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Abstract: The winter storm Uri that occurred in February 2021 affected many regions in Canada,
the United States, and Mexico. The State of Texas was severely impacted due to the failure in the
electricity supply infrastructure compounded by its limited connectivity to other grid systems in
the United States. The georeferenced estimation of the storm’s impact is crucial for response and
recovery. However, such information was not available until several months afterward, mainly due
to the time-consuming and costly assessment processes. The latency to provide timely information
particularly impacted people in the economically disadvantaged communities, who lack resources to
ameliorate the impact of the storm. This work explores the potential for disaster impact estimation
based on the analysis of instant social media content, which can provide actionable information to
assist first responders, volunteers, governments, and the general public. In our prototype, a deep
neural network (DNN) uses geolocated social media content (texts, images, and videos) to provide
monetary assessments of the damage at zip code level caused by Uri, achieving up to 70% accuracy.
In addition, the performance analysis across geographical regions shows that the fully trained model
is able to estimate the damage for economically disadvantaged regions, such as West Texas. Our
methods have the potential to promote social equity by guiding the deployment or recovery resources
to the regions where it is needed based on damage assessment.

Keywords: Texas Winter Storm Uri; deep neural network; damage estimation; social media; natural
language processing; geographic information system

1. Introduction

The severe Winter Storm Uri occurred during 11–21 February 2021, causing power
outages across the State of Texas. It was declared a national disaster in the US, with the
Federal Emergency Management Agency (FEMA) coordinating the federal government
response. Texas was severely impacted due to the failure in the electricity supply infras-
tructure compounded by its limited connectivity to other grid systems in the United States.
Loss of electricity supply affected 10 million people directly, with cascading failures in heat,
water, transportation, and food supply, among others [1,2]. In the aftermath, the monetary
damage assessment across communities is crucial for efficient and equitable allocation of
resources for response and recovery. However, this assessment has still not been widely
available months after the event, due to the resource-demanding and time-consuming
preliminary damage assessment (PDA) procedures including self-reporting, onsite surveys,
and insurance claims [3]. Although some insurance organizations, such as the Insurance
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Council of Texas (ICT), collected data for building and vehicle claims, they did not publish
the raw data.

Social media platforms such as Facebook and Twitter allow users to share real-time
data including text, image, and video with location information. During disasters, people
can facilitate information diffusion, gain situational awareness, and request assistance to
enhance disaster response through social media platforms [4–10]. Such digital platforms can
provide a communication channel to disadvantaged communities through the accounts of
local residents or volunteers [11–13]. For instance, one recent work utilized power outages,
pipe bursts, and food accessibility data on Mapbox, SafeGraph, and 311 in Harris Country,
Texas, during Uri, and the following analysis revealed that low-income and racial/ethnic
minority groups were more disrupted [14]. While social media can be useful in disaster
information exchange, the representativeness of such data varies by demographic factors
such as age, gender, race, and educational attainment, potentially creating bias in data
analysis [15,16]. For instance, younger users in urban areas are more likely to geotag their
social media messages [17,18].

The spatial difference in the social media contents from various communities can be
used to identify the needs of diverse social groups and measure the spatial inequality of
disaster impact. Considering the input data complexity and various formats, this work
proposes a deep neural network (DNN)-based framework to represent the nonlinear re-
lationship between the social media damage description and straightforward monetary
damage. Particularly, the social media data in Winter Storm Uri and damage data collected
by FEMA are employed to train, validate, and test such a DNN framework. The content
of this paper is organized as follows. Section 2 reviews the related work and how this
work is related to the current literature. Section 3 demonstrates the methodology, including
the details of data collection, DNN architecture design, training, and testing arrange-
ment. Following that, Section 4 shows the results analysis and the estimation products.
Lastly, Section 5 provides the conclusion and lists the future research directions.

2. Related Work

There are many aspects in harnessing social media to assist disaster response and
recovery [19,20]. One of the methods is the sentiment sensing based on natural language
processing (NLP) technique. It extracts people’s reactions and situation awareness by
classifying the text data of social media into positive, negative, or neutral categories [21].
Another aspect is information fission and coordination. For instance, a research team from
Washington created Twitris to classify emergency-related topics and visualize the results on
a Geographic Information System (GIS) map for the general public [22]. Mobility pattern
can also be measured from social media. For instance, georeferenced tweets were utilized
to quantify and predict New York City citizens’ movements before and after Hurricane
Sandy [23,24].

