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Abstract: For decades, urban sprawl has remained a major challenge for big cities in developing
countries, such as Bamako. The aim of this study is to analyze urban sprawl pattern changes over
time in the Bamako district using landscape index analyses. Four thematic maps of land cover (LC)
were produced by applying the maximum likelihood supervised classification method on Landsat
images for 1990, 2000, 2010, and 2018. Five landscape indexes were selected and calculated at class
level and landscape level using FRAGSTATS software. The results showed that the dominant class
for all the years within the landscape was a built-up class. Forest class covered the smallest area in
terms of the percentage of land (%PLAND), and was the weakest class in terms of number of patches
(NP) and largest patch index (LPI). Grassland is defined as the class with the highest fragmentation,
farmland with the highest shape irregularity and more heterogeneity, and built-up with the highest
patches. Class area (CA) of built-up showed the importance of sprawl in Communes 6, 5, and 4,
respectively. Indices trends and land use/cover showed infill, scattered, and ribbon developments
of sprawl. This study contributes toward monitoring long-term urban sprawl patterns using index
analyses.
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1. Introduction

Urbanization and urban development are keys toward global economic growth in the
21st century [1–4]. These processes show no sign of slowing down, and are probably the
most powerful, unforced, man-made forces that have emerged from fundamental change
in urban land cover and landscape around the world [5].

In recent years, urban sprawl pattern analysis has become an important field of re-
search around the world, mainly in developing Asian countries where different aspects
about urban sprawl were studied. While some studies have explored the economic, de-
mographic, and natural implications of urban sprawl processes [6–8], others focused on
political, environmental, and others aspects, such as the impacts [7,9,10]. However, in
recent years, urban sprawl has been studied in China and India, more so than other places.
Most of these studies, using different methods and approaches, found almost the same
results concerning the causes, characteristics, and processes of urban sprawl. The demo-
graphic, economic, natural, and political aspects are considered the mains factors of urban
sprawl [1,11,12]; while ribbon development, scattered development, and the infill develop-
ment are the main forms of urban sprawl patterns [13–15]. Arable loss, urban pollutions,
and natural hazards (e.g., flooding) are the main impacts of urban sprawl [16–18].

There are many “landscape” terms for the landscape. The definition of “one-in-one”
allows it to communicate clearly, and to formulate a “Manage” policy. It is a plot area that
contains a patch, mosaic, or landscape element. Landscape is a heterogeneous land that
forms a cluster of icing ecosystems in the form of re-formation [19]. The concept is different
from the normal ecosystem vision, with a focus on ecosystem groups and their interactions.
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There are other definitions of landscape, in terms of research or management background.
For example, from a wildlife perspective, we can define it as a mosaic land containing
habitat patches, where “ten-in-one” or “target” habitat patches are embedded [20]. Land-
scape is a heterogeneous model of an area of the physical world where certain properties
of the environment have scarlet as linear features, plaques, points, or continuous varia-
tion surfaces in space. For example, planning landscapes are typically watersheds and
management areas measured in tens to thousands of acres. In contrast, ecological research
focuses on moldology or a few square feet (a few square feet) of common interest. The
size and scale of the landscape is a direct function of its purpose. In the area of habitat
monitoring, the landscape must also reflect a meaningful spatial range and food for the
emphasis species [21].

In geographical terms, landscapes are defined as the combination of environmental
and human phenomena, which coexist in specific locations on the earth’s surface. Urban
areas are the most striking example of the human landscape. These areas involve the
highest levels of human activity and are often severely affected by environmental factors.
Remote sensing data and technology, combined with GIS and landscape pointers, are
helpful to study such landscapes.

This dais is the basis for analyzing and describing land cover (LC) and its changes [22].
Remote sensing images contain a wealth of information regarding morphology, compo-
sition, and dynamics of urban areas. It was widely proven to be a reliable means of
urbanization [23,24]. Collecting information about changes in LC is essential to better
understand the relationships and interactions between humans and the natural environ-
ment. Remote sensing data is one of the important data sources for LC space–time and LC
change research [22], and the use of remote sensing technology shows that urbanization has
become an important requirement of research. Since it explains the correct use of remote
sensing pointers, it is extensively used by researchers in urbanization analysis [24].

Many studies were carried out using remote sensing data sets to study changes in
space–time landscape patterns [16,25–27]. The main purpose of these studies is to analyze
the LC dynamics of space–time, especially urban growth/disorder and rural land loss.
Most of these studies clearly show that LC patterns and their changes are related to natural
and social processes [22]. These natural and social processes, known as change factors or
drivers, may be related to changes in physical conditions in the landscape environment,
natural disaster events, economic growth, population growth, political management, etc.
Therefore, the development of dedicated GIS and remote sensing (RS) technologies is very
clear in analyzing LC changes and understanding the dynamic stakes that can drive land
conversion in urban and rural areas [22]. Landscape pattern index is widely used to study
the spatial characteristics, change analysis, urban land use driving forces, and simulations
to predict future urban spatial patterns [6,15,18,28].

