spatial and temporal resolutions [14,17,20].
For example, a recent study shows that the Global Human Settlement population dataset
underestimates slum areas [21]. Consequently, very few studies have combined multiple
socioeconomic indicators to map deprived areas. Most studies have mainly focused on
the use of satellite images to map slum morphologies (see [15,22,23] for a more detailed
review). One notable work from Mahabir and colleagues combined multiple geospatial
socioeconomic indicators, including population density, real estate price, birth rates, ac-
cess to pit latrine, and places of worship, in order to map deprived areas in Kenya [20].
Other researchers have combined remote sensing and census data [24–26]. However, these
approaches are difficult to replicate in areas where spatial census data are unavailable.

The advancement of open geospatial data presents new opportunities to address de-
prived area mapping and account for the limitations of existing approaches [17,20]. Open
geospatial data are public or private digital data with an open license that guarantees
free access to data without limitation or few restrictions [27]. These sources of data are
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increasingly becoming available globally due to open data initiatives by governments,
NGOs, and private companies. For example, Meta and WorldPop provide high-resolution
geospatial data on population and demographics at a global scale [28,29]. Other geospatial
data include urban heat islands, OpenStreetMap, and Malaria Atlas [21,29,30]. Point-of-
interest data from OpenStreetMap can be used for creating accessibility features, including
proximity to infrastructure, such as health, schools, and employment opportunities [31].
The advantage of open geospatial datasets is that they guarantee free access, allowing for
the reuse and reproducibility of methods. They offer an alternative or complementary data
source to map and characterize deprived areas both physically and socially. They can poten-
tially provide new insight into deprived area living conditions by adding equally important
socioeconomic features often missing in remote sensing-based methods [15,17,22].

In this study, we harmonized and extracted physical and socioeconomic indicators
from open geospatial data to map deprived areas. We developed and tested a machine
learning model to map and characterize deprived areas in multiple cities and at a large
scale. The study operationalized the recently published IDEAMAPS domain of deprivation
frameworks to (i) identify relevant indicators and corresponding geospatial layers for
characterizing deprived areas, (ii) process the identified geospatial layers in a systematic
and consistent manner for machine learning modeling, and (iii) analyze the relative impor-
tance of the indicators for modeling. The IDEAMAPS domain of deprivation framework
provides a holistic perspective on social and physical characteristics that help to define
urban deprivation across a variety of contexts, including indicators from traditional sources
(e.g., surveys) and big data (e.g., social media). Yet, the framework has not been applied on
a large scale. The main contribution of this study includes:

• Landscape analysis to identify relevant indicators with corresponding geospatial data
that are globally available for modeling.

• Designed and tested machine learning models to predict and characterize deprived
areas in multiple cities and on a large scale.

• Analyzed the relative importance of indicators for global mapping. This allows us to
know the most relevant indicators as we aim for global mapping.

2. Study Area

The study was conducted in three Sub-Saharan African cities—Accra (Ghana), Lagos
(Nigeria), and Nairobi (Kenya) as shown in Figure 1. These were the cities that the IDEAMAPS
project focused on, and we have existing local networks providing us with reference data
and local context knowledge. The three cities also allow us to test across a variety of urban
morphological characteristics and social and environmental contexts. Moreover, they have
a large segment of the population in deprived living conditions [32–34]. City boundaries or
region of interest (ROI)—a spatial context that is of interest for the study—were defined using
the intersection of their administrative boundaries and the larger built-up area as defined
with WorldPop 100 × 100 m building footprint metrics [35,36], with an added 1 km buffer to
ensure the inclusion of peri-urban deprived areas and to test the scalability of our method.

Accra is a coastal city and the economic hub of Ghana, with a population of approx-
imately four million [37]. Unplanned urbanization has led to a housing backlog, with
34% of residents in the inner city (less than 5% of land area) living in slums [34]. Accra
has expanded to include suburbs such as Ashiaman, Tema, Kosoa, and Nasawan. We
chose an ROI of 2561 square kilometers to cover both the main city and the peri-urban
area. Lagos is a port city with wetlands covering 22% of the land area. In 2021, it was
estimated that over 20 million residents in Lagos live in slums [38]. We chose an ROI of
5638 square kilometers, which is larger than the main Lagos state administrative areas
covering 3345 square kilometers. Nairobi, the capital of Kenya, has approximately 60%
of residents living in slums [39]. The chosen ROI of 2006 square kilometers, which goes
beyond the administrative area, covering 695 square kilometers.
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a dataset ready for modeling. Phase 3 designed and tested a scalable and transferable ma-
chine learning model to predict deprived areas and assessed the accuracy of the model. 
Phase 4 analyzed the relative importance of the indicators used for modeling. 

Across all the phases, the team coordinated with the IDEAMAPS network, and ex-
perts engaged in urban deprivation-related works to share findings to highlight common-
ality and amplify the finding of the study. The experts were selected through purposive 
sampling and comprised a diverse group, including researchers from institutions such as 
Center for Urban and Environmental Research (CUER) of George Washington University, 
the Faculty of Geo-information Science and Earth Observation at the University of 
Twente, the Urban Big Data Center of the University of Glasgow, the University of Lagos, 
and the African Population and Health Research Center as well as experts from NGOs 
such as the Justice & Empowerment Initiatives in Nigeria and the People’s Dialogue in 
Ghana. 

