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Abstract: The main objective of the present study was to integrate a logistic regression model (LRM),
a geographic information system (GIS) and remote sensing (RS) techniques to analyze and quantify
urban growth patterns and investigate the relationship between urban growth and various driving
forces. Landsat images from 1986, 2000, and 2016 derived from the TM, ETM+, and OLI sensors
respectively were used to simulate an urban growth probability map for Conakry. To better explain
the effects of the drivers on the urban growth processes in the study area, variables for two groups
of drivers were considered: socioeconomic proximity and physical topography. The results of the
LRM using IDRISI Selva indicated that the variables elevation (β7 = 1.76) and distance to major
roads (β4 = 0.67) resulted in models with the best fit and the highest regression coefficients. These
results indicate a high probability of urban growth in areas with high elevation and near major roads.
The validation of the model was conducted using the relative operating characteristic (ROC) method;
which result exhibited high accuracy of 0.89 between the simulated urban growth probability map
and the actual one. A land use/land cover (LULC) change analysis showed that the urban area had
undergone continuous growth over the study period resulting in an extent of 143.5 km2 for the urban
area class in 2016.
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1. Introduction

The process of urbanization has been traditionally associated with other important economic and
social transformations, resulting in greater geography mobility, lower fertility, longer life expectancy
and population ageing [1]. Cities are important drivers of development and poverty reduction in
both urban and rural areas, as they concentrate much of the national economic activity, government,
commerce, and transportation, and provide crucial links with rural areas, between cities, and across
international borders. Urban living is often associated with a higher level of literacy and education,
better health, greater access to social services, and enhanced opportunities for cultural and political
participation. Nevertheless, in developing countries, rapid demographic and uncontrolled urban
expansion have exceeded the capability of most cities for appropriate management [2]. City growth
and changes in land-use patterns have various important social and environmental impacts, including
the loss of natural spaces, increased vehicular congestion, urban heat island effects, landscape
fragmentation and homogenization, the loss of highly productive agricultural lands, alterations
in natural drainage systems, and reduced water quality [3]. To understand the spatial and temporal
dynamics of these processes, the factors that drive urban growth must be identified and examined,
especially those factors that can be used to predict future changes and their potential environmental
effects [4].
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Conakry, the capital of the Republic of Guinea, has experienced the highest population growth
in the country, averaging 6.1% annually. The city’s population was estimated at nearly 2 million in
2014 [5]. This explosive population growth was accompanied by geographical expansion, with the city
more than quadrupling in size since the country declared independence in 1958 [6]. The distribution
of cities throughout the country’s territory is balanced, but the hierarchy of cities is very unbalanced as
there is no other city counterbalancing the attraction of Conakry. Almost half of the country’s urban
population resides in Conakry, which has 15 times the population of Kankan, the second-largest city
in the country [7]. Conakry’s small land area and relative isolation from the mainland have created
an infrastructural burden since independence, showing a great imbalance in the urban network. Urban
growth in Conakry largely reflects the problems and shortcomings of Guinea’s overall economic
development since independence, and has taken place with very little urban development planning
or control [8]. The authorities in charge of urban planning and management have faced increasing
difficulties to plan for spatial expansion and land development, to identify, coordinate and carry
out the most critically needed investments in basic infrastructure and services, and to ensure proper
maintenance of existing assets. Inadequate urban planning and management have led to massive,
uncontrolled urban expansion. The city has become critically overcrowded, creating considerable
pressure on scarce basic urban services and resulting in drastic degradation of the environment. As in
many developing countries, Conakry has been faced with unprecedented urbanization issues caused by
unplanned urbanization processes such as emergence of slums on coastal banks, poverty and mobility,
deterioration of the road surfaces, air and water pollution, deficient solid waste collection and disposal,
recurrent flooding during the rainy seasons in many parts of the city, and the alteration in climate
patterns. At present, urban growth is one of the most widely discussed issues in urban studies [9].
The encroachment of urban land on non-urban land has become a common phenomenon throughout
developing countries, and its impact has attracted increasing attention from planners, researchers and
policy makers [10]. However, there are few studies of urban growth in Guinea, including in Conakry.