Many studies have also focused on landscape pattern analysis methods. A standard-
ized approach to measure and monitor landscape pattern attributes is described to support
habitat monitoring [1]. The process of monitoring uses disaggregated landscape maps,
where selected habitat attributes or different categories of habitat quality are represented
as different patch types, using maps generated by modeling methods [29]. The term “land-
scape pointer” is often used only to refer to indexes developed for classified maps. In
addition, although most landscape pattern analyses involve the identification of pattern
proportions and intensity, landscape pointers focus on the representation of the geometry
and spatial properties of classified map patterns on a single scale [30].

Many studies have also focused on urban sprawl spatiotemporal landscape using remotely
sensed data [10–14] in different aspects, such as characterizing sprawl patterns [7–9,11], predict-
ing sprawl pattern changes in the future using regression models [13,17,31,32], and quantifying
sprawl patterns [16,33,34]. Most of these studies have used different methods to achieve their
purposes (such as spectral, indexes [35], regression models, cellular automata Markov chain
(CA-Markov) model, multi-approach analysis, etc.), in order to characterize, predict, and quan-
tify the urban sprawl pattern [23,31,36]. According to these studies, urban sprawl patterns are
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characterized by three main types: ribbon pattern, scattered pattern, and leapfrog pattern. These
patterns are supported by three processes of sprawl: linear development, scattered development,
and infill development [24,25].

The Bamako district is retained for this study because, on the one hand, it is the
main and the biggest city in Mali; therefore, it faces a faster urban sprawl process, causing
multiple socioeconomic and environmental issues. On the other hand, no study has
investigated urban sprawl in the Bamako district, specifically by using landscape metrics
that understand urban sprawl. Thus, it will give new insight into Mali, in general, and the
Bamako district, in particular.

The main purpose of this study is to analyze landscape pattern changes in the Bamako
district by using four satellite images from four years (1900, 2000, 2010, and 2018), which
were acquired and processed with the supervised classification to create LC maps. Based
on the produced LC maps, the calculation of spatial metric indexes, using FRAGSTATS
software, is also a key part of this work. The selected spatial metrics are: the percentage of
land (%PLAND), the number of patches (NP), the landscape shape index (LSI), the largest
patch index (LPI), and the contagion index (Contag). The landscape indexes are used to
understand the process and to identify the types of sprawl patterns in Bamako. Other
purposes of this study are to provide a basis framework for future studies on landscape
analysis in the Bamako district, mainly, and secondarily, for the other city landscape
environments in the country, and produce perspectives and suggestions that could serve
planners and decision-makers.

The main contribution of this paper is that it reveals how to use, analyze, and interpret
the retained landscape indexes, and to retrace and identify a long-term urban sprawl
pattern over time using remote sensing multi-temporal imagery.

2. Materials and Methods
2.1. Study Area

Bamako is the capital of the Republic of Mali, located in the southwestern part of the
country. Bamako is further subdivided into six municipalities located in southern Mali
(Figure 1). Bamako has a maximum area of 267 square kilometers and 3,337,122 inhabitants,
with a density of 1115 people per square kilometer (source: Bamako City, 2016). It is located
on both sides of the Niger River at 8◦0′0” W and 12◦39’0” N. Bamako is divided into two
parts, the north bank and the south bank.
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For its geological structure and soil, the Bamako district is located in a granite basement
covered with sandstone deposits. The river is deeper into the basement of the leaf rock and
granite and sedimentary layers. There are two types of surface formations: soil caused by
rock change and lateralization, and alluvial formation that occupies the river’s primary
and secondary riverbeds and their tributaries. The dry season is located in northern Sudan,
which starts from November to April, and winter from May to October. The average annual
rainfall is between 750 and 1400 mm, with the driest months (January, February) to 290
mm, and the heaviest rainfall (August) at 290 mm. The annual temperature change is 6.7
degrees Celsius. In May, the average temperature is 31.5 degrees Celsius. The vegetation
formation of the Bamako area is a gallery forest of savannahs and rivers.

2.2. Materials

For the study, using Earth Explorer, four Landsat images for 1990, 2000, 2010, and
2018 were downloaded. To mitigate seasonal effects, which often result in errors in change
detection, only images obtained in the summer are used. This avoids the uncertainty
of annual variability [22]. Table 1 shows the characteristics and details of these images.
The Bamako shape file was used as secondary data acquired from satellite imagery of the
study area boundary. Remote sensing software (ENVI), geographic information system
software (Arc GIS), and space analysis program software (FRAGSTATS) were used for
further data analysis and processing.

Table 1. Characteristics of remotely sensed data.

Landsat Path Row Sensor Spatial
Resolution

Bands
Number

Radiometric
Resolution Acquisition Date

Landsat 5 199 51 TM 30 m 7 8 bits 11 September 1990
Landsat 5 199 51 TM 30 m 7 8 bits 30 December 2000
Landsat 7 199 51 ETM + 30 m 7 8 bits 2 December 2010
Landsat 8 199 51 OLI-TIRS 30 m 11 16 bits 6 January 2018

OLI-TIRS: Operation Land Imager-Thermal Infrared Sensor; TM: Thematic Mapper; ETM+: Enhance Thematic Mapper Plus.

2.3. Methods
2.3.1. Images Pre-Processing

The radiometric calibration and atmospheric correction were performed after layer
stacking. The atmospheric correction benefit is carried out to reduce the atmospheric
effects on the electromagnetic radiation. The Fast Line-of-sight Atmospheric Analysis of
Hypercubes (FLAASH) module was used as the main tool for atmospheric correction of
multispectral and hyperspectral images that operate in the wavelength range from visible
to infrared (above 3 µm). After this, the study area boundaries were extracted from the
preprocessed images using the Bamako district administrative limits shape file in ArcGIS
by the clipping method.