Besides the above-mentioned various applications, damage estimation is critical to
efficient first response and resource delivery, and a wide range of methods have been used
to address this problem. For instance, social media was adopted to derive a disaster index
related ratio (DIRR) and sentiment in each county in Florida during Hurricane Matthew,
and suggested the positive correlation between damage claims and DIRR and sentiment [9].
Other research studied Hurricane Sandy by utilizing a multiscale analysis of Twitter activity
before, during, and after the event, concluding that negative sentiment correlates with
per-capita damage [25]. Even though correlations have limited applications, they show that
it is possible to inform damage from social big data.

Other than measuring such correlations, computer vision techniques have been used
to measure the severity of the impact. One research team constructed convolutional neu-
ral network (CNN) models to classify hurricane and earthquake damage images from
social media into three categories (none, mild, severe) with 76% accuracy [26]. One more
recent work fused CNN and natural language processing (NLP) techniques to generate
captions for the social media images that enable victim and building damage identifica-
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tion [27]. With proper aggregation and analysis, these images can provide the detailed
severity description to the users, including government, volunteers, and first responders.
However, this method requires images taken from cameras and angles similar to the train-
ing dataset, which are not always available on social media. Despite the works of correlation
analysis, GIS mapping, and computer vision classification, there is limited work on the
end-to-end monetary loss estimation from social media, especially at the household level.
A deep neural network (DNN), which has many layers of neurons, hence deep, is good at
modeling complex relationships between a wide range of input and output [28]. For exam-
ple, a supervised DNN with enough data can model chemical and physical processes with
high speed [29], recognize images via CNN architectures [30], and predict stock market
returns based on historical data [31]. The reason behind this is that the high-dimensional
neural connections and weights can be optimized by many iterations based on the training
data. Therefore, this work attempts to utilize a DNN to map the social media data (texts,
images, and videos) to the straightforward monetary loss.

3. Methodology
3.1. DNN Structure

Equation (1) shows the high-level concept of the DNN design. In this equation, z
indicates zip code and DNN represents the DNN function. Variables Text, Image, and Video
are all the vectorized texts, images, and videos from social media located within that zip
code area z. On the output side of the DNN function is the numerical description of the
impact, such as Damage and Injury, in each zip code area. It is worth noting that the data
categories on both input and output sides of the equation are expandable, e.g., the amount of
displaced people can append to the output, as long as the data can be vectorized (converted
to numerical values). With this end-to-end structure, the DNN model will produce the
numerical estimates, such that the social media usage bias mentioned in Section 1 will be
modeled in the DNN weights. Indeed, there is bias in the intermediate features; however,
the accurate estimation on the output end provides valuable information regardless.

The reason for selecting zip code as the model building granularity is twofold. First,
each zip code area covers similar population in Texas, as shown in Figure 1, compared to the
larger population across counties. According to this histogram, most zip code offices serve
fewer than 60,000 people, whereas the most populated county in Texas is Harris County,
with 4.7 million residents. The second is that FEMA publishes household-level damage data
with zip code and county information but without precise location (latitude and longitude)
for privacy protection. Therefore, the zip code is selected to align the input and output
resolution. In other words, this DNN is designed to sense the disaster reaction and records
in each zip code, based on the underling similar resiliency and behavior commonalities in
close communities.

DNN


Textz

Imagez
Videoz

...

 =

Damagez
Injuryz

...