Figure 1. Map shows the citywide boundary used for the study. The study area consists of three
Sub-Saharan cities—(1) Accra, Ghana; (2) Lagos, Nigeria; and (3) Nairobi, Kenya. Imagery source:
Google Satellite Image.

3. Materials and Methods

To build a scalable and transferable approach to map and characterize deprived areas
in multiple cities, a four-phase step with each phase building on the findings from the
previous was used (Figure 2). Phase 1 conceptualized an operational definition and relevant
indicators for area-based mapping that integrates the physical and social characteristics of
deprived areas based on the IDEAMAPS deprivation framework [40]. Phase 2 processed
identified geospatial layers in a consistent and systematic manner to integrate different data
sources with varying temporal and spatial resolution. This provides us with a dataset ready
for modeling. Phase 3 designed and tested a scalable and transferable machine learning
model to predict deprived areas and assessed the accuracy of the model. Phase 4 analyzed
the relative importance of the indicators used for modeling.
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Across all the phases, the team coordinated with the IDEAMAPS network, and experts
engaged in urban deprivation-related works to share findings to highlight commonality and
amplify the finding of the study. The experts were selected through purposive sampling
and comprised a diverse group, including researchers from institutions such as Center for
Urban and Environmental Research (CUER) of George Washington University, the Faculty
of Geo-information Science and Earth Observation at the University of Twente, the Urban
Big Data Center of the University of Glasgow, the University of Lagos, and the African
Population and Health Research Center as well as experts from NGOs such as the Justice &
Empowerment Initiatives in Nigeria and the People’s Dialogue in Ghana.

3.1. Conceptualizing Deprived Areas

The challenge of the global mapping of deprived areas starts with conceptualizing an
operational definition. The often-used terminology is a slum or “informal settlements”.
These terms are conceptually ambiguous. They have different definitions and are known
by different local names for several reasons, such as cultural context and available building
materials and infrastructure [41], as can be seen, for example, in Zongo in Ghana, Favelas
in Rio De Janeiro, Kachi Abadi in Karachi, and Vijiji in Nairobi. UN Habitat defines
slums at the household level. A slum is any household that lacks one of the following:
access to water, improved sanitation, durable housing, sufficient living space, and tenure
security [42]. The slum household definition ignores area-based risks such as crime, flood
risks, and lack of social amenities that residents face that occur outside of the household.
Other associated problems are that slums are conceptually relative as every country has its
own definition of slums [10], and it is widely criticized as it can denote bad connotations
for stigmatization and forced eviction [18,43].

Due to the conceptual complexities of slums, the study draws inspiration from existing
studies on measuring deprivation or “deprived area” at the area-based level, particu-
larly Thomson and colleagues [18]. The term “deprived area” is widely used by Earth
observation (EO) scientists as it focuses on area-level deprivation [10]. EO scientists use
morphological characteristics, including building size, density, and settlement pattern, to
distinguish deprived areas from non-deprived areas [44]. For this study, deprived areas
are defined as urban spaces that lack physical and social assets, is often a result of un-
planned urbanization, is prone to disaster, and is characterized by poverty and substandard
living conditions. This operation definition integrates the physical and social characteris-
tics of deprived areas. It provides a broad view of deprived areas and new insight into
their characteristics.

Drawing from the IDEAMAPS deprivation framework [40], we identified six domains—
(1) physical hazards, (2) unplanned urbanization, (3) population characteristics and housing,
(4) social hazards, and (5) facilities and services. Physical hazard relates to the exposure to
risk. Indicators include flood zones, steep slopes, pollution, lack of vegetation, heat stress,
proximity to roads, wetlands, rivers, railways, hazards industry, and high-voltage power
lines. Unplanned urbanization is associated with slum-like characteristics such as irregular
settlement shape and patterns, high building density, lack of roads, small building size, and poor
building materials. Population characteristics and housing relate to demographic and health
characteristics. Indicators include high population count/density, poor housing conditions, and
ethnicity. Social hazards relate to the social risk of a neighborhood. Indicators include high
crimes, unsafe neighborhoods, unmet needs for family planning, risk of disease outbreaks, and
ethnolinguistic groups. Facilities and services relate to a dweller’s access to infrastructure and
social services. Indicators include access to health, water and sanitation, electricity, financial
services, education, and recreational facilities.

3.2. Geospatial Indicators

Based on suggestions by experts, we drew on recent open geospatial data that are avail-
able for the three cities over a timeframe spanning from 2010 to 2022. Using a snowballing
approach, we expanded the list of data. In addition, we conducted a targeted search on
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organizations known to be interested in deprivation. Such organizations include WorldPop,
CIESIN, and NASA. We tried to find the most recent data with complete coverage for the
entire study area. Table 1 presents the indicator, data source, year, and description.

Table 1. Geospatial indicators and their description. In blue are the user-defined features in
Section 3.4 below.

Domains Indicator Data Source Year Description Original Spatial
Resolution

1 Facilities and service Distance to health
facility

Population Health Unit,
Kenya Medical Research
Institute—Wellcome Trust
Research Programme

2019 Distance to health facility -

2 Facilities and service Distance to major road OpenStreetMap and
WorldPop 2016 Distance to major road 100 m

3 Facilities and service Distance to road
intersection

OpenStreetMap and
WorldPop 2016 Distance to major road

intersections 100 m

4 Facilities and service Distance to major
waterway

OpenStreetMap and
WorldPop 2016 Distance to major waterways 100 m

5 Facilities and service Distance to minority
religious facility OpenStreetMap 2019

Distance to minority religious
facility (compared to city
average).