Studying and monitoring urban growth dynamics has become easier due to enormous
developments in the fields of geographic information system (GIS) and remote sensing (RS) resulting
in powerful tools to predict and model urban growth [11,12]. Due to the advances in spatial analysis,
(GIS), and (RS) techniques, extensive efforts have been undertaken to analyze the complex spatial
patterns of urban landscape changes and to understand the underlying factors using spatially explicit
models [13]. Evidence has shown that applying spatial statistical models to urban expansion not
only contributes to the understanding of the complex urbanization process; but also offers valuable
information for environmental risk assessment [14]. Several scholars have used various empirical and
theoretical modeling techniques, one of which is the logistic regression model (LRM). The application
of an LRM for urban growth modeling results in an improved understanding of the urbanization
process, and provides a clear picture of the weight of the explanatory variables and their respective
functions [15]. LRMs also enables the integration of socioeconomic, demographic and topography
factors which are not feasible in many models [16]. Based on this background, this study has integrated
an LRM, GIS, and RS approach to analyze and quantify the urban growth patterns in Conakry from
1986 to 2016 and examine the relationship between urban growth and various explanatory variables.

2. Materials and Methods

2.1. Study Area

The study area consists of Conakry city, which is located in the maritime region of the Republic of
Guinea (Figure 1). The city covers area extending from 9◦31′N to 9◦51′N latitude and from 13◦42′W to
13◦70′W longitude. The geographical area of Conakry is around 420 km2, which is relatively small and
represents only 1% of the country’s area [17]. Conakry is divided into five communes: (1) Kaloum,
which includes the major islands and the city’s economic and administrative center, (2) Dixinn, which
includes the university of Conakry and many embassies, (3) Ratoma, (4) Matam, and (5) Matoto,
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the location of Conakry’s international airport. The city of Conakry originated in the small Tombo
Island and spread up the Kaloum peninsula, sandwiched between mangrove swamps. More than
20 rivers originate inside the city’s borders, contributing to its relatively high precipitation. Mangroves
line much of Conakry’s coast, a United Nations Environment Programme (UNEP) report issued in 2008
outlined the growing pressure placed on these forests by the local population, especially after an influx
of refugees from Liberia and Sierra Leone in the 1990s [6]. The area of the city was originally covered by
a dense tropical mangrove forests, but compared with the rest of the Guinean territories, the landscape
patterns have changed considerably in recent years with substantial reduction in vegetation cover due
primarily to the expansion of residential land, the felling of trees to produce charcoal, the use of forests
as pastures by livestock owners during the dry season, and general deforestation [18]. Conakry’s
economy revolves largely around the port, which has moderne facilities for handling and storing cargo,
mainly, aluminum and bananas. Slash-and burn agricultural practices along the coastal bank, fishing
and commerce are the principal activities of the residents. The climate is tropical is characterized by
two alternating seasons (dry and wet). The wet season lasts from June to October and the dry season
from December to April. The vegetation consists of mangroves in the marshy zone, forests of palm
trees, coconuts, and some grasslands. The terrain is characterized by estuaries and littoral plains and
is dominated by cliffs and the Kakoulima Mountain Range, which reaches a height of 1007 m and is
located 60 km north–east of Conakry.
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2.2. Data and Methods

The data used in this study were collected from various sources. First, Landsat images from
different sensors, Thematic Mapper (TM) acquired on 3 January 1986, Enhanced Thematic Mapper
(ETM+) on 19 December 2000, and Operational Land Imager (OLI) on 20 January 2016, were
downloaded from the United States Geological Survey (USGS) and were used as primary data.
Subsequently, auxiliary data were obtained by downloading from other geospatial data sources
and by digitization as shown in Table 1. The study area was extracted from the temporal imagery by
overlaying the boundary of the city. ArcMap10.2 GIS software was used for the different stages of
images processing; namely pre-processing, generating classified land use/land cover (LULC) maps,
and conducting the spatial analysis. For the image classification process, a maximum likelihood
classification (MLC), which is a supervised classification method,was used for the three images by
selecting appropriate polygons as training sites. The satellite images were classified into four LULC
types: (1) Urban, (2) Water, (3) Vegetation, and (4) Bare ground. The accuracy of the classification was
assessed by using ground control points collected during the fieldwork and obtained from Google
Earth archive images. The accuracy of each classified image greater than 80%. All the data used in this
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study were geometrically referenced to the WGS 1984, UTM zone 28 projection systems. Subsequently,
thematic raster maps of all variables were created in Arc Map 10.2 with a grid cell size of 30 m × 30 m.
Finally, these raster data were converted into ASCII format for further use in the IDRISI Selva GIS
software for LRM calibration and validation.

