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Abstract: The pandemic’s lockdown has made physical inactivity unavoidable, forcing many people
to work from home and increasing the sedentary nature of their lifestyle. The link between spatial and
socio-environmental dynamics and people’s levels of physical activity is critical for promoting healthy
lifestyles and improving population health. Most studies on physical activity or sedentary behaviors
have focused on the built environment, with less attention to social and natural environments. We
illustrate the spatial distribution of physical inactivity using the space scan statistic to supplement
choropleth maps of physical inactivity prevalence in Chicago, IL, USA. In addition, we employ
geographically weighted regression (GWR) to address spatial non-stationarity of physical inactivity
prevalence in Chicago per census tract. Lastly, we compare GWR to the traditional ordinary least
squares (OLS) model to assess the effect of spatial dependency in the data. The findings indicate
that, while access to green space, bike lanes, and living in a diverse environment, as well as poverty,
unsafety, and disability, are associated with a lack of interest in physical activities, limited language
proficiency is not a predictor of an inactive lifestyle. Our findings suggest that physical activity is
related to socioeconomic and environmental factors, which may help guide future physical activity
behavior research and intervention decisions, particularly in identifying vulnerable areas and people.

Keywords: social and environmental factors; physical inactivity prevalence; urban health; post
pandemic cities; Chicago

1. Introduction

Responsible for nearly 5 million deaths worldwide and often associated with physical
and psychological disorders, an inactive lifestyle is a critical public health challenge [1–4].
While insufficient physical activity has caused $67.5 billion in health costs worldwide in
2013, it is a severe public health concern in the United States of America [5,6]. Regular
physical activity helps prevent hypertension, overweight, and obesity and improves mental
health, quality of life, and well-being. In addition to the multiple health benefits of physical
activity, more active societies reap additional benefits, including reduced use of fossil fuels,
cleaner air, and less congested, safer roads. These outcomes are interconnected with achiev-
ing the shared goals, political priorities, and ambition of the Sustainable Development
Agenda 2030 [3].

Whether we engage in a physically active lifestyle or not is influenced by personal, in-
terpersonal, sociocultural, and community factors [7–10] in mostly non-linear ways [11,12].
Macfarlane et al. (2021) [13] and Sallis et al. (2012) [14] described a social model of health as
an outcome of socioeconomic status, culture, environmental conditions, housing, employ-
ment, and community influences. However, the current literature on physical activity has
rarely included these factors, as most studies have focused on the built environment instead.
This is a dreadful omission when identifying and guiding spatial-physical interventions

Urban Sci. 2022, 6, 28. https://doi.org/10.3390/urbansci6020028 https://www.mdpi.com/journal/urbansci

https://doi.org/10.3390/urbansci6020028
https://doi.org/10.3390/urbansci6020028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/urbansci
https://www.mdpi.com
https://orcid.org/0000-0002-9103-0744
https://doi.org/10.3390/urbansci6020028
https://www.mdpi.com/journal/urbansci
https://www.mdpi.com/article/10.3390/urbansci6020028?type=check_update&version=3


Urban Sci. 2022, 6, 28 2 of 13

to create practical strategies for promoting physical activity and health equity. Hence, an
interdisciplinary health model has the potential to promote active lifestyles [15,16].

While more than half of the world’s population lives in urban areas with limited leisure
time, understanding physical activity in urban settings is vital to improving population
health [17–19]. Inactive lifestyles may be associated with urban policies, development, and
renewal projects. For instance, economic restructuring, urban disinvestment, redlining
(systematic refusal of loans or insurance in certain areas), mortgage foreclosures, and
environmental and engineering disasters (e.g., hurricanes) leave neighborhoods with
disproportionate amounts of vacant and abandoned properties [20]. The vacant property
rate contributes to urban blight and creates an unsafe context of conflict, fear, and crime.
Such a trend of urbanization stimulates inactive and sedentary lifestyles in neighborhoods
with vacant properties [21,22].