-

6 Facilities and service Distance to religious
facilities OpenStreetMap 2019 Distance to religious facilities -

7 Facilities and service Distance to government
office OpenStreetMap 2022 Distance to government office -

8 Facilities and service Access to Finance HDX and OpenStreetMap 2020 Distance to finance -

9 Facilities and service Access to School HDX and OpenStreetMap 2020 Distance to education facility -

10 Housing Improve housing
prevalence The Malaria Atlas Project 2015 Improved housing prevalence 5 km

11 Physical hazard Distance to river WWF HydroSHEDS 2007 Distance to river 15 arc-second
resolution

12 Physical hazard Night light WorldPop 2012–2016 VIIRS night-time lights between
2012 and 2016 100 m

13 Physical hazard Distance to aquatic
vegetation WorldPop 2015 Distance to ESA-CCI-LC aquatic

vegetation area edges 100 m

14 Physical hazard Distance to artificial
surface WorldPop 2015 Distance to ESA-CCI-LC artificial

surface edges 100 m

15 Physical hazard Distance to bare area WorldPop 2015 Distance to ESA-CCI-LC bare area
edge 100 m

16 Physical hazard Distance to cultivated
area WorldPop 2015 Distance to ESA-CCI-LC

cultivated area edges 2015 100 m

17 Physical hazard Distance to herbaceous
area WorldPop 2015 Distance to ESA-CCI-LC

herbaceous area edges 2015 100 m

18 Physical hazard Distance to inland water WorldPop 2018 Distance to ESA-CCI-LC inland
water (2000–2018) 100 m

19 Physical hazard Distance to open water
coastline WorldPop 2020 Distance to open-water coastline 100 m

20 Physical hazard Distance to shrub area WorldPop 2015 Distance to ESA-CCI-LC shrub
area edges 2015 100 m

21 Physical hazard Distance to sparse
vegetation WorldPop 2015 Distance to ESA-CCI-LC sparse

vegetation area edges 2015 100 m

22 Physical hazard Distance to woody tree
area WorldPop 2015 Distance to ESA-CCI-LC

woody-tree area edges 2015 100 m

23 Physical hazard Slope WorldPop 2018 STRM -based slope 100 m

24 Physical hazard Water stress World Resource Institute
(WRI) 2010 Baseline water stress score 5 × 5 arc minute

grid cells

25 Physical hazard Ground water stress World Resource Institute
(WRI) 2012 Ground water stress score 5 × 5 arc minute

grid cells
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Table 1. Cont.

Domains Indicator Data Source Year Description Original Spatial
Resolution

26 Physical hazard Hazard index UNEP/DEWA/GRID-
Europe 2011

This dataset includes an estimate
of the global risk induced by
multiple hazards (tropical cyclone,
flood and landslide induced by
precipitations). Unit is estimated
risk index from 1 (low) to
5 (extreme). It was modeled using
global data.

1 km

27 Physical hazard Air pollution
NASA Socioeconomic Data
and Applications Center
(SEDAC)

2016

The annual concentrations
(micrograms per cubic meter) of
ground-level fine particulate
matter (PM2.5) with dust and
sea-salt removed in 2016

50 m

28 Physical hazard Biodiversity GLOBIO 2015 Biodiversity (mean species
abundance) 10 arc-second

29 Physical hazard Land cover 2 GlobeLand30 2019

GlobeLand30 includes 10 land
cover classes in total, namely
cultivated land, forest, grassland,
shrubland, wetland, water bodies,
tundra, artificial surface, bare
land, perennial snow and ice.

30 m

30 Physical hazard Normalized Difference
Vegetation Index

Desert Research Center,
University of Idaho 2019 Maximum Normalized Difference

Vegetation Index 30 m

31 Physical hazard Land cover 1 Copernicus Global Land
Service 2019

Annual 100 m global land cover
maps of 2015 to 2019, generated
by Copernicus Global Land
service

100 m

32 Physical hazard Maximum ground
temperature Climatology Lab 2019 Maximum ground temperature 4 km

33 Physical hazard Multihazard
distribution CIESIN 2005

The Global Multihazard
Frequency and Distribution is a
2.5 min grid presenting a simple
multihazard index based solely on
summated single-hazard decile
values.

2.5 min grid

34 Physical hazard Climate risk CHIRPS 2020
Average annual climate risk.
Rainfall Estimates from Rain
Gauge and Satellite Observations

0.05 × 0.05 degree

35 Population Population count WorldPop 2020
Estimated Population Count 2020
in 100 m grid
(WorldPop-UNadj-constrained)

100 m

36 Population Population count Meta & CIESIN 2018 Estimated Population Count 2018
(HRSL-Facebook) 1 arc-second

37 Social hazard Pregnancy rate WorldPop 2017 Estimated distributions of
pregnancies 100 m

38 Social hazard
Children with
Plasmodium
falciparum parasite rate

The Malaria Atlas Project 2017

Mean Plasmodium falciparum
parasite rate in 2–10 year olds.
Children with Plasmodium
falciparum parasite rate

5 km

39 Social hazard Pregnant women
antenatal care visit Spatial Data Repository 2014- 2016

DHS modeled surface 2014.
Percentage of women who had a
live birth in the five (or three)
years preceding the survey who
had 4+ antenatal care visits.