Table 1. Data used and their sources.

Data Data Source

Landsat (TM 1986) USGS Earth Explorer
Landsat (ETM +2000) USGS Earth Explorer

Landsat (OLI 2016) USGS Earth explorer
Administrative boundary map Diva-GIS

Aster DEM USGS Earth Explorer
Roads Network Diva-GIS

Active Economic Center Google Earth, digitized
International Airport Google Earth digitized

Industrial Open Street Map downloaded
Ground controll point data Garmin GPS

3. Logistic Regression Model

The use of LRM is one of the most popular approaches to modeling, and can be used for explaining
the relationship of a number of xi explanatory variables to a dichotomous single dependent variable
y, which represents the occurrence or non-occurrence of an event [19]. Logistic regression analysis
determines the relationship between the explanatory variables and the probability of the occurrence
of an event [20]. The LRM also describes the effects of several factors [21]. The use of this model can
determine the coefficients of the explanatory variables (both continuous and categorical), whereas the
dependent variable is a binary categorical variable [22]. The value of the binary dependent variable
is either 1 or 0; and can be computed by using the well-known logistic regression equation [23].
The model gives the probability of the existence or the nonexistence of each type of LULC change at
every location based on the driving factors, and quantifies the interaction between the different land
use types and their drivers [24]. LRM takes the following form:

logit (Y) = β0 +
n

∑
i=1

βixi (1)

where xi is the explanatory variable, and logit(Y) is a linear combination function of the explanatory
variables. The parameter βi represents the regression coefficient to be estimated. The logit (Y) can be
tranformed back to the probability that (Y = 1) :

P(Y = 1) =
exp(β0 + ∑n

i=1 β0 xi )

1 + exp(β0 + ∑n
i=1 βixi)

(2)

The typical logistic model can effectively explain the determinants of urban land conversion.

3.1. Dependent Variable

In this study, LRM was used to model the probability of change from a non-urban to an urban
land use type. The dependent variable is a dummy variable with values of 0 representing no change
and 1 representing change, respectively. The urban growth that occurred between the periods of
(1986–2000) and (2000–2016) was considered as dependent variable (Figure 2). Hence, a boolean image
with the categories non-urban growth (cells remained unchanged) to urban growth (cells changed)
was created. To generate these spatial growth maps, the raster calculator function in ArcMap10.2 was
used to compute the urban growth between 1986 and 2000 and 2000 and 2016, respectively. The urban
growth between 1986 and 2000 was used in the calibration phase of the LRM and for examining the
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relationship between the urban growth and different drivers, while the urban growth between 2000
and 2016 was used to simulate the urban growth probability map and to validate the model.
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3.2. Explanatory Variables of Urban Growth

The selection of the urban growth drivers is a crucial aspect of urban growth modeling, because
land use drivers are the main characteristics that can help to understand the processes of land use
transition from non-urban to urban. There is no hard and fast rule or known global formula for
selecting land use drivers. Therefore, the list of land use drivers can be endless [25]. Based on
a literature review, field survey and personal communications with members of the urban planning
bureau (UPB) in Conakry, the drivers of the urban growth in the study area were summarized into
two categories. Socioeconomic proximity, and landscape topography (Table 2). The distances to active
economic center (X1 = DAEC), to the urbanized area (X2 = DUA), to industrial zones (X3 = DIZ),
to major roads (X4 = DUA), and to international airport (X5 = DIA) were selected as socioeconomic
proximity variables, while slope and elevation as topography variables. The distance in this study
refers to the Euclidean distance in the raster image between each cell and the nearest cell of the
target features. The distance variables were computed in ArcMap10.2 using a distance operator, and
were converted into ASCII format prior to import into IDRISI Selva for model calibration. The slope
and elevation data were extracted from the digital elevation map (Aster DEM). The slope variable
was generated in percentage format, then reclassified into four categories based on the topographic
charateristics of the study area: 0–2: low slope, 2–5: gentle slope, 5–9: moderate slope, 9–10: steep
slope. However, there was a high discrepancy in terms of the data range between the proximity
distance variables and the topographic variables. Therefore, the distance variables were normalized to
a range of 0.1 to 10 before including them into the model. This process is particularly critical when
an LRM is applied; since it requires that the variables are linearly related to the dependent variable.
A natural log transformation was performed for the continuous distance variables; because the
natural log transformation is commonly effective in linearizing distance decay variable. The Variable
Transformation Utility in IDRISI Selva was used and applied to all distance variable.