Additionally, studies found associations between physical activity, access to urban
facilities, and urban opportunities, such as exercising and access to bike lanes [13,23–26]. In
addition, higher residential density, mixing of land uses, street connectivity, availability of
public transport, and public open spaces were associated with higher levels of physical ac-
tivity [27]. In contrast, traffic intensity and air pollution may prevent people from engaging
in regular physical activity and promote sedentary behavior [28–30]. Increasing popula-
tion growth leads to challenges for active lifestyles, such as accessing natural resources
like forests, parks, and gardens [31,32]. Hence, urban trees should be perceived as urban
features in synergy with other urban components to build physically active sustainable
cities with interconnected infrastructures [33–35].

The social determinants of health modulate the prevalence of physical activity. For
instance, people with disabilities have lifelong barriers to engaging in active lifestyles. Sit
et al. (2002) [36] found that people with physical disabilities, visual impairments, and
cognitive disabilities reported low physical activity participation in urban communities.
Additionally, living in neighborhoods with high poverty is associated with lower physical
activity [37–39]. While several studies found inactive lifestyle to be related to minority pop-
ulations [38,39], others identified it as a personal and cultural matter that varies nonlinearly
geographically [40,41].

So far, we possess a limited understanding of social, spatial, and environmental factors
and their geographically varying effects on place-based physical activity prevalence. Many
studies (e.g., [42,43]) discuss promoting active lifestyles in micro-urban environments
rather than exploring socio-environmental contributors from the geospatial perspective.
Most of our knowledge about physical activity prevalence in the United States stems from
a national survey by the Centers for Disease Control and Prevention [44], which found
that 8.3% of deaths of non-disabled adults ages 25 and older were attributed to physical
inactivity. However, the current scientific discourse has sidelined the role of geography in
shaping physical activity patterns.

The geospatial analysis allows prioritizing locations for targeted interventions, re-
source allocation, and identifying vulnerable populations with inactive lifestyles. Spatial
clustering techniques can supplement behavioral maps by identifying areas of statistically
high physical inactivity, therefore distinguishing whether the observed patterns occurred
by chance or not [45]. Geographically weighted regression (GWR) is used to analyze the
spatial variation of relationships between variables [46]. While GWR is used in several
urban studies, it is not used in studies of physical inactivity prevalence that incorporate
geographical and planning perspectives. Hence, geospatial analysis is essential for health
officials and city planners to make informed decisions to reduce health disparities.

Chicago, IL, USA, with a physical inactivity Score of 62.75 out of 100, ranks among
the most active cities in the U.S. [47,48]. Therefore, the purpose of this study is to examine
the recent overall burden of physical inactivity from a geospatial perspective in Chicago.
The purpose/objective of this paper is to (1) describe the spatial distribution of physical
inactivity in Chicago; (2) identify areas of elevated physical inactivity; (3) describe the social
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and environmental factors associated with physical inactivity; (4) use publicly available
data to suggest priority areas for interventions.

2. Materials and Methods

We obtained model-based estimates of current physical inactivity among the popu-
lation for all 796 census tracts in Chicago (“Physical inactivity” variable). The physical
inactivity data, among many other health-related measures, are provided by the PLACES
Project of the Centers for Disease Control and Prevention [49] and stem from responses to
the Behavioral Risk Factor Surveillance System survey [48]. Physical inactivity is defined
as the proportion of respondents who indicated not engaging in leisure-time physical
activity. Specifically, respondents aged ≥18 years who answered “no” to the following
question: “During the past month, other than your regular job, did you participate in any
physical activities or exercises such as running, calisthenics, golf, gardening, or walking for
exercise?”