2.3.2. Land Cover Classification

Seven classes were defined based on local conditions of the study area and other papers,
using a supervised approach. These classes are: built-up, forest, water, farmland, grassland,
bare land, and rock. Class descriptions are shown in Table 2. “The supervised classification is
the process of identification of classes within a remote sensing data with inputs from as directed
by the user in the form of training data” [37]. The used supervised classification technique is the
Maximum Likelihood Classification (MLC) approach. This method of classification calculates
the probability for a given pixel to each class and then the pixel will be allocated to a particular
class with the highest probability. It calculates the mean and covariance matrix for the training
samples and assumes that the pixel values are normally distributed. “Then a probability density
function is defined and the input pixels are mapped based on the likelihood that the pixel
belongs to that particular class” [38]. The advantage of this sophisticated classifier is that it
provides good separation between classes if the training set is strongly and sufficiently defined.
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Training samples were selected for each class; supervised MLC algorithm was applied on all
images [39]. The number of used training samples per class, according to years, is provided
in Table 3. In order to improve the accuracy of the land cover classification results, some
spectral indices (NDVI: Normalized Difference Vegetation Index, NDBI: Normalized Difference
Built-up Index, and NDWI: Normalized Difference Water Index) were extracted and applied
to each classification’s result for the second supervised Maximum Likelihood Classification.
Finally, 5 × 5 Majority/Minority filter was applied to each land cover classification result, to
reduce “salt and pepper” [40].

Table 2. Classification class descriptions.

Class Code Class Name Class Description

1 Built-up Residential areas, settlement areas, industrial zones,
commercial zones, facilities, transportation networks.

2 Forest Natural vegetation, reserve vegetation areas
3 Water River
4 Farmland Cereals croplands, vegetables croplands, orchard lands
5 Grassland Grasses, shrubs, pasture
6 Bare land Non-vegetation and non-cultivate areas,
7 Rock Mountain rocks, river rocks, and hill rocks

Table 3. Distribution of reference data samples of the classification accuracy assessment.

1990 2000 2010 2018

Built-up 150 250 300 350
Vegetation 70 70 50 50

water 50 50 50 50
Farmland 150 150 100 50
Grassland 50 50 50 50
Bare land 60 60 50 50

rock 50 50 50 50
Total 580 680 650 650

Note that, the linear features, such as road classes, were drawn manually based only
on visual interpretation, because of the low-resolution of the images.

2.3.3. Post-Classification

Land cover classification results, originally in raster format, were converted into shape
file vector format in ArcGIS 10.2 for LC mapping. Four LC maps were produced for each
selected year (1990, 2000, 2010, and 2018).

In order to verify the reliability of the land use/cover classifications results, accuracy
assessment was performed in ENVI using the initial sample of the supervised classification
as reference data, and confusion matrix for each land cover classification result was created.
A total of 590 reference data were used for the result of 1990, 690 for 2000, and 650 for 2010
and 2018. The distribution of reference data between classes is presented is presented in
Table 3. The relative increased or decreased numbers of reference data are linked to the
changes of class area over time. Descriptive and analytical statistics, such as producer’s
accuracy, user’s accuracy, and overall accuracy, were derived from each classification error
matrix [41,42].

2.3.4. Landscape Pattern Changes Detection

In this study, change detection and analysis mainly focused on landscape pattern analysis
at both landscape and class levels in Bamako, and between communes and river sides for
comparative analysis. Class indexes were used to represent the spatial distribution and pattern
within a landscape of a single patch type; landscape indices represented the spatial pattern of
the entire landscape mosaic, considering all patch types simultaneously [43]. For this purpose, a
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number of suitable indexes were selected to describe landscape composition and configuration
over the time. Features, such as patch shape, size, quantity, and spatial combination [16–44],
were incorporated to define the complexities and arrangements of the landscape pattern by
indices. The landscape pattern analysis program software package FRAGSTATS (version 4.2)
was used to calculate the selected landscape metrics, both at landscape and class level from
categorical landscape maps. Then, categorical landscape maps were focused on land cover
time series maps, because of familiarity to managers, long history of use in landscape ecology,
and the fact that land management agencies largely base planning and analysis on such kind
of representation of landscape structure [45]. The spatial resolution of 30 m for all categorical
maps was used in this study. The description of the selected indices for class and landscape
level used in the current study is given in Tables 4 and 5, respectively. The methodology used
for landscape pattern analysis is presented in Figure 2.

Table 4. Class metrics and descriptions [43–46].

Class Metric Formula Description

Percentage of landscape
(%PLAND) pi=

∑n
j=1 aij

A (100)
%LAND equals the sum of the areas (m2) of all patches of
the corresponding patch type, divided by total landscape
area (m2), multiplied by 100 (to convert to a percentage).

Class Area (CA) CA =
∞
∑

n=1
aij

(
1

10000

) CA equals the sum of the areas (m2) of all patches of the
corresponding patch type, divided by 10,000 (to convert to
hectares); which is total class area. CA approaches 0 as the

patch type becomes increasing rare in the landscape.
Number of Patches (NP) NP = ni Number of patches of corresponding patch type (class).