Urban Sci. 2017, 1, 12 6 of 15

Table 2. List of the explanatory variables included in the model.

Variable Description Nature

Dependent (Y) 1 Urban growth, 0 no urban growth Dummy
Explanatory variable

Socioeconomic factors

DAEC (X1) Distance to active economic center Continuous

DUA (X2) Distance to urbanized areas Continuous

DIZ (X3) Distance to industrial zones Continuous

DMR (X4) Distance to major roads Continuous

DIA (X5) Distance to international airport Continuous

Topography factors

Slope Percentage rise Continuous
Elevation Elevation Continuous

3.3. Multicollinearity Analysis of the Explanatory Variables

A correlation test was conducted among the explanatory variables to check for multicollinearity.
Multicollinearity describes a situation in which two or more explanatory variables are highly; linearly
correlated. Perfect multicollinearity exists if the correlation between two or more explanatory variables
is equal to 1 or −1 [26]. One consequence of multicollinearity is that the standard errors of the affected
coefficients tend to be large. In that case, the test of the hypothesis that the coefficient is equal to zero
may lead to a failure to reject a false null hypothesis of no effect of the explanatory variable. In this
study, using a Pearson’s correlation coefficient and the variance inflation factors (VIF) assessed the
multicollinearity test among the explanatory variables. The Pearson’s correlation coefficient has shown
that the highest correlation coefficient of 0.75; which was observed between distance to industrial
zones (DIZ), and distance to major roads (DMR). This high correlation occurred due to the fact that the
major roads are directly related to the establishment of the industrial zones. Generally, a little bit of
multicollinearity is not necessarily a huge problem, but severe multicollinearity is a major problem,
because it theorically shoots up the variance of the regression coefficients, making them unstable [27].
Additionally, the VIF is another statistical approach to check for the presence of the multicollinearity in
the regression analysis; and it has been used in many studies [28,29]. For determining the presence of
multicollinearity using the VIF technique, the general rules of thumb is that, values of VIF should not
exceed 10 [30]. According to the result shown in Table 3, there was no severe multicollinerity problem.

Table 3. Correlation Coefficients and the Variance Inflation Factors (VIF) of the explanatory variables.

Variable DAEC DUA DIZ DMR DIA Slope Elevation VIF

DAEC 1 0.029 0.44 0.31 0.30 0.09 0.13 1.99
DUA 1 0.58 0.53 0.50 −0.48 −0.46 1.62
DIZ 1 0.75 0.51 −0.32 −0.41 7.84

DMR 1 0.58 −0.43 −0.54 5.86
DIA 1 −0.24 −0.26 3.20

Slope 1 0.58 1.21
Elevation 1 1.17

3.4. Statistical Test for Association between Dependent and Explanatory Variables: Cramer’s V Test

The Cramer’s V test measures the association between two nominal variables, giving a value
between 0 and +1. The explanatory test procedure is based on a Cramer’s V contingency table analysis,
which can test the strength of the association between the dependent variable (in this case, urban
growth for the period of (1986–2000) and the explanatory variables. The test was performed using the
explanatory variable test procedure in IDRISI Selva. Variables with a Cramer’s V value of about 0.15 or
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higher are good while those with values of 0.4 or higher are very good [31]. We found a high-strength
association between Cramer’s V and some explanatory variables (Table 4). However, the LRM can
explain more explicitly the association between these variables and the dependent variable.

Table 4. Association between dependent variable and explanatory variables using Cramer’s (V).