Besides, we obtained census tract-level predictor variables from various sources: First,
the share of people with disability (“Disability” variable), poverty (“Poverty” variable),
without high school diploma (“No high school” variable), the language barrier (“Limited
English” variable), age (“Age” Variable), gender (“Gender” variable), minority (“Minority”
variable), and (“Ethnic diversity” variable) for 2018 are provided by the American Com-
munity Survey [50]. Second, we quantified mixed land uses (“Mixed land use” variable),
spatial access to bike lanes (“Bike ratio” variable), and spatial access to parks (“Park’s
ratio” variable) by calculating the density of diverse land uses, bike lanes, and parks using
data provided by the 2015 Land Use Inventory of the Chicago Metropolitan Agency for
Planning [51]. Third, the vacant housing percentage (“Vacant housing” variable), the traffic
intensity percentage (“Traffic intensity” variable), and concentration of PM 2.5 (“PM 2.5”
variable) for 2018 are provided by Chicago Health Atlas [52]. Lastly, we computed the
census tract-level proportion of tree canopy area (“Tree ratio” variable) using the High-
Resolution Land Cover, NE Illinois, and NW Indiana, 2010 dataset provided by CMAP. To
conduct spatial analysis and mapping using geographic information systems (GIS), we
obtained census tract polygon geometries as TIGER/Line Shapefiles from the United States
Census Bureau. We joined all our census tract-level variables to the geometries through
their 11-digit FIPS codes.

2.1. Spatial Distribution of Physical Inactivity

We utilized the elliptic spatial scan statistic with a normal probability model [45,53,54]
to find significant clusters of high and low physical inactivity in Chicago. The spatial scan
statistic identifies the most likely clusters of either high or low values of a given spatial
variable. We chose ellipses over the more established circular form of the spatial scan
statistic to address the linear features of our study area, e.g., the shore of Lake Michigan.
Each cluster z is an ellipse of radius r, centered on the centroid of a census tract, whereas
multiple candidate ellipses of different radii and angle are assessed per tract. We evaluated
a set of N = 796 census tracts in Chicago, eliminating 5 tracts due to lack of data or
contiguity. If a given centroid lies within the ellipse centered on a neighboring tract, its
tract becomes part of the respective cluster. To find the most likely clusters of physical
inactivity prevalence, the spatial scan statistic tests the null hypothesis (h0) that mean
prevalence of physical inactivity inside the cluster is equal to outside for each candidate
ellipse. Conversely, the alternative hypothesis (ha) states that physical inactivity prevalence
inside the cluster is higher/lower than outside. Since we are looking for both, areas of
increased and decreased physical inactivity, we evaluate h0 and ha by choosing z to either
minimize or maximize the log of the likelihood ratio (LLR) in Equation (1):

LLR = N ∗ ln(σ) + ∑(xi − µ)2

2σ2 − N
2
− N ∗ ln

(√
σ2

z

)
(1)
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where xi is the physical inactivity prevalence value at census tract i, µ the global mean, and
σ2 the variance.

We use Monte Carlo simulation to evaluate statistical significance of the most likely
clusters through random permutation of physical inactivity prevalence values and their
corresponding census tracts 999 times. Therefore, the spatial scan statistic is computed
999 times for simulated data, allowing for calculating cluster p-values [55]. We restricted
ellipses to contain a maximum of 20% of Chicago’s population to avoid excessively large
clusters that may be better represented as multiple smaller and disconnected clusters.

While the spatial scan statistic determines the presence, location, and strength of
statistically significant clusters in the data, the Moran’s I statistic measures spatial autocor-
relation [56]. While the global form of Moran’s I tests whether physical inactivity values
are correlated among adjacent tracts, its local form [57] allows for illustrating where this is
the case geographically. Therefore, local Moran’s I belongs to the group of Local Indicators
of Spatial Autocorrelation (LISA), and is calculated as follows [58], Equation (2):

Ii =
zi − z

σ2

n

∑
j=1,j 6=i

[
Wij
(
zj − z

)]
(2)

where Ii denotes the Moran’s I at location i; zi represents physical inactivity prevalence at
location i; z is the mean physical inactivity value; zj is physical inactivity at other locations
(where j 6= i); σ2 is the variance of z, and Wij is the spatial weight based on proximity
between zi and zj.

If local Moran’s I is positive for a given census tract, it has a similarly high or low
physical inactivity prevalence value as its adjacent neighbors, which is referred to as “spatial
cluster”. Spatial clusters can be clusters of high values (“high-high” cluster, a.k.a “hot
spot”) or of low values (“low-low cluster”, a.k.a. “cold spot”). Conversely, if local Moran’s
I is negative, the corresponding census tract exhibits different values than its neighbors
and is therefore referred to as either “high-low” or “low-high” outlier. Here, we apply local
Moran’s I to identify hot- and cold spots of physical inactivity based on 9999 permutations
at the significance level of p < 0.05.