Largest Patch Index (LPI) LPI =
max(aij)

n
j=1

A (100)

LPI equals the area (m2) of the largest patch of the
corresponding patch type divided by total landscape area

(m2), multiplied by 100 (to convert to a percentage).

Landscape Shape Index (LSI) LSI = 0.25 ∑m
k=1 eik√A

LSI equals the sum of the landscape boundary and all edge
segments (m) within the landscape boundary involving the

corresponding patch type (including those bordering
background), divided by the square root of the total

landscape area (m2).

Table 5. Landscape Metrics and descriptions adopted from [43–47].

Landscape Metric Formula Descriptions

Number of Patches (NP) NP = N
NP equals the number of patches in the landscape. NP
does not include any background patches within the

landscape or patches in the landscape border.

Largest Patch Index (LPI) LPI =
max(aij)

n
j=1

A (100)

LPI equals the area (m2) of the largest patch in the
landscape divided by total landscape area (m2),

multiplied by 100 (to convert to a percentage); in other
words, LPI equals the percentage of the landscape that

the largest patch comprises.

Landscape Shape Index
(LSI) LSI = 0.25E′√A

LSI equals the sum of the landscape boundary
(regardless of whether it represents true edge) and all

edge segments (m) within the landscape boundary
(including those bordering background), divided by
the square root of the total landscape area (m2), and

adjusted by a constant for a circular standard (vector)
or square standard (raster).

Contagion (CONTAG) CONTAG =

[
1 +

m
∑

i=1

m
∑

j=1

pij ln(pij)
2 ln(m)

]
(100)

CONTAG equals 1 plus the sum of the proportional
abundance of each patch type multiplied by number
of adjacencies between cells of that patch type and all
other patch types, multiplied by the logarithm of the

same quantity, summed over each patch type; divided
by 2 times the logarithm of the number of patch types;

multiplied by 100 (to convert to a percentage).
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3. Results and Discussions
3.1. Land Cover/Land Use Maps

In this study, four LC thematic maps were produced by applying the supervised clas-
sification method on multitemporal Landsat images. Figure 3 illustrates the classification
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results. There is a total of eleven classes; however, the classification has been applied on
only those classes (7) that represent area feature objects (built-up, forest, water, farmland,
grassland, bare land, and rock). Linear feature classes, such as roads (main road, secondary
road, tertiary road, and trunk), have been delineated as shape files using visual interpreta-
tion. Thus, information produced from road features do not reflect real information of the
entire road features of the real world, but give useful information on the spatiotemporal
evolution of roads with an account of the variation of length, as shown in Table 6. A study
on the important changes among road features from 1990 to 2018 showed that there was
no change in the trunk class after 1990 (24 km for all the years), while other roads showed
a visible increase, and continuous change over time, with a considerable change between
2010 and 2018 for all classes.
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Table 6. Roads statistics per kilometer from 1990 to 2018.

Class Name 1990 2000 2010 2018

Primary road 37 37 47 55
Secondary road 25 38 39 48

Tertiary road 9 14 16 32
trunk 15 24 24 24

According to classification results, class area, and growth ratio statistics (as shown in
Table 7), remarkable changes occurred in the study area from 1990 to 2018. These changes
were more significant in built-up and farmland classes. Over time, the built-up area was
increased from 6546 ha (in 1990) to 14,774 ha (in 2018), while, farmland reduced from 8841
ha (in 1990) to 3141 ha (in 1990). With this shift, the land use built-up area emerged as the
most dominant land cover type; and the major land cover changes within the study area
are concerned with both built-up and farmland. Growth ratio confirms that the major land
cover changes have occurred on built-up and farmland within the study area. The positive
ratio values were observed in built-up, with the highest ratio value (18.18%) in 2018. All
other classes have a negative growth ratio values, except bare land, with a ratio of 6.92
in 2000. The highest negative growth ratio was observed for farmland (−25.09) in 2018,
which implies that farmlands are being converted to other land uses, especially build-up in
Bamako, at a very fast rate.

Table 7. Class areas and growth ratio (using 1990 as baseline) statistics per hectare from 1990 to 2018.

Class
Name 1990 2000 2010 2018 Total

Area/ha Area/ha Ratio% Area/ha Ratio% Area/ha Ratio% Area/ha

Built-up 6546 11,606 11.18 12,308 12.73 14,774 18.18 45,234
Forest 298 180 −13.33 142 −17.62 265 −3.72 885

Farmland 8841 5563 −14.43 5168 −16.17 3141 −25.09 22,713
Water 1557 1295 −4.77 1397 −2.91 1243 −5.71 5492

Grassland 3288 2772 −4.45 2529 −6.56 2981 −2.65 11,570
Bare land 1955 2457 6.92 1253 −9.66 1581 −5.16 7246

Rock 2013 1813 −3.00 1580 −2.45 1239 11.64 6645

LC classification results also showed urban sprawl or growth outside the Bamako
district, in the rural surrounding municipalities. The east and the west part of LC maps
show sprawl outside the Bamako district with more evidence. Figure 4 also shows that
urban sprawl is more rapid these days in the surrounding municipalities of Bamako than
the district expansion.
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3.2. Accuracy Assessment

Accuracy assessment was performed to evaluate the reliability of thematic map classi-
fication results of four LC maps. The same regions of interest used for each LC classification
as training samples were used as reference data to perform accuracy assessment for each
thematic map. Overall accuracy values are 93.80, 91.77, 97.35, and 98.94%, respectively for
1990, 2000, 2010, and 2018. Water class is the most accurate followed by built-up class. The
overall accuracy values supported the high reliability of the classification results. More
details on accuracy assessment results are presented in Table 8.
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Table 8. Accuracy assessment results of classification.