5 km

40 Social hazard Child stunted Spatial Data Repository 2014–2016

DHS modeled surface 2014.
Percentage of children stunted
(below −2 SD of height for age
according to the WHO standard).

5 km

41 Social hazard DPT3 vaccine Spatial Data Repository 2014–2016

DHS modeled surface 2018.
Percentage of children
12–23 months who had received
DPT3 vaccination.

5 km

42 Social hazard Delivery at health
Facility Spatial Data Repository 2014–2016

DHS modeled surface 2014.
Percentage of live births in the
five (or three) years preceding the
survey delivered at a
health facility.

5 km
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Table 1. Cont.

Domains Indicator Data Source Year Description Original Spatial
Resolution

43 Social hazard Household with
improve water source Spatial Data Repository 2014

DHS modeled surface 2018.
Percentage of the de jure population
living in households whose main
source of drinking water is an
improved source.

5 km

44 Social hazard
Household with
insecticide-treated
bednet

Spatial Data Repository 2014

DHS modeled surface 2018.
Percentage of the de facto household
population who could sleep under
an ITN if each ITN in the household
were used by up to two people.

5 km

45 Social hazard Men literature rate Spatial Data Repository 2014 DHS modeled surface 2018.
Percentage of men who are literate. 5 km

46 Social hazard Children receiving
measles vaccine Spatial Data Repository 2014

DHS modeled surface 2014.
Percentage of children 12–23 months
who had received Measles
vaccination.

5 km

47 Social hazard Household using open
defecation Spatial Data Repository 2014

DHS modeled surface 2014.
Percentage of the de jure population
living in households whose main
type of toilet facility is no facility
(open defecation).

5 km

48 Social hazard Unmet need for family
planning Spatial Data Repository 2014

DHS modeled surface 2014.
Percentage of currently married or
in union women with an unmet
need for family planning.

5 km

49 Social hazard Women literacy rate Spatial Data Repository 2016
DHS modeled surface 2014.
Percentage of women who are
literate.

5 km

50 Social hazard Ethno-linguistic group IMB 2020 Number of ethno-linguistic groups
in 100 m cell. 100 m

51 unplanned
urbanization Building count WorldPop 2020 Counts of buildings that fall within

100 m grid cell. 100 m

52 unplanned
urbanization Building density WorldPop 2020 Measure of the number of buildings

per grid cell area. 100 m

53 unplanned
urbanization

Rural/urban
classification WorldPop 2018 Urban/rural classification based on

building patterns in that area. 100 m

3.3. Geospatial Layer Production

Geospatial layers were processed and resampled to a 3 arc-second (0.00083333333 decimal
degree or approximately 100 m) spatial resolution to harmonize data for machine learning
modeling. The 3 arc-second pixel grid offers a reasonable spatial resolution that allows the
rationalization and harmonization of datasets with varying resolutions useful for modeling
and analysis. It allows a balance between spatial accuracy and data integration from different
sources [29]. It also offers a reasonable storage and computational overhead for large area and
global scale analysis [45]. In addition, it is crucial to acknowledge that mapping deprived
areas is a sociotechnical problem fraught with the risk of unintended consequences. Therefore,
the deliberate choice of 3 arc-second adheres to ethical considerations by minimizing the
identification of areas at-risk for eviction.

The following criteria were used to select geospatial data to be included.

1. Must cover the region of interest.
2. Must be either vector or raster spatial data.
3. Must be as fine a spatial resolution as possible, usually 100 m or finer.
4. Temporal resolution must be as close as possible.
5. Must be available for all three cities.

Figure 3 shows the workflow for standardizing and integrating geospatial layers. It
involves standardizing and resampling both raster and vector geospatial data to achieve a
uniform 100 m spatial resolution. For raster data, we standardized and resampled datasets
to a grid at 100 m spatial resolution.
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For vector data (point, polyline, polygon), we used aggregation (e.g., count or density)
and accessibility methods (e.g., Euclidean distance measurement). The study used a similar
workflow as discussed in [45,46]. Dense polygons, such as buildings, used the density
measurement; sparse polylines, such as rivers and primary roads, used Euclidean distance
measures; sparse points of interest, such as government offices, places of worship, schools,
and banks, used Euclidean distance measures; and dense points or polyline, such as road
intersection nodes and secondary and tertiary roads, used density and count measures. The
vector outputs were rasterized and resampled to the same grid at 100 m spatial resolution.
All data were reprojected to the same coordinate reference system (Mollweide projection)
to ensure accurate overlay.

3.4. Input Features for Modeling

We experimented with two sets of input features. The first input feature set used all
53 features. This was to test models’ ability to make predictions with large input data sets
with varying ranges of quality. It was also to identify new insights about deprived areas
and to determine whether all of these data were needed.

The second set was a manual selection of 11 features after a detailed exploratory
analysis by experts and a visual assessment of the data quality for the ROIs. These are
called user-defined features in the rest of the analysis. The user-defined features include
building count, building density, climate risk (rainfall), improved housing, maximum
ground temperature, population count, slope, urban/rural classification, and night-time
light. The choice of manual selection of features allowed slum experts to leverage their
expertise and understanding of the problem. Manual selection helps to select features that
are informative and high quality and lead to more interpretable models. We acknowledge
that ML feature selection approaches have received much attention currently [47]. However,
we also observed that training samples deriving mainly from the inner city could potentially
introduce some biases in the feature selection process, given our goal of mapping a large
area. Also, a large portions of our ROI training and validation data were derived from
outside the inner cities.