Explanatory Variables Cramer’s V p Value

DAEC 0.15 0.00
DUA 0.22 0.00
DIZ 0.32 0.00

DMR 0.39 0.00
DIA 0.22 0.00

Slope 0.32 0.00
Elevation 0.42 0.00

3.5. Model Validation Using the ROC Technique

The ROC method is excellent for assessing the validity of a model that predicts the location
of the occurrence of a class by comparing a suitability image depicting the likelihood of that class
occurring. This method has been applied in LULC modeling studies and is considered a reliable
method to validate models [32]. It calculates the percentages of false-positives and true positives for
a range of thresholds or cut-off values, relating them in a chart. The ROC computes the area under
the curve, which varies between 0.5 and 1.0. A value of 0.5 indicates a random assignment of the
probabilities, indicating that the expected agreement is due to chance, while a value of 1.0 indicates
a perfect assignment of probability. It has been shown that an ideal spatial agreement can exist between
the actual urban growth and the predicted urban growth probability map [33]. In our study, the model
validation was conducted by comparing the simulated urban growth probability map for 2016 with
the actual growth map of 2016 using random samples of 5000 cells in the two maps. The ROC curve is
based on several two-by-two contingency tables. The contingency table is based on the comparison
between the actual and the predicted probability image. Table 5 shows the contingency table. ‘A’ is the
number of true positive cells; which are predicted as urban growth and agree with the actual image.
‘B’ is the number of false positive cells; predicted as urban growth but disagreeing with the actual
image. ‘C’ is the amount of false negative cells; which are predicted as non-urban growth but disagree
with the actual map. ‘D’ is the number of true negative; cells, which are predicted as non-urban growth
and agree with the actual image. From every contingency table, a single data point (x, y) is created,
where x and y are the rate of false positives and the rate of true positives, respectively.

(True positive %) = A/(A + C)

(False positive %) = B/(B + D)

Those data points are joined to form the ROC curve, from which the ROC value is computed. The
ROC curve is illustrated in Figure 3. The ROC value shows 0.89% of the area under the curve (AUC),
indicating high agreement between the predicted and the actual urban growth map.

Table 5. Two by two contingency table showing the number of grid cells in actual map versus
a predicted map.

Actual Map Total

Urban Growth (1) No-urban Growth (0)

Predicted
Image

Urban growth (1) A B A+B

No-urban growth (0) C D C+D

Total A + C = 95,941 B + D = 1,613,435 A + B + C + D = 1,709,376
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4. Results

4.1. LULC Change Analysis

Figure 4 and Table 6 show the LULC change maps and the changes in area, respectively. As it can
be observed from Table 6, the vegetation cover appeared to be the most dominant land cover type with
an area of 217.48 km2 representing 51% of the total land area in 1986. The urban area class represents
only 63.03 km2 in the same period. However, from 2000 to 2016, the urban land cover has sharply
increased to reach 206.58 km2, which represents 49% of the total area. Bare ground decreased over
the study period from 114.76 km2 in 1986 to 92.49 km2 in 2000, and to 39.88 km2 in 2016. A water
class showed almost no change in its area over the study period. For more representation of the LULC
changes in the study area, Figure 5 shows the changing pattern from 1986 to 2016.Urban Sci. 2017, 1, 12  9 of 15 
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Figure 4. LULC change maps of Conakry in (a) 1986, (b) 2000 and (c) 2016.

Table 6. LULC area changes over the study periods.

Year 1986 2000 2016

LULC Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

urban 63.03 0.15 123.76 0.29 206.58 0.49
water 24.63 0.05 21.80 0.05 26.10 0.06

vegetation 217.48 0.51 181.86 0.43 147.32 0.35
bare ground 114.76 0.27 92.49 0.22 39.88 0.09

Total 419.90 1.00 419.90 1.00 419.90 1.00
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4.2. Logistic Regression Analysis