The spatial scan statistic and local Moran’s I can be used in tandem, as they answer
slightly different questions: The spatial scan statistic outputs clusters of significantly high or
low physical inactivity prevalence in elliptical form. The values are high or low compared
to an expected value, which is based on the global physical inactivity prevalence (average
physical inactivity for Chicago, in our case). Clusters identified by the spatial scan statistic
are not necessarily coherent, as they may include areas that do not significantly deviate
from the expectation. Local Moran’s I is suited to assess whether clusters are coherent, as
it shows whether census tracts are similar to their neighbors. Therefore, while the spatial
scan statistic compares a given region to a global expectation, local Moran’s I compares
them to their immediate neighbors.

2.2. Spatial Correlates of Physical Inactivity

We determined significant predictors of physical inactivity by employing Ordinary
Least Squares (OLS) regression. We avoided multicollinearity among predictor variables by
computing the variable correlation matrix and ensuring that variance inflation factors were
below a recommended threshold of 2.5 [59], indicating that collinearity among predictors
did not lead to an inflation of variance. This led to excluding the variables Age, Gender,
Minority, Ethnic diversity, Parks ratio, Traffic intensity, and PM 2.5. Therefore, our final
regression model included the predictor variables Limited English, Disability, Poverty, No
high school, Mixed land use, Bike ratio, Tree ratio, and Vacant housing. Our regression
diagnostics included checking for heteroskedasticity by plotting residuals versus fitted
values and checking for normality by the histogram of standardized residuals. We further
analyzed our OLS regression model to check for spatial autocorrelation of residuals, which
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constitutes a violation of OLS assumptions [46]. We tested for the presence of residual
spatial autocorrelation using global Moran’s I [56].

In addition, we used Geographically Weighted Regression (GWR), which is an ex-
tension of the traditional OLS standard regression by allowing local rather than global
parameters to be estimated [60]. It assumes spatial heterogeneity of predictor variable
effects and therefore, allows for measuring the spatial variation of regression model results.
Spatial non-stationarity might be lost when using simple global fitting methods [61]. GWR
has been used broadly in the explanation of relationships in various fields, including but
not limited to urban health [62], urban mobility [63], spatial epidemiology and land use
planning [64]. GWR models can produce a set of local parameter estimates showing how a
relationship varies over space. For each data point, GWR model will produce the local R2

and local residual, as well as local coefficients, allowing for analyzing the spatial variation
of relationships between target and predictor variables. We use an adaptive kernel base to
account for nonuniform spatial distribution of the data. An adaptive kernel base allows the
GWR model to quantify the optimum bandwidth by iterating the number of nearest neigh-
bors that should be considered for the local regression model [65]. The optimal bandwidth
is measured by minimized Akaike Information Criterion (AICc) score or minimized local
information loss [61]. We used Python 3.10.1 [66], R 4.1.0 with RStudio 1.4.1717 [67,68],
as well as SaTScanTM software [53] for statistical computing, and ArcGIS Pro [69] and the
tmap package [70] for cartography.

3. Results
3.1. Spatial Distribution of Physical Inactivity

The spatial distribution of physical inactivity among adults can be characterized by
high prevalence in Chicago’s southern, southwestern, and western parts (Figure 1a). Using
the spatial scan statistic, we identified one cluster of statistically significant high physical
inactivity prevalence (Figure 1b), located in Chicago’s west and southwest side. It has a mean
physical inactivity prevalence of 36.35% (Table 1), has an LLR of 444,515.03, and encompasses
180 census tracts. In addition, we identified one cluster of low physical inactivity located in
the northeastern part of the city. It has a mean prevalence of 14.10%, an LLR of 823,303.73, and
encompasses 152 census tracts. Table 1 shows important characteristics of the corresponding
clusters in Figure 2. Lastly, both clusters are significant at the p < 0.05 level.

1 
 

 

Figure 1. (a) Choropleth map of physical inactivity; (b) Local Moran I and spatial scan statistics.
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Table 1. Clusters of elevated physical activity.