Urban Sci. 2023, 7, 116 10 of 23

3.5. Classification Scheme and Sampling

The study used a binary classification scheme—deprived and non-deprived. The
deprived class includes “slums”, informal settlements, and areas with deprived living
conditions. Reference data for the deprived class were obtained from several sources
with different operation definitions and temporal resolution. These sources include Slum
Dwellers International, Field Data from IDEAMAPS, Frontier Development Lab, and Ma-
habir GitHub repository. Therefore, the visual assessment by slum mapping experts using
Google Satellite Image and Google Street View Image, together with local expert knowledge,
were used to manually create additional deprived class reference data. The digitization was
implemented in Google Earth Pro—a free software that allows the visualization, assessment,
creation and overlay of GIS data [48]. Only areas of agreement between slum experts and
local experts were used for modeling.

The non-deprived class includes non-deprived built-up areas such as formal residen-
tial, commercial, industrial, recreational. The non-built-up class includes vegetation, open
spaces, waterbodies, undeveloped lands, forest, and agricultural lands. Reference data
were mainly obtained from OpenStreetMap (OSM). Layers from OSM were overlaid on
Google Satellite images and visually assessed to ensure that only accuracy samples were
used. All sampled data were obtained in 2022.

We used tiles of 600 × 600 m for Lagos, 800 × 800 m for Nairobi and 2000 × 2000 m
for Accra to create training samples. These tiles were purposely taken from different areas
of the city, capturing varying deprived and non-deprived types in relative proportions. The
tile sizes vary due to the different sizes of deprived areas across cities and to minimize class
imbalance and the impact of spatial autocorrelation [49]. The samples were rasterized to a
grid of 100 m spatial resolution. Table 2 shows the 100 m pixel counts of reference data for
each city.

Table 2. Pixel counts of reference data for each city.

Class Accra Lagos Nairobi

Deprived 1740 480 1300
Non-deprived 5080 600 2650
Total 6820 1080 3950

Random sampling was used to split tiles into training, validation, and testing to ensure
unbiased estimation [50]. We randomly split the tiles into 60% for training and 40% for
testing to test the generalizability of the model. We further split training tiles into 70% for
training and 30% for validation. The validation tiles were used for tuning hyper-parameters
to optimize models. Meanwhile, the test dataset was never seen by the models to ensure
that the statistical results presented later were true to the real world.

For the generalized model, stratified random sampling was used to split tiles into
training, validation, and testing. Stratification was carried out at the city level with 60%
for training and 40% for testing. We further split training tiles to 70% for training and 30%
for validation.

3.6. Modeling

Three machine learning algorithms were used for the classification task—random
forest (RF) [51], multi-layer perceptron (MLP) [52] and extreme gradient boosting (XG-
Boost) [53]. These classification methods have achieved high predictive accuracy in land use
mapping and slum mapping [54,55]. RF requires the definition of number of trees (ntree)
and number of input features (mtry) to be considered at each node split. Random forest is
relatively user-friendly and tends to achieve high accuracy in classification tasks [56]. It can
handle large data dimensionality and deal with overfitting. MLP is a feedforward neural
network that transmits from input layer to output layer in a forward direction [57]. It is
relatively simple to use with fewer parameters and can work on large data sets. XGBoost
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is a greedy function approximation, thus minimizing errors and able to capture complex
patterns in data [58]. It has been proven to provide state-of-the-art results on many classifi-
cation tasks and is suitable for handling sparse data [59]. Traditional boosting algorithms
are computationally slow and often not suitable for large-area mapping. XGBoost has
bridged the gap. They are efficient and flexible for processing large datasets [53]. They are
relatively user-friendly, require few parameters, are easy to obtain features of importance,
and have high prediction accuracy. Moreover, they are open-source and computationally
fast, making them suitable for large-area mapping.

Models were trained and tested in each individual city. This helps to assess the
scalability of models for large-area applications. Second, we tested a city-to-city model to
assess how models perform in new geographical, morphological, social, and environmental
contexts. Lastly, we developed a generalized model where training samples from each of
the three cities were combined and used for training and evaluation. This allows us to
assess our ability to map across individual cities, assuming we have training samples from
each city.

3.7. Model Evaluation

To assess the classification performance, both qualitative and quantitative measures
were employed. The quality measure includes a thorough visual inspection of the classifi-
cation by the research team. The classified maps were overlaid on high-resolution satellite
images from Google and visually inspected. We visually assessed the model’s ability to
map the identified deprived types in different areas where we have limited reference data.

To ensure consistency in the visual assessment, we collaborated with slum experts
to define five deprived types. These deprived types integrate ground-level information
from Google Street View and high-resolution aerial imagery from Google Earth Pro [48].
These deprived areas are as follows: unstructured large, structured large, unstructured
small, unstructured mix, and pocket slums. Briefly, unstructured large areas have irregular
patterns with relatively large roofs, mostly iron sheets, usually containing multifamily
house types and concrete building material (e.g., for walls). Structured large areas have
regular patterns with large roofs, mainly iron sheets, multifamily house types and concrete
materials. Unstructured small areas have irregular patterns with small roofs, mainly iron
sheets, detached houses, iron sheets and wooden walling materials. Unstructured mix areas
have irregular patterns with a mix of large and small roofs, mix of multi-family, detached,
and semi-detached house types, a mix of concrete, iron sheets, and wooden walling materi-
als. Pocket slums have irregular patterns with very small building types (usually kiosks),
temporal in nature, which comprise iron sheet and wood building materials. Details on the
deprivation types can be found in [60].