Class
Code Class Producer’s Accuracy % User’s Accuracy %

1990 2000 2010 2018 1990 2000 2010 2018
1 Built-up 91.89 90.99 97.79 99.27 96.68 99.26 99.80 99.80
2 Forest 79.17 98.46 80.64 96.63 98.43 57.65 94.33 94.45
3 Water 95.91 99.20 97.84 99.79 99.80 100 100 100
4 Farmland 95.66 91.60 98.44 96.17 95.39 92.47 94.21 93.06
5 Grassland 91.82 83.76 91.65 98.74 87.77 61.00 94.01 98.23
6 Bare land 95 98.61 97.01 99.11 95.41 90.30 72.76 94.91
7 Rock 94.93 89.89 99.68 98.64 75.74 53.69 83.42 99.39

Overall accuracy% Kappa coefficient
1990 2000 2010 2018 1990 2018 2010 2018
93.80 91.77 97.35 98.94 0.91 0.84 0.97 0.98

3.3. Landscape Metrics
3.3.1. Landscape Metrics at Class and Landscape Level in the Entire Area of the Bamako
District

This study presents four landscape metric results at class level and four at landscape
level, over a scale of eighteen years, which is further subdivided into four years (1990, 2000,
2010, and 2018). The trends of these metrics are presented in Tables 9 and 10.

Table 9. Landscape metrics at class level in 1990, 2000, 2010, and 2018.

Classes Years PLAND NP LPI LSI

Built-up

1990 27.1845 311 13.7012 16.5211
2000 46.1413 391 21.7469 17.1606
2010 50.1609 269 21.5993 16.9946
2018 60.0585 996 55.4013 29.3123

Forest

1990 1.2107 132 0.1837 12.1043
2000 0.732 136 0.0671 12.0778
2010 0.5786 122 0.0525 12.025
2018 1.0721 387 0.0756 20.156

Water

1990 6.4418 5 6.4235 6.2755
2000 5.2467 10 4.9997 7.4042
2010 5.6894 13 5.3573 6.9639
2018 5.2023 19 5.064 8.272

Farmland

1990 35.9632 388 14.134 25.5479
2000 22.6274 485 2.8391 27.9014
2010 21.0479 488 2.6065 27.4551
2018 13.1367 1169 1.4829 41.3799

Grassland

1990 13.5781 387 4.9379 23.3818
2000 11.2811 498 2.8578 26.0285
2010 10.2098 491 1.3706 26.8234
2018 11.2016 1458 1.0053 44.9886

Bare land

1990 8.1192 452 1.6674 24.6779
2000 7.3376 641 0.6494 26.3993
2010 5.1082 345 0.7149 19.5508
2018 6.4376 329 1.3376 18.6906

Rock

1990 7.5026 481 1.2665 23.1608
2000 6.6339 356 0.8413 21.2528
2010 7.2052 365 1.1921 21.3772
2018 2.8913 302 0.7743 18.5955

PLAND is percent of landscape; NP is number of patches; LPI is largest patch index; and LSI is landscape
shape index.
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Table 10. Landscape metrics in landscape level in 1990, 2000, 2010 and 2018.

Years NP LPI LSI CONTAG

1990 2156 14.134 25.8132 47.7392
2000 2517 21.7469 25.5062 50.7749
2010 2093 21.5993 24.3075 53.1526
2018 4660 55.4013 33.2837 54.1367

At the class level, statistics of the percentage of landscape (%PLAND) show that the
built-up area was the dominant class with increase percentages of 27.18, 46.14, 50.16, and
60.05%, respectively for 1990, 2000, 2010, and 2018. Inversely, %PLAND of farmland class
decreased over the years at the rate of 35.96, 22.62, 21.04, and 13.13%, respectively, for 1990,
2000, 2010, and 2018. There were no significant changes in %PLAND for the other class
types, except rock class in 2018 (with 2.89%) and 7.502% in 1990, because, due to the lack of
space for construction in recent years, urban sprawl is undergoing in the mountain areas.

The statistics of the number of patches (NP) show that classes in the landscape were
becoming more fragmentized over the years, especially in the case of grassland with NP of
387 in 1990, 498 in 2000, 491 in 2010 and 1458 in 2018. The second fragmented class is the
farmland followed by rock (481NP), bare land (452 NP), farmland (388NP) in 1990; bare land
(641NP), grassland (498NP), and farmland (485NP) in 2000; grassland (491NP), farmland
(488NP), and rock (365NP) 2010; grassland (1458NP), farmland (1169NP), and built-up
(996NP) in 2018. NP value for a given class is high when this class type is fragmented more
in the landscape.