 (1)

Figure 2 shows the details of the DNN architecture in this research with the input
(green box states “text”) on the left and output (blue box states “damage data”) on the right.
This work aims to test the plausibility of such a DNN design; hence, only the text data
are used, rather than fully integrating multiple data formats such as images and videos.
Nevertheless, image and video data can also be vectorized by using CNN, long short-term
memory (LSTM), and other techniques such that they can be combined with text data
as input. On the input side, all the text data in zip code (z) will be stacked together and
vectorized to a 1024-dimensional vector using HashingVectorizer [32]. In the network in
between, i.e., hidden layers, there are 5 fully connected layers marked with yellow color.
The number of neurons of each hidden layer is 512, 256, 128, 64, and 32, respectively.
Lastly, the output layer is a 7-dimensional vector representing the average economic loss in
7 categories defined by FEMA. The input and output neurons are also fully connected with
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the hidden layers. At the bottom of Figure 2, the dimensions of input, each hidden layer,
and output are marked in solid boxes with the corresponding color.
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Figure 1. Texas population histogram by zip code.
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Figure 2. DNN architecture.

Between each two connected neurons, activation function rectified linear units (ReLU)
is used to add non-linearity [33]. The L1 loss function, as shown in Equation (2), is used in
the training process. In this equation, z indicates the zip code and c represents the FEMA
damage category, damagetrue is the ground truth (FEMA) average household damage
in USD, and damagepredict is the DNN predicted damage data. The prepared dataset is
split into three parts: training (80%), validation (10%), and testing (10%). While training,
the DNN weights are optimized by using the stochastic gradient descent technique [34] to
minimized the L1 loss so that the DNN predictions are as close as possible to the FEMA
damage data. The initial learning rate is set to be 0.001 and decreases by one magnitude
if no L1 loss decrease occurs in 3 iterations. To avoid overfitting, the validation loss is
monitored and the training process is terminated if the validation loss does not decrease
within 10 iterations [35]. Lastly, the testing portion is used to report the DNN performance.

L1loss =
z

∑
i=1

c

∑
j=1

∣∣∣damagetrue − damageprediction

∣∣∣ (2)
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3.2. Social Media Data and Keywords Calculation

Previous studies have collected data from a variety of social media, such as Facebook,
Twitter, and Flickr. However, some platforms limit data access due to privacy concerns,
e.g., Facebook. This research uses Twitter because it allows users to share all types of data
(e.g., texts, images, videos, polls, links, and hashtags) with geotags, which is critical to
spatial damage analysis and response. Most importantly, Twitter recently launched an
“academic research product track” providing access to 10 million records per month from
its historical data repository [36], which was not available before. Therefore, the Twitter
application programming interface (API), which is a keywords based system, is used to
collect tweets during Uri in Texas.

There are broadly three types of social media noise: constant background topics
(e.g., daily traffic), overlapping event (e.g., Valentine’s day and Uri), and random signals
(e.g., advertisement robots) [37]. In order to only mine the winter-storm-related text
data, this work introduces a keywords calculation mechanism to generate closely related
keywords for the Twitter API system. In detail, 1% (2 million) of all the global tweets
in February 2021 is collected from an online library named Internet Archive (accessed
1 November 2021 from https://archive.org/details/twitterstream). Next, all the tweets
with location in Texas are divided into three parts by Uri’s timeframe of 11–21 February
2021 (FEMA definition): February before (FB), February during (FD), and February after
(FA), meaning the tweets before, during, and after Uri, respectively. In addition, a week’s
worth of current data (from 1 October) is collected to form a subset of October current (OC).
The purpose of such data arrangement is to automatically calculate Uri-related keywords
using Equation (3), followed by using these keywords to search as many data as possible
via Twitter API.

keywords = (FD + FA)− (OC + FB) (3)

In this equation, FB, FD, FA, and OC are lists of keywords extracted from FB, FD,
FA, and OC tweets using Rake [38]. The term keywords represents the desired keywords
for Twitter API. The reasoning of Equation (3) is as follows. Table 1 shows the cosine
similarities [39] comparison of these four portions. According to this table, OC shares the
least similarity among them due to its different season, and appears to be closer to FB and
FA than FD. The reason could be that OC, FB, and FA are regular times, whereas FD is
undergoing a storm impact. Looking at February only, FD appears to be closer to FA than
FB. This implies that the impact of Uri continues in the aftermath FA which is different
from regular time FB. Therefore, in Equation (3), the operator “+” combines the keywords
during and after Uri (FD + FA) and regular time keywords (OC + FB). Then, operator “−”
subtracts the two and removes regular time keywords, leaving only Uri-related keywords.
Given the maximum API limit of 1000 characters (roughly 92 words excluding necessary
operators such as location), the top 92 keywords were used to mine the Twitter repository
without retweets. The full list is below:

“sanantonio OR career OR opening OR warm OR jobs OR park OR interesting OR
alerts OR cold OR event OR stones OR measured OR mexico OR heavy OR due OR group
OR mobile OR manager OR security OR fun OR reports OR media OR details OR sales
OR snow OR turn OR recommend OR facebook OR view OR video OR apply OR places
OR blvd OR landmark OR utc OR stepping OR shreveport OR exit OR santa OR rock OR
discover OR valentine OR cleburne OR tree OR dollar OR inch OR odessa OR link OR ave
OR public OR atxtraffic OR nurse OR hiring OR place OR titles OR chase OR technician
OR san OR blocked OR open OR case OR read OR oklahoma OR university OR gainesville
OR hear OR pkwy OR bank OR engineering OR follow OR center OR west OR traffic OR
ice OR stay OR antonio OR earthquake OR wsw OR cst OR weather OR latest OR wnw OR
service OR click OR plano OR left OR bio OR store OR vday OR okctraffic OR created OR
fort OR round”.

The operator “OR” in between each word is to define the search logic, i.e., tweets con-
taining any of the keywords are defined as relevant. This list contains unique keywords to
winter storm such as “warm”, “cold”, and “snow”. Nevertheless, other seasonal keywords,

https://archive.org/details/twitterstream
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such as “valentine” are also in this list. According to the latest Twitter features, users can
geotag a tweet with place (polygon with multiple points) or geoinformation (one point
with latitude and longitude). The place polygon can be as big as Texas or as small as a
park. While mining, the geotag filter is “place:Texas” which defines a rectangle with the
most north–west and east–south coordinates for content filtering. Due to this rectangle
covering some parts of Mexico, Oklahoma, and other neighboring regions, keywords such
as “oklahoma” and “mexico” are also in the list.

Table 1. Similarity (%) matrix of keywords of FB, FD, FA, and OC.

FB FD FA OC

FB 100 52.22 65.55 22.22

FD 52.22 100 56.66 15.55

FA 65.55 56.66 100 21.11

OC 22.22 15.55 21.11 100

Mining with the above-mentioned 92 keywords resulted in a dataset named Uri
with tweet text strings, image, and video attachment URLs if available, user ID, time
stamp, geoinformation if available, and place ID. Altogether, 16,028 tweets in FD and FA
periods were mined within Texas, with 4934 with attachment URLs (images or videos).
However, only 1143 of them have latitude–longitude coordinates, which is consistent with
the fact that less than 1% of tweets tag their pinpoint locations [40]. All these coordinates
were used to compute the zip code for each tweet in the dataset Uri.

3.3. Damage Statistics from FEMA

The household damage was collected via OPENFEMA API [41], which covers all
historical public assistance (PA) and individual assistance (IA) approved by FEMA in all
national declared disasters, including Uri. Each household has a record with up to 96
categories of information, including income, rent/own status, occupancy number/age,
structure type, insurance, and others. Since the focus of this paper is the household-level
damage, only the IA data are used. Table 2 displays the monetary economic loss categories
with their description and source: individual and households program (IHP) amount
(ihpAmont), housing assistance (HA) amount (haAmount), other needs assistance (ONA)
amount (onaAmount), real property damage amount (rpfvl), personal property (ppfvl),
rental assistance amount (rentalAssistanceAmount), and repair amount (repairAmount).
The data in each category are all aggregated and averaged at the zip code level and paired
with social media data.

The completed dataset Uri has social media data from 550 different zip codes and
FEMA damage data from 1587 zip codes. Considering that Texas has 1930 zip codes in total,
FEMA does not cover all the zip codes, especially rural regions (visualized in Section 4).
Altogether, the dataset Uri has 338 paired data points with both social media and damage
data as input and output for the DNN building. According to the methodology, 270 (80%)
data points were used as training and the rest 68 (20%) were for validation and testing.
There are 212 zip codes that have social media relevant to the winter storm but no FEMA
damage reports. The fully trained DNN will be used to estimate the missing damage
statistics, hence it is important to assist the communities at a disadvantage [42].
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Table 2. Selected FEMA IA categories.