The quantitative measure includes precision, recall, deprived F1-score, and macro-F1-
score. Recall measures how efficiently the model retrieves a class defined as deprived [61].
Precision measures the reliability of deprived areas that are detected [62]. The macro-
F1-score calculates the unweighted mean of the F1 scores calculated per class, while the
F1-score represents the harmonic mean between the precision and recall of the deprived
class [63]. These metrics were used to minimize the class imbalance effect and the accurate
assessment of the independent test set. A default 50:50 probability threshold was used for
the quantitative assessment.

3.8. Analysis of Importance Features

The study investigated which features are important and how much they contribute to
the model. This was carried out to determine which features to continue collecting in order
to support global deprived area mapping. The study used Gini impurity for computing
important features and analyzed their relative contributions. Gini impurity measures the
degree of how often a randomly chosen sample from the target class would be incorrectly
classified if it were randomly labeled according to the distribution of the labels in the
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subset [51]. It has been used in several machine learning urban classification tasks [47]. It
provides good precise estimations with low model assessments.

4. Results

In the results section, we first present the quantitative error metrics on the testing set,
then a visual assessment of best performing models is described, and lastly, the important
features and how they affect the model are analyzed.

4.1. Quantitative Model Performance
4.1.1. Individual City

The study first trains a model for each city to reflects the unique urban fabric. Table 3
provides the precision, recall, F1-deprived, and F1-macro scores for each city, model, and
input feature set on the test dataset. RF achieved the best classification score for all the
cities except for Lagos in all features model. F1-deprived scores are generally high in Accra
and Nairobi with over 72%. Lagos achieved the lowest F1-deprived score of 65%. The
poor performance of Lagos may be due to the widespread socioeconomic deprivation
throughout the entire city. Most of the city of Lagos is built on wetlands and lacks services
and infrastructure [38]. It is worth noting that the overall performance of using all features
and user-defined features have little difference in terms of statistical accuracy. This implies
that using a small input feature dataset can also achieve a good performance compared to
using all features.

Table 3. Metrics for individual models.

City Input Feature Set Model Precision Recall F1-Deprived F1-Macro

Accra All RF 0.68 0.88 0.77 0.74
MLP 0.64 0.92 0.75 0.70
XGBoost 0.79 0.47 0.59 0.73

User-defined RF 0.71 0.84 0.77 0.78
MLP 0.67 0.76 0.71 0.78
XGBoost 0.78 0.59 0.67 0.62

Lagos All RF 0.80 0.51 0.62 0.72
MLP 0.84 0.53 0.65 0.72
XGBoost 0.81 0.33 0.47 0.62

User-defined RF 0.45 0.80 0.86 0.71
MLP 0.57 0.80 0.67 0.72
XGBoost 0.98 0.53 0.70 0.78

Nairobi All RF 0.81 0.64 0.72 0.78
MLP 0.56 0.36 0.44 0.73
XGBoost 0.79 0.46 0.58 0.68

User-defined RF 0.78 0.76 0.77 0.78
MLP 0.74 0.73 0.73 0.73
XGBoost 0.77 0.73 0.74 0.74

4.1.2. City to City Model

In this step, we examined how a model trained in one city can detect deprived areas
in other cities. This was carried out by taking the models derived for each city as described
previously and then examining the results of these models’ using data for the other cities.
This allows us to determine the spatial transferability of models to other cities. Table 4
provides the results of the input feature set and each classifier. Except for Nairobi to
Lagos, models trained in one city were able to predict deprived areas in another city with
an F1-deprived score of over 60%. We observed that user-defined features achieved the
highest FI deprived in all the cities. This indicates that using a few good input feature
datasets is crucial to the performance of machine learning in terms of accuracy. Moreover,
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it may be confusing to models when we use too many features with limited training and
validation data to fine-tune them. The model trained in Lagos was able to predict deprived
areas in Nairobi but not the reverse. The model trained in Nairobi achieved the lowest F1
deprived score (57%) when tested on Lagos. This indicates that models are sensitive to the
physical and socioeconomic features of each city and require a detailed understating of
these features to improve model results.

Table 4. City-to-city model.

City Test City Input Feature Set Model Precision Recall F1-Deprived F1-Macro

Accra Lagos All RF 0.89 0.37 0.52 0.66
MLP 0.39 0.40 0.40 0.47
XGBoost 0.82 0.38 0.52 0.65

Lagos User-defined RF 0.78 0.56 0.65 0.73
MLP 0.95 0.01 0.02 0.38
XGBoost 0.81 0.39 0.52 0.70

Nairobi All RF 0.80 0.48 0.60 0.76
MLP 0.81 0.01 0.02 0.40
XGBoost 0.69 0.58 0.63 0.72

Nairobi User-defined RF 0.78 0.54 0.64 0.73
MLP 0.31 0.02 0.04 0.38
XGBoost 0.84 0.24 0.37 0.59

Lagos Accra All RF 0.52 0.53 0.52 0.69
MLP 0.40 0.64 0.50 0.64
XGBoost 0.46 0.87 0.61 0.70