For the largest patch index (LPI), the highest values were observed in the built-up
class, and the lowest values in the forest class; and these values increased over the years.
For built-up, these values were 13.70% in 1990, 21.74% in 2000, 21.59% in 2010, and 55.40%
in 2018. It implies that the largest index in 1990 is lesser than the largest one in 2018 and
vice versa. LPI approaches 0 when the major patch of the parallel patch type becomes
progressively smaller. LPI is 100 when the whole landscape consists of a single patch of the
parallel patch type [25]. In the other landscape, there is no significant change in the LPI
values; it changes according to the year. Based on LPI values, it can be inferred that the
landscape shapes of each corresponding patch type in the landscape are more irregular.

Based on the LSI values, the most irregular patches were observed in 2018 for built-up
(29.31), forest (20.15), water (8.27), farmland (41.37), and grassland (44.98). In 2000, a similar
pattern was observed for bare land (26.39), while in 2010, it was for rock (21.3772). It can be
argued that the highest length of edge within the landscape of these corresponding patch
types is in the same years. LSI = 1 when the landscape consists of a single patch of the
consistent type and is circular (vector) or square (raster); LSI upsurges without limit as the
landscape form becomes more uneven, or as the length of edge inside the landscape of the
consistent patch type upsurges (or both) [43].

In regards to built-up indices, the trends of NP, LPI, and LSI showed an increasing frag-
mented development of built-up patterns, except from 2000 to 2010, where NP decreased
slightly. That is to say that the built-up pattern underwent scattered development during
the study period, except from 2000 to 2010, where infill development of the built-pattern
was undergoing. Moreover, analysis of built-up pattern changes based on produced LC
map analysis show some ribbon development of the built-up pattern along major roads,
rivers, mountains, and valleys.

In general, the study shows an increase in the value of indices between 1990 and
2000, a slight decrease between 2000 and 2010, and then a considerable increase from 2010
to 2018. Forest class covers the smallest area in the study area and is the weakest class
in terms of NP and LPI. It is inferred that forest is the less fragmented class and has the
smallest patch with the landscape. The grassland was designated as a class with the highest
fragmentation, farmland with the highest shape irregularity, and built-up with the highest
patches. The detailed general trends of theses landscape metrics are given in Table 9 and
Figure 5.
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At the landscape level, the highest number of patches in the entire landscape is located
in 2018 (4660 NP), with the lowest in 2010 (2093 NP). In other words, the landscape is
more fragmented and heterogeneous in 2018 than 2010. The second more fragmented and
heterogeneous landscape occurred in 2000 (2517 NP). The rapid increase in the NP in the
landscape throughout the study period could be explained by sustained urban sprawl.
This could be a signal of varied and fragmented sprawl development. As for largest patch
index, the highest value was observed in 2018, occupying 55.40% of the entire landscape,
and the lowest was in 1990, with 14.13%. LPI approaches 0 when the largest patch in the
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landscape is progressively small. LPI reaches 100 when the whole landscape contains a
solitary patch—that is, when the major patch encompasses 100 percent of the landscape [43].
Based on the values of LSI, it can be said that landscape shapes were irregular within each
landscape for all years. The most irregular landscape shape was observed in 2018 with a
value of 33.28. The irregularity of shapes within the landscape for all the years inferred
that there was no significant change of shape lengths over the years, except for 2018. LSI
is 1 when the landscape contains a single circular (vector) or square (raster) patch. LSI
increases without limit as the landscape shape becomes more uneven, or as the length of
the edge inside the landscape upsurges (or both) [43]. For the landscape contagion index
(CONTAG), the study notices a mean distribution of the patches types adjacencies within
the landscape. The CONTAG indexes values varies from 47.73% in 1990, 50.77% in 2000,
and 53.15% in 2010, to 54.13% in 2018. That means a slight increase the distributions of the
adjacency and heterogeneity of landscape patches over the years. CONTAG is close to 0 as
the distribution of adjacent (single cell level) between unique patch types becomes less and
less uniform. CONTAG is 100 when all patch types are equal to all other patch types [43].

Overall, an increase for all indexes over the years was noticed, except in 2010 for NP,
LPI, and LSI (Table 10 and Figure 6).
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3.3.2. Landscape Metrics and Built-Up Pattern Change between Communes

According to the class area (CA) values from built-up class, it has been remarked
that, over the study period, commune 6 registered the highest value of built-up area
followed by commune 5, except in 1990, where commune 1 scored the second highest area
of built-up. Then, in 2000, communes 5 and 4 became the second and third communes,
respectively, after commune 6, in terms of the highest built-up areas. Communes 3 and
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2 scored, respectively, the lowest values of built-up areas over the study period. This
is normal because these communes are located in the city center and are enclosed and
blocked in their sprawl, on the one hand, by mountains and rivers, and on the other hand,
by communes 1 and 4. Figure 7 shows the trends of CA curves.
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PLAND values increase for each commune over the study period; however, it is
important to note that there is no agreement between trends of CA and PLAND by making
comparisons between communes. Communes 3 and 2, which registered the lowest values
of CA, have almost the highest value of PLAND over the study period, while commune 6
which scored the highest value of CA, had the lowest value of PLAND in the study period.
This is not normal, but it can be explained by the effects of the difference of spatial domain,
as mentioned before. Communes 3 and 2 have the smallest areas among the communes. A
smaller space domain may have a percentage of PLAND more than a larger space domain,
so the class considered is larger, in a larger space domain than in the smaller one.