ID Prevalence Tracts Mean Inside (%) Mean Outside (%) Variance LLR p-Value

1 Low 152 14.10 29.43 42.04 823,303.73 0.00
2 High 180 36.35 23.87 54.70 444,515.03 0.00
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The spatial clusters of physical inactivity identified by local Moran’s I largely follow
the ones identified by the spatial scan statistic (Figure 1b). The high-high (Moran’s I)
cluster in the western part of Chicago overlaps with the (spatial scan statistic) cluster of
high prevalence. Therefore, this area exhibits significantly higher physical inactivity levels
than the rest of the study area, while census tracts within the area exhibit positive spatial
autocorrelation, meaning values are similarly high among neighbors. Conversely, the
low-low (Moran’s I) cluster in the northeastern part of Chicago overlaps with the (spatial
scan statistic) cluster of low physical inactivity prevalence. This area has significantly lower
physical inactivity levels than the rest of the study area, while census tracts within exhibit
positive spatial autocorrelation, meaning values are similarly low among neighbors. The
local Moran’s I analysis confirms that the clusters identified by the spatial scan statistic are
indeed clusters of extreme (high/low) physical inactivity values and that these clusters
are compact and coherent. Spatial clusters identified by local Moran’s I that lie outside of
clusters identified by the spatial scan statistic can be considered outliers, such as the group
of high-high census tracts in the southeastern part of the city. These areas may exhibit
positive spatial autocorrelation of high physical inactivity prevalence values but grouping
them together in an ellipse shape to form a significant cluster by spatial scan statistic was
not possible.

3.2. Spatial Correlates of Physical Inactivity

We found high-poverty census tracts (“Poverty” variable) in the southern part of
Chicago and west of downtown (Figure 2a). Similarly, we found pockets of language
limitation (“Limited English” variable) scattered throughout the city, with larger clusters
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west and northwest (Figure 2b). People with disabilities (“Disabled” variable) have a
different pattern, with higher prevalence in the southern parts of the city (Figure 2c). The
distribution of the percentage of people with no high school diploma (“No high school”
variable) shows highest prevalence in the west of the city (Figure 2d). The distribution of
mixed land-use (“Mixed land use” variable) shows that regions near downtown have a
higher diversity of activities (Figure 2e). Expectedly, the access to bike lanes (“Bike ratio”
variable) is high around downtown and some communities in the south (Figure 2f). Also
expectedly, areas with higher levels of tree cover (“Tree ratio” variable) are found at the
city’s fringe (Figure 2g). Conversely, census tracts in the central parts of the city have lower
levels of tree cover. We found vacant housing (“Vacant housing” variable) in the southwest
and south of the city (Figure 2h).

The OLS regression model revealed a positive association of the proportion of people
in poverty (“Poverty” variable) with physical inactivity (Table 2). This indicates that poorer
census tracts are home to a less physically active population. In addition, higher propor-
tions of disabled people (“Disabled” variable) were associated with higher levels of physical
inactivity. Then, the proportion of the population without a high school degree (“No high
school” variable) was positively associated with physical inactivity, indicating that limited
educational attainment leads to inactive lifestyles. Further, limited English language capa-
bility (“Limited English” variable) was also positively associated with physical inactivity.
The proportion of tree cover (“Tree ratio” variable) was negatively associated with physi-
cal inactivity, meaning census tracts with higher tree coverage exhibited higher physical
inactivity. Then, the vacant housing percentage (“Vacant housing” variable) showed a
positive association with physical inactivity, suggesting that physical inactivity behavior
is higher where the share of vacant houses is high. The mixed land use ratio (“Mixed
land use” variable) shows a physical inactivity behavior is higher where diversity of urban
activities and diverse land uses is low. Lastly, the bike lane ratio (“Bike ratio” variable) was
inversely associated with physical inactivity behavior. Therefore, the physical inactivity is
high where spatial access to bike lanes is low. Overall, the model fit was high, with an R2

of 0.88. The linear model fit (AIC) was 4131, and Jarque-Bera Statistic is 0.23 indicating a
normal distribution of OLS regression residuals. The spatial analysis of residuals revealed
significant spatial autocorrelation in the model. Moran’s I test (I = 0.17, p = 0.00) confirms
the presence of spatial autocorrelation of residuals.