Accra User-defined RF 0.50 0.92 0.64 0.73
MLP 0.43 0.55 0.48 0.65
XGBoost 0.48 0.85 0.62 0.71

Nairobi All RF 0.78 0.48 0.59 0.71
MLP 0.39 0.62 0.48 0.62
XGBoost 0.73 0.63 0.68 0.75

Nairobi User-defined RF 0.68 0.70 0.69 0.75
MLP 0.95 0.02 0.04 0.40
XGBoost 0.66 0.70 0.68 0.74

Nairobi Accra All RF 0.64 0.61 0.63 0.76
MLP 0.31 0.34 0.32 0.55
XGBoost 0.27 0.49 0.35 0.51

Accra User-defined RF 0.44 0.87 0.59 0.68
MLP 0.30 0.61 0.40 0.53
XGBoost 0.36 0.17 0.23 0.53

Lagos All RF 0.73 0.07 0.13 0.43
MLP 0.34 0.02 0.09 0.37
XGBoost 0.50 0.24 0.33 0.51

Lagos User-defined RF 0.60 0.25 0.35 0.54
MLP 0.43 0.87 0.57 0.42
XGBoost 0.52 0.07 0.13 0.43

4.1.3. Generalized Model

Samples from each of the three cities were used to create one generalized model that
was then evaluated in each of the three cities. This was carried out in order to examine how
models perform when we incorporate samples from different geographic regions. Table 5
provides the recall, precision, F1-dperived, and F1-macro scores for each classifier and
input feature set on the test dataset.
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Table 5. Generalized model.

Input Feature Model Precision Recall F1-Deprived F1-Macro

Accra All RF 0.77 0.84 0.80 0.89
MLP 0.50 0.58 0.54 0.74
XGBoost 0.84 0.24 0.37 0.59

User-defined RF 0.81 0.86 0.84 0.91
MLP 0.67 0.70 0.69 0.82
XGBoost 0.78 0.48 0.59 0.71

Lagos All RF 0.42 0.99 0.59 0.63
MLP 0.47 0.65 0.54 0.67
XGBoost 0.49 0.88 0.63 0.72

User-defined RF 0.43 0.96 0.59 0.64
MLP 0.47 0.88 0.61 0.71
XGBoost 0.42 0.91 0.58 0.64

Nairobi All RF 0.68 0.92 0.78 0.73
MLP 0.72 0.69 0.70 0.71
XGBoost 0.76 0.85 0.82 0.79

User-defined RF 0.71 0.88 0.79 0.76
MLP 0.69 0.87 0.77 0.74
XGBoost 0.75 0.78 0.77 0.76

Surprisingly, we observed that the generalized model has a marginally higher F1-
deprived score for Accra and Nairobi compared to the individual city models for both the
user and all feature sets. These results suggest that there are significant commonalities
of the deprived area characteristics with the input features that may have contributed
to improved performance. This may indicate that there are strong similarities between
cities and that the increase in training data by combining the cities together allows the
model to perform better. While it improved for these two cities, the generalized model
performed poorly for Lagos, with the highest F1-deprived score of 63% (all features). This
can be associated with the limited training samples for Lagos city and differences in slum
characteristics, which require different features to map these slums.

4.2. Qualitative Assessment

The qualitative assessment focused on the generalized models because they achieve
the best results, and we aim for a scalable and transferable approach. The selected machine
learning algorithms are capable of predicting the probability of class categorization. Probability
is the measure of the level of certainty of the prediction [64]. To obtain definite classifications
of deprived and non-deprived, we fine-tuned the best threshold value for use. Fine-tuning the
threshold was important for classification problems that have class imbalances, as the default
0.5 split can result in poor performance. Therefore, we defined the threshold for a city using
the predicted probability values. As shown in Table 6, each city has a different threshold that
better captures more deprived areas. We observed that a high threshold of over 0.7 was used
for Accra and Lagos, while a low threshold was used for Nairobi. This could indicate that the
model was less certain on deprived class in Nairobi compared to Accra and Lagos.

In general, the model strongly detected deprived areas compared to the reference data
(Figures 4–6). Most interestingly, the model was able to differentiate between deprived
areas from dense markets. This is an important finding as most studies using only satellite
images fail to distinguish them because they have similar physical appearances [16,32,65].
Moreover, the model was able to map deprived areas in the suburbs. However, these areas
will need field investigation since they have a unique morphological appearance compared
to those in the inner city, where we have the majority of our reference data. However, we
observed over-prediction for all cities (especially Lagos) for both all and user-defined features.
The confusion between high-density residential buildings in close proximity to deprived
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areas contributed to the majority of the overprediction. Moreover, DHS data aggregated
at the enumeration area might have contributed to the over-prediction. DHS data might
introduce a lot of noise because of displacement. We created an interactive map (available at
https://cuer.shinyapps.io/IDEAMAPS/ (accessed on 31 October 2023)) for visualization.

Table 6. Classification threshold.

City Input Feature Set Threshold

Accra All 0.67
User-defined 0.75

Lagos All 0.69
User-defined 0.85

Nairobi All 0.57
User-defined 0.55
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We also assessed the model’s performance to detect the deprived types (see Figure 7).
Except for Lagos, large structured, deprived types were detected in Accra and Nairobi.
Unexpectedly, models detected pocket slums in all the three cities. The Lagos model missed
unstructured deprived mixed types due to the confusion of temporal structure, permanent
structures and vegetation.
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4.3. Analysis of Important Features

We calculated the Gini impurity to examine the important features and their contribu-
tions to the model, providing insights into how the model attributes different features to
outputs. Figures 8 and 9 display the top 11 ranked features from the best-performing mod-
els. The feature importance score ranges from 0 to 1, with a high score indicating a strong
impact on the model’s predictions and a low score indicating little impact. Figures 8 and 9
show the individual city models and generalized models, respectively.
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Figure 9. Generalized model features of importance (label description in Table 1).