Concerning the configuration of the built-up class, trends of NP values show that
the built-up class in each commune has undergone a fragmented development process
of sprawl over the study period except in 2010, where all values of NP decreased, except
for commune 6, which remained the most fragmented commune. Communes 6 and 4
developed the highest level of fragmented sprawl process. The decrease trend in NP values
could be explained by an infill development of sprawl, which fill the open spaces between
built-up, and merge smaller patches to bigger patches, creating a decrease in NP. Figure 8
shows the trends of the NP curve.

The highest values of the largest patch (LPI) are registered in 1990 and 2000 in com-
mune 2 (50.39 and 61.10, respectively), in 2010 and 2018 in commune 5 (67.50 and 75.29,
respectively), followed by commune 2, while the lowest values of LPI are registered, respec-
tively, during the study period in commune 6 and 4, which registered the more fragmented
built-up sprawl process over the study period. Thus, it could be concluded that, the higher
the LPI value, the more the landscape is compact and less fragmented, and when the value
of LPI is low, the landscape is less compact and more fragmented. For example, a value of
LPI of 50.39 means that the largest patch of built-up class occupies an area of 50.39% within
the total area of built-up class (or built-up landscape).
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Figure 8. Curve of NP for built-up in Bamako district from 1990 to 2018.

Trends of LSI values also confirmed that commune 6 and 4 had more irregular shapes,
were less compact, and more fragmented because they had the highest value of LSI. When
LSI equals 1, the landscape consists of a single patch; LSI increases without limit as the
landscape shape becomes more irregular or as the length of the edge within the landscape
increases (or both) [25]. Table 11 shows more details regarding trends of metrics, and
Figures 7 and 8 show the curve trends of landscapes metrics.

Table 11. Landscape metrics at class level for built-up between communes in Bamako.

1990

Commune CA PLAND NP LPI LSI

Commune 1 1205.19 34.26 38 32.94 5.71

Commune 2 946.80 51.30 19 50.39 4.80

Commune 3 746.10 37.53 41 33.92 6.07

Commune 4 996.75 22.23 59 11.52 7.66

Commune 5 1170.27 29.47 44 16.38 6.88

Commune 6 1482.12 17.04 133 9.65 10.26

2000

Commune CA PLAND NP LPI LSI

Commune 1 1823.04 51.78 64 49.36 6.26

Commune 2 1143.45 61.79 11 61.10 4.52

Commune 3 1138.95 57.31 36 50.38 6.28

Commune 4 1855.98 41.34 91 31.44 8.40

Commune 5 2418.39 60.77 36 59.73 6.58

Commune 6 2939.31 33.74 187 25.39 11.64
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Table 11. Cont.

2010

Commune CA PLAND NP LPI LSI

Commune 1 2009.97 57.15 43 53.73 6.82

Commune 2 1158.57 62.88 16 60.90 5.37

Commune 3 985.05 49.59 30 40.52 6.53

Commune 4 2102.40 46.89 51 31.69 8.06

Commune 5 2703.24 67.97 23 67.50 5.49

Commune 6 3331.51 38.29 136 29.86 11.39

2018

Commune CA PLAND NP LPI LSI

Commune 1 2548.08 72.34 86 70.56 10.93

Commune 2 1291.50 69.78 67 64.92 7.96

Commune 3 1103.31 54.41 127 49.75 11.52

Commune 4 2605.59 57.97 257 54.25 15.68

Commune 5 3052.08 76.65 121 75.29 7.60

Commune 6 4152.51 47.68 372 39.54 19.21

Thematic maps from classification used to extract indexes for each commune and each
river side are presented in the index as Supplementary Materials.

3.3.3. Landscape Metrics and Built-Up Pattern Change between River Sides

Trends of CA and PLAND values show that the areas of built-up classes were more
important on the river’s left side than the right side throughout the study period. CA
varied on the river’s left side (RLS) from 1990 to 2018, with values ranging from 3894.03
to 7556.04 ha, an increase of 3662.01 ha (7556.04–3894.03); while it varied during the same
period on the river’s right side (RRS), with values ranging from 2651.31 to 7207.92 ha, an
increase of 4556.61 ha (7207.92–2651.31). It is important to note that, despite the CA and
PLAND values being higher on the RLS than the RRS, the gain in built-up area over the
study period is more important on the RRS than the RLS so it could be concludes now that
sprawl, or changes in built-up patterns, were more important on the RRS than on the RLS

Trends of NP values are high on the RRS than on the RLS, except in 2018, which
means that built-up on the RRS was more fragmented than the one on the RLS. The lowest
degree of fragmented development on the two sides is registered in 1990, and the highest
fragmented development is registered in 2018; so built-up pattern was more fragmented
on each side of the river.

NP value trends decreased on both sides, from 2000 to 2010, which could be explained
by an infill development period of sprawl. LPI values show that the largest patch was
larger on the RLS than on the RRS, and LSI values show that built-up pattern was more
irregular on the RRS than on the RLS; in other words, the built-up shapes on the RRS were
less compact than the one on the RLS.

Despite some difference in metric values, both sides developed the same trends of
development over time, as curves show trends in Table 12.
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Table 12. Landscape metrics for built-up between the river’s left side and right side.