Table 2. OLS Model Results.

Variables Estimate Std Error t-Statistic p-Value VIF

Intercept 8.52 0.42 20.19 0.00 -
Poverty 9.47 0.59 15.88 0.00 2.00

No high school 20.35 0.55 36.78 0.00 2.31
Disability 2.78 0.48 5.71 0.00 1.87

Limited English −4.24 0.44 −9.50 0.00 1.82
Tree ratio 1.66 0.39 4.16 0.00 1.18

Vacant housing 0.10 0.01 6.18 0.00 1.49
Mixed land use −14.22 3.24 −4.37 0.00 1.23

Bike ratio −1.19 0.34 −3.51 0.00 1.05

The GWR mostly confirmed the result of the OLS model while describing non-
stationary spatial relationships. As expected, the GWR coefficients indicated the presence
of spatial variation. Model fit of the GWR (AIC = 3780) with R2 of 0.93 was higher than that
of the OLS model indicating that incorporation of spatial structure accounts for some of the
previously unexplained variation. Our study identified spatial variation in the physical
inactivity prevalence of the population in Chicago. The findings indicate that the positive
association between poverty and physical activity is strongest in the west and south of the
downtown communities like the Englewood neighborhood (Figure 3a). In addition, the
association between limited English language capability and physical inactivity is predomi-
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nantly negative. However, positive associations are found in the northeast and southwest,
such as Edgewater, Lincoln Park, and Rogers Park, with predominantly European and
Middle Eastern immigrants (Figure 3b). Moreover, model coefficients for the share of
people with disabilities are positive for most of our study areas, where the highest values
are found along the shore of Lake Michigan. In contrast, the relationship is reversed in
neighborhoods far west of the city, where negative associations between disability and
physical inactivity are found (Figure 3c). Also, the relationship between education and
physical activity is positive throughout the city but strongest in Chicago’s western and far
northwestern parts (Figure 3d). Further, the predominantly negative relationship between
mixed land use and physical inactivity is reversed in the city’s south, where strong pos-
itive associations are found (Figure 3e). Furthermore, the association of bike lanes with
physical inactivity is negative around downtown and in the northwestern part of the city.
Conversely, values are positive in the southern, southwestern, and some parts north of
downtown (Figure 3f). As expected, the relationship between trees and physical inactivity
is positive around downtown and negative in the south (Figure 3g). Lastly, the association
between vacant housing and physical inactivity is positive, whereas strongest in the west
and southwest (Figure 3h).
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4. Discussion

Using one spatial clustering technique and two different regression models, our study
examined the spatial distribution and varying relationships between physical inactivity
prevalence and social and environmental factors. We found that physical inactivity preva-
lence varies across Chicago, with higher levels in the city’s west side, such as Englewood
and Little Village communities, which are surrounded by industrial areas and exhibit high
proportions of Black and Hispanic populations, respectively (see Figure 1a,b). Our results
indicate variation in physical inactivity prevalence by poverty and language proficiency.
The highest share of physical inactivity was found in Downtown’s west and southwestern
parts, affecting low-income people. However, limited language proficiency is not a barrier
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to physical activity. In addition, physical inactivity was elevated along Lake Michigan
among the population with disabilities, which is unbearable for disabled people who are
economically vulnerable. In contrast, higher levels of physical activity were found among
well-educated people in the northern part of the downtown.

Besides the socioeconomic and demographic factors, we found associations of the built
environment and environmental factors with physical inactivity. For instance, spatial access
to diverse urban activities shapes human behavior, as less-connected urban facilities and
“obesogenic” environments offer fewer opportunities for physical activity like walking and
biking. Even if cities offer connected pedestrian and street networks, they may not provide
destinations for walking and biking, thereby hampering the development of an active
lifestyle. Human-scale cities should be well connected with diverse urban activities and
build exercise-oriented urban spaces. However, our results show that physical inactivity
is higher despite economic diversities in the southern part of the city. Similarly, physical
inactivity is elevated in the south part of the city with a higher share of bike lanes. The
quality of urban space is measured through qualitative and quantitative metrics, such as
access to local facilities, mixed land uses, public transport density, environmental perception
measures (safety, tidiness, transparency, imageability, enclosure, and human-scale [71,72].
Hence, mixed land use per se is not a determinant factor for physical activities.