Category Description Source

ihpAmount

Total individual and
households program (IHP)

amount awarded in USD for
eligible applicants.

IA owner, IA renter, IHP

haAmount
Amount awarded for housing
assistance (HA) in USD from

IHP.
IHP

onaAmount
Amount awarded in USD for
other needs assistance (ONA)

from IHP.
IHP

rpfvl Real property damage
amount. IHP, IHP large

ppfvl

Value of disaster-caused
damage to personal property

components, including
appliances and furniture.

IHP, IHP large

rentalAssistanceAmount Amount of rental assistance
awarded in USD. IA renter, IHP

repairAmount Amount of repair assistance
awarded in USD. IA owner, IHP

4. Analysis and Results

Based on the hyperparameters defined in Section 3.1, the DNN model is trained on
the training portion and terminated at roughly 9000 iterations. The fully trained model
is then tested on the testing portion to compare the prediction with the ground truth.
Figure 3 shows the comparison for each testing zip code, where the X-axis indicates the
prediction average loss in USD, and the Y-axis represents the damage measured by FEMA.
In the 100% accurate scenario, all the testing points of all categories (colors) should fall on
the 45 degree line. By definition, the points in the upper left section are the underestimation
cases and the points in the lower right section are the overestimation cases. According
to this figure, underestimation is more common than overestimation, especially at higher
values, e.g., ihpAmount.

The accuracy for each category c is calculated using Equation (4) below.
Here, z represents the zip code in the testing portion, damagetrue is the ground truth
FEMA damage, and damagepredict means the DNN-predicted damage data. We choose this
metric since it is equivalent to averaging relative error over each estimate, but is weighted
by the ground truth value. According to this figure, the best-performing categories are
ihpAmont, haAmount, and rentalAssistanceAmount, achieving accuracy of 68.43%, 68.39%,
and 70.07%, respectively. Moreover, the smaller values, e.g., ppfvl and onaAmount, often
are associated with lower precision (51.89% and 34.35%) compared to others.

accuracyc = 1 −
z

∑
i=1

∣∣∣damagetrue − damageprediction

∣∣∣
damagetrue

(4)
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Figure 3. Zip code average damage ($) estimation accuracy.

As mentioned in Section 3.3, FEMA did not survey 212 zip codes for the storm
damage. However, this does not mean there is no damage in those areas. The fully trained
DNN model can be used to estimate the average damage amount for them in all seven
categories based on real-time social media data. To visualize such capability on a GIS
map, the ihpAmount is selected because it has a high value, thus clear variations. Figure 4
illustrates the ihpAmount from FEMA and the DNN model. In this map, the gray area
represents that there are no data from both social media and FEMA. The 338 paired data
points in the dataset Uri, i.e., zip codes with both FEMA and social media data, are marked
with green color representing the FEMA evaluated amount in USD. The intensity of the
color shows the value variation in each legend. There are zip codes with only social media
but no FEMA evaluation, and the DNN can estimate the damage for these neglected regions.
The DNN-estimated ihpAmount is color-coded with red, indicating the USD values in five
bins: 0–105, 105–208, 209–319, 319–429, and 429–533. Similarly, the zip codes that only have
FEMA damage data are marked with blue and are visualized with different color intensity.

From this map, it is observed that many zip codes in rural West Texas do not have
FEMA survey data, whereas metropolitan areas such as Houston and Dallas are fully
covered (blue and green). In comparison, the DNN-estimated damage has less variation
(0–522) than the FEMA damage data (0–10,070). Still, some zip codes in rural West Texas
miss both social media and FEMA data. This can be solved by localizing more users there
even they do not share geoinformation. Densely populated areas, i.e., small-sized zip codes,
often have less damage than large-sized zip codes in both the DNN and FEMA damage. It
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is also observed that several zip codes in Oklahoma are reported by FEMA and are hence
mapped in this figure.