Building density and count were highest in all cities, followed by NDVI and population
for both all and user-defined features. These were the most common features across cities,
similar to other studies [15]. Climate risk was also noted to be important in all cities. Each
city tended to give different scores for every other feature. This suggests that there may be
some common characteristics of deprived areas across cities, but each city also has different
levels of socio-economic problems.

5. Discussion

This paper provides empirical evidence that open geospatial data and machine learn-
ing can provide high-resolution maps and characteristics of deprived areas. Our ML-based
approach to mapping deprived areas is both scalable and transferable and could be used to
generate high-resolution maps in cities using commonly available open geospatial data.
Results suggest that open geospatial data allow for the modeling and understanding of
many key physical and social characteristics of deprived areas across cities, providing a
more holistic view of deprived areas, which has been a major criticism of existing Earth
observation-based methods. To the best of our knowledge, our study is the first to extend
deprived area mapping to both dense and less dense peri-urban areas using open geospatial
data. These peri-urban areas are experiencing rapid urban growth and will be the future
growth areas of these cities.

In contrast to other studies that rely on commercial datasets, our approach uses only
openly available data and is nearly costless to scale across cities. Our model’s accuracy,
if not higher, is similar compared to other studies using proprietary commercial datasets.
Accuracy assessment across all cities showed that open geospatial data are promising for
generalizing deprived area mapping.

Notably, we have shown that our model’s predictive power declined modestly (over
65% F1 score) when a model trained in one city is used to predict in another city. In spite of
the differences in deprived area characteristics, model-derived features appear to identify
commonalities across cities. This suggests that our approach could fill large data gaps due
to poor survey coverage and could provide a crude estimate of deprived areas with little
information about a city.

The generalized model using training samples from all the cities slightly improved the
model’s accuracy for Accra and Nairobi compared to each individual city. This indicates
that these cities may have similar urban morphologies and that the models can learn from
each of the cities to improve the overall results. This is encouraging as it indicates that
there may be ways to stratify cities and use training data from one city to map another
based on the morphological area training samples that they are derived from. Studies
using satellite imagery often conclude that the large diversity of deprived areas in each
city complicates modeling, thus leading to low performance [54,62]. We suspect the low
variance in the input features of our model may have contributed to these results due to
the general commonalities across cities.
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The model performance of all features and user-defined were close for the individual
city. However, the user-defined features achieved moderately high results in the city-to-city
model, indicating the relevance of small input features for modeling. It also shows how
too many features may be confusing, especially with limited training and validation data
for optimization.

While our results are promising, this approach has important limitations. Understand-
ing the temporal trends of deprived area characteristics is very important for researchers
and policymakers to plan interventions and monitor progress. However, open data often
have low temporal resolutions and are only available in specific cities or countries. More-
over, we have not yet been able to evaluate the model’s ability to predict changes over time.
The advance in remote sensing data (e.g., freely available Sentinel-2) can be combined with
open geospatial data to map temporal changes. Satellite images can provide time series
data that could possibly be used to complement socioeconomic indicators obtained from
open geospatial data.

Furthermore, most of the reference data were derived from the inner cities and are
limited. It was difficult to judge whether the detected deprived areas in the model in the
peri-urban were actually reflective of what was actually on the ground. Future work will
involve visiting and investigate these areas and gather more data for training, as there is
relatively little regarding the number of features and complexity of models. The unique
intra-urban diversity of deprived areas will require more training data that cover all the
dynamics, both in the center city and in the suburbs.

Peri-urban areas have unique morphological and socio-cultural characteristics that
require detailed investigation. We observed in the study that deprived areas in the inner
city are very dense with less than 1% of areas with vegetation. Peri-urban areas tend to
have a higher vegetation mix (between 10–20% vegetation). Future works will investigate
these unique characteristics and develop more robust models.

This study assumes that our features were representative of the temporal resolution
because urban areas do not change rapidly. The time interval of the data was 10 years.
While this is reasonable, we acknowledge that the temporal differences might impact the
model’s performance. For example, evicted slums were not accounted for. It is worth noting
that inherent errors in open geospatial data will propagate into the model, increasing the
complexities of modeling.

6. Conclusions

The study has demonstrated that open geospatial data have the potential for mapping
deprived areas. Our approach has a broad application potential across many scientific
fields and may be immediately useful to inexpensively produce high-resolution maps of
deprived areas to support local governments and international organizations in planning
and monitoring progress towards SDG 11. Open geospatial data, by definition, are free
and open, which allows other people to reproduce the results. The proposed approach
combines physical and social characteristics, providing a broad view of deprived areas. Our
result from the generalized model shows the ability to map at a large scale and in multiple
cities. While open geospatial data has been proven to be capable of mapping deprived
areas, inherent errors in the dataset potentially affect the model’s performance. The study
serves as an initial point to develop machine learning-based methods that combine physical
and social characteristics of deprived areas beyond proof-of-concept.
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