In addition, we found associations of environmental factors with physical inactivity
prevalence, including urban tree cover. However, the findings show that physical inactivity
increased when the tree cover was elevated. Canopies are mainly isolated and spatially
segregated in the low-density residential districts in Chicago [73]. Trees as urban features
should be planted, designed, and maintained purposefully and consciously in synergy with
the socioeconomic and physical dynamics of the built environment to become a contributor
to physical activities. For instance, urban trees in vacant and abandoned properties cannot
promote physical activity behavior, as these properties create a sense of fear and invite
criminal activities. The results found that physical inactivity increased as vacant housing
increased in the south and southwest parts of the city.

Physical activity behavior is non-linearly associated with urban dynamics and is re-
lated to people’s environmental perceptions and cultural dynamics. For instance, personal
security concerns influence the perceived safety of the environment for physical activity in
daily life [72,74]. Hence, the multifactorial relational aspects of physical activity behavior
require built environment interventions, community programs (e.g., family and social sup-
port programs), and policies (e.g., Complete Street Policies, New Urbanism Policies [75])
contribute to minimizing hinderances of physical activity. The healthy behavior of popu-
lations is the outcome of multi-institutional policies, and it requires interdisciplinary and
inter-scale surveys.

To build healthy cities, urban planners and decision-makers should include measures
to improve urban component connectivity, such as trees, particularly in areas with high
physical inactivity prevalence, low income, a high share of the population with disabilities,
and communication barriers. Furthermore, the findings may inform urban planning
decisions to reduce disparities in urban health, as well as strategies to reduce the burden of
diseases associated with sedentary lifestyles.

There are four main limitations to this study. First, the physical inactivity variable
is based on survey data, which may introduce response bias. Secondly, this study does
not include the impacts of micro-community environments as street connectivity. Future
research can capture these impacts to represent the spatial features of this variable. Third,
we employed the spatial scan statistic, which imposes the assumption of elliptical clusters,
which may not hold true. Fourth, our study may inform future research by identifying
neighborhoods that exhibit elevated physical inactivity levels, as well as their associations
with socioeconomic and environmental factors, but due to the retrospective study design,
our ability to identify causal relationships is limited. Fifth, our data is aggregated to census
tracts and, therefore, subject to the modifiable areal unit problem (MAUP, [76]). Methods
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exist to at least partially address the issue by circumventing the use of predefined and
imprecisely measured neighborhood definitions [77].

5. Conclusions

This study used spatial clustering and geographically weighted regression to assess
the spatially varying relationships between social and environmental factors and physical
inactivity in Chicago, IL, USA. Our main finding is that the spatial distribution of physical
inactivity prevalence varies based on income, land use planning, tree canopy, education,
people with disabilities, and language barrier.

Accordingly, suggestions for planning interventions for Post Pandemic Cities include
(1) To perceive cities as a system of interconnected infrastructures; (2) To integrate dynamics
of leisure and entertainment in renewal and urban development practices to promote
healthy behavior and health equity; (3) To promote socio-economic and spatial diversity
of urban spaces; (4) To understand barriers of people with different types of disabilities
(e.g., intellectual, mobility, hearing, vision, and psychological disabilities) and include
their spatial and environmental needs in urban development projects; (5) To design urban
projects by considering people’s socio-environmental perception because physical activity
behavior is driven by personal perception, and (6) To identify tree canopies as urban
features. Trees encompass the layer of leaves, branches, and stems that shelter the ground
when viewed from above. Canopies in synergy with other urban features on a human scale
contribute to physical activity and health equity.

This cross-sectional study used public data to explore the socio-environmental vari-
ables associated with physical inactivity prevalence. Further study is needed to discover
the causality between perceptions of the environment and physical inactivity prevalence.
Lastly, longitudinal studies should be conducted to identify causal relationships between
socio-environmental actors and physical inactivity outcomes.
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