Overlapping ihpAmount
(displaying FEMA data)

0 -- 250 

250 -- 384 

384 -- 523 

523 -- 676 

676 -- 2146

FEMA ihpAmount
0 -- 224 

224 -- 358 

358 -- 511 

511 -- 697 

697 -- 10070

DNN ihpAmount
0 -- 105

105 -- 208

208 -- 319

319 -- 429

429 -- 533

No Data
Texas

Figure 4. Distribution of ihpAmount ($) from FEMA, and the DNN model prediction.

In order to evaluate the damage prediction accuracy across geographies, Figure 5
displays the ihpAmount prediction error for each paired zip code, i.e., green in Figure 4.
The error percentage is calculated by Equation (5) for each zip code, where damagetrue is the
FEMA ihpAmount and damagepredict means the DNN predicted value. According to this
definition, the lower the error (coded with lighter color), the closer the prediction is to the
FEMA survey, and the darker the color, the less accurate for the DNN estimation. The color
intensity is divided into 10 equal bins by data size, with the remaining marked in light blue.
It is worth noting that this map only shows the overlapping (FEMA survey and DNN
estimation) ihpAmount to show the accuracy as an example; the other categories can be
analyzed the same way. In this map, 7 out of 10 bins have an estimation error below 43%,
which is consistent with the average ihpAmount 68.42% accuracy in Figure 3. The more
accurate estimations appear close to the cities (Houston, Dallas, and San Antonio) compared
to rural regions. The map distribution also suggests more data collection in the centers of
Houston and Dallas areas, as they are voids. Altogether, the DNN only trained on text data
is capable of predicting average damage with up to 70% accuracy and is able to estimate
damage for the communities that are often neglected.

error =

∣∣∣damagetrue − damageprediction

∣∣∣
damagetrue

(5)
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Estimation Error (%)
0.2 -- 3.4

3.4 -- 6.9

6.9 -- 10.9

10.9 -- 15.3

15.3 -- 24.1

24.1 -- 32.6

32.6 -- 42.7

42.7 -- 59.8

59.8 -- 103.7

103.7 -- inf 

Texas

Figure 5. Map of DNN ihpAmount estimation error (%).

5. Conclusions and Discussion

This work demonstrated a prototype that intakes georeferenced real-time social me-
dia data (texts, images, and videos) and estimates the monetary damage statistics using
DNN techniques. The output estimation could be visualized and mapped for end users
including government, non-governmental organizations (NGOs), first responders, news
media, and the general public. To test the plausibility of such DNN model, a keyword
calculation technique was developed to mine the text data relevant to Winter Storm Uri
on Twitter. The damage statistics of seven different categories were collected from FEMA
individual assistance reports and paired with the social media data on the zip code level
to form the dataset Uri. A fully connected DNN structure was designed and trained,
validated, and tested on the dataset Uri to predict the average monetary loss in USD
based on the georeferenced text data. The fully trained DNN model achieved up to 70%
precision when tested on the testing portion, indicating successful damage estimation.
Moreover, the fully trained DNN could help in estimating the damage where FEMA sur-
vey does not cover, especially fpr rural and low-income communities who are often at
a disadvantage.

Although only 1143 tweets from 550 zip codes were used in this study, the fully trained
DNN was able to achieve a 70% accuracy, which shows the potential of the proposed
method. The total collected data size is 16,028 tweets (with images), with a great portion
of them not having location information. Based on the common understanding of DNN
research, the more training data there are, the more accurate the model becomes. Hence,
the next step is to develop tweet localization techniques to enlarge the dataset Uri. This
could be achieved by using the user’s previous location, social network region, or other
information to derive the current geoinformation. However, this is beyond the scope of this
research. Moreover, the information-rich image and video (images and audio) data can be
combined with the current DNN, which is another way to increase the data size. This work
is set to predict zip-code-level average damage due to the location information availability.
Future work of downscaling, i.e., from zip-code-level average onto household level, could
improve the granularity of this technique and, hence, greatly assist general public risk
awareness, resource distribution, and volunteer arrangement. Finally, we seek to generalize
our approach to investigate the extent to which our approach, and even a specific regional
model, is applicable to comparable events occurring in other regions.
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