Year
PLAND NP LPI LSI CA

RLS RRS RLS RRS RLS RRS RLS RRS RLS RRS

1990 32.91 20.94 142 169 27.74 9.94 11.18 12.02 3894.03 2651.31
2000 50.33 42.22 187 214 45.01 36.19 11.69 12.68 5961.15 5355.45
2010 52.92 47.63 118 151 44.71 41.69 12.32 11.80 6258.24 6035.67
2018 63.74 56.82 504 493 61.00 50.99 22.38 19.42 7556.04 7207.92

Note: RLS: river left side; RRS: river right side.

The findings demonstrate the utility of remote sensing imageries and landscape
metrics for analysis of urban environments. The results also provide useful information
and understanding about the study area environment and dynamic changes over the study
period. The multiscale analysis done in this study makes comparisons between communes,
in terms of built-up or sprawl pattern changes. Thus, this method identifies the degree of
urban sprawl in each commune and each river side. This study also reveals and shows how
to use, analyze, and interpret the retained landscape indexes to retrace and identify long-
term urban sprawl patterns over time, by using remote sensing multi-temporal imagery.

However, it could be possible to create more details in class types, but the low-
resolution of the images did not allow that. This resolution problem did not allow to directly
integrate the road entities in the supervised classification as mentioned above. High-
resolution of images is required to produce deep details by increasing or separating more
features for classes in the landscape identify within built-up: commercial and industrial
area, settlement area, residential area, administrative area, etc. Data acquired from the
very high-resolution sensor might be helpful in deriving more detailed classification of the
landscapes [48–50]. It will be helpful in developing a deep understanding of landscape
composition and configuration of the desired study area, mainly in developing countries,
where urban structures and construction patterns are usually of smaller scale, and higher
incomplexity, than in developed countries [51]. However, the pertinence of the findings of
this research is still unaffected by this gap. It can be considered as the basis of such research
and developing future plans for Bamako city management.

This study utilized the landscape metrics method in the Bamako district, with metrics
that were successfully used in other places, in order to monitor landscape changes based
on index analyses [5,35].

The main importance of this test study is that it could be a basis or framework for
future studies on landscape analysis in the Bamako district (mainly) and secondarily
for other cities in the country. It could also serve planners or decision-makers when
implementing suitable policies and reliable management mechanisms on urban sprawl.

4. Conclusions

For this study, four different land cover maps from Landsat images of 1990, 2000, 2010,
and 2018 were used to evaluate a set of four selected metrics at class level, and five selected
metrics at landscape level to reveal patterns and changes of urban sprawl in the study area.
The findings prove a major dynamic in the landscape throughout the study, with major
changes in built-up and farmland. The LC maps, area, and growth ratio statistics from
classification could be helpful in the visualization of the real change in landscape within
the study area. Index statistics, in terms of PLAND, NP, LPI, and CONTAG also showed
significant changes. Based on index statistics at class level, the study concluded that built
up gained a significant area in terms of size (with a PLAND from 27.18% in 1990 to 60.05%
in 2018). Farmland lost the maximum area (with a PLAND from 35.96% in 1990 to 13.13%
in 2018). The most fragmented class was bare land (387 NP in 1990 and 1458% NP in 2018)
and the less fragmented was water (5 NP in 1990 and 19 NP in 2018). Grassland suffered
maximum fragmentation, farmland with the highest shape irregularity, and built-up with
the highest patches. The findings also noticed that, at the landscape level, the highest
number of patches in the entire landscape occurred in 2018 (4660 NP), and the lowest in
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2010 (2093 NP). In other words, the landscape was more fragmented in 2018 than 2010. The
second, more fragmented landscape, was observed in 2000 (2517 NP). Urban sprawl was
more important in communes 6, 5, and 4, respectively, according to CA trends over the
study period. The road feature changes from manual drawings illustrated a real change of
landscape in the Bamako district from 1990 to 2018. Important changes were observed for
all types of road feature.

This study revealed the capabilities of landscape indexes to monitor well landscape
pattern changes of urban sprawl.

The findings show that urban sprawl is still actually one of the spatial phenomena that
highly impacts the urban or natural environment in Bamako district, a deep understanding
of these patterns and dynamics is necessary for all future planning or policy actions. Thus,
this study suggests further studies on sprawl pattern change and its driving forces. Urban
sprawl is a complex and difficult phenomenon to grasp, but this study will make it possible
to further understand the process of the phenomenon, and to grasp important details that
studies solely on landscape change by indices cannot provide.

Supplementary Materials: The following are available online at https://www.mdpi.com/2413-885
1/5/1/4/s1, Figure S1: Land use/cover maps for Commune 1: a (1990); b (2000); c (2010); d (2018),
Figure S2: Land use/cover maps for Commune 2: a (1990); b (2000); c (2010); d (2018), Figure S3: Land
use/cover maps for Commune 3: a (1990); b (2000); c (2010); d (2018), Figure S4: Land use/cover
maps for Commune 4: a (1990); b (2000); c (2010); d (2018), Figure S5: Land use/cover maps for
Commune 5: a (1990); b (2000); c (2010); d (2018), Figure S6: Land use/cover maps for Commune
6: a (1990); b (2000); c (2010); d (2018), Figure S7: Land use/cover maps for River left side: a (1990);
b (2000); c (2010); d (2018), Figure S8: Land use/cover maps for river right side: a (1990); b (2000);
c (2010); d (2018).
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