In the LRM, the model statistics such as model chi-square, goodness of fit, pseudo R2 and area
under the curve/relative operating characteristic AUC/ROC were calculated (Table 7). The model
chi-square value offers a significance test for the LRM [34]. For assessing the significance of the
LRM, the goodness of fit is an alternative test to the model chi-square and is calculated based on the
differences between the observed and the predicted values of the dependent variable. The smaller
the difference is, the better the fit is [35]. The pseudo R2 (1-(lnL/lnLo)) value (1 is a perfect fit and
value 0 means no relationship) indicates how the logistic regression model fits the dataset [36]. Hence,
the regression equation of the best-fit prediction for the seven variables is given below:

y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 (3)

where β0 is the intercept, and β1, β2, β3, β4, β5, β6, and β7 are the regression coefficients to be
estimated. In the LRM, the seven explanatory variables were compared in order to find the predictor
variable with the best fit. However, the best fit predictor was the combination of the variables
incorporated in the model. Tables 7 and 8 show the model statistics and coefficients of the seven
explanatory variables. The result showed that the predictor variable elevation (X7) has the the highest
coefficient (β7 = 1.76). A high value indicates that the urban growth was less expected under the null
hypothesis (without parameters) than the full regression model (with parameters). The pseudo R2 of
the model (0.5150) indicating a relatively good fit (Table 8). Clark and Hosking [37] suggested that
a pseudo R2 greater than 0.2 indicates that the model is a relatively good fit for the data. Hensher
and Johnson [38] also stated that a pseudo R2 between 0.2 and 0.4 can be considered as an extremely
good fit. The relative contribution of the explanatory variables was evaluated using the corresponding
coefficients in the LRM. All explanatory variables that have a positive sign for the coefficient indicate
a positive relationship, whereas a negative sign indicates a negative relationship. From Table 7, it can
be observed that the variables distance to urbanized area, to industrial zones, to major roads, slope and
elevation have positive relationship with urban growth, while distance to the active economic center,
and distance to the international airport have negative relationship. In other words, if the value of the
explanatory variable increases, the probability of urban growth will increase. Inversely, a decrease in
the value of the independent variable will decrease the probability of urban growth.
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Table 7. Coefficients of the 7 explanatory variables used in the logistic regression.

Variable Coefficient

Intercept 7.03
DAEC X1 −0.01
DUA X2 0.39
DIZ X3 0.02

DMR X4 0.67
DIA X5 −0.06

Slope X6 0.27
Elevation X7 1.76

Table 8. Statistics for the 7 explanatory variables.

Number of Total Observation 1,709,376

Number of 0 1,619,469
Number of 1 89,907
−2logLo 67,290.6403

−2log(likelihood) 32,635.0373
pseudo R2 0.5150

Goodness of Fit 202,668.3024
Chi-Square(7) 34,655.6030

ROC 0.96

4.3. Urban Growth Probability Map for 2016

It is important to generate an urban growth probability map and compare it with the present
urban growth map of the study area. The binary growth map for the period between 2000 and 2016
was used as the dependent variable, and the thematic maps of the following explanatory variables
were updated on their respective distance variables from 2000 to 2016 (X1 = DAEC), (X2 = DUA),
(X3 = DIZ) (X4 = DMR), and (X5 = DIA). For a better model performance, temporal dynamics were
considered and the other explanatory variables were not changed. Figure 6 shows the urban growth
probability map for 2016. In this map, the red color shows high urban growth areas, the yellow color
shows moderate growth areas, and the green area shows low urban growth areas.
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5. Discussion

5.1. LULC Change

The classification of the multi-temporal images into urban, water, vegetation, and bare ground
for the three different years of 1986, 2000, and 2016 has resulted in a highly simplified and abstracted
representation of the study area (Figure 4). These maps show a clear pattern of increase in urban
area beginning from an urban center to growth into adjoining non-urban area. A post-classification
comparison of the classified maps revealed a continuous urban growth pattern in the study area.
The post-classification results presented in Table 6 show that the total urban area has grown from
63.03 km2 in 1986 to 123.76 km2 in 2000 and to 206.58 km2 in 2016. The highest amount of
growth was observed in the period from 2000 to 2016, when the urban area almost doubled in
size. The vegetation class has experienced a sharp decrease in area. These results agreed with the
one described by Sylla et al. [7] in 2012. They stated that the increase in urban area was due to
an unprecedented population increase and change in socio economic factors such as migration of
people and improvements in the transportation and communication infrastructures. Furthermore,
as the agricultural production has fallen and economic and living conditions in rural areas have
deteriorated, there has been a steady increase in the importance of the urban sector in Guinea [17].
The geographical distribution of the population is uneven and is influenced by the urbanization
progressing strongly toward the major cities. The urban population in Guinea reached a threshold of
36% in 2010 [39]. Conakry, the capital city and the main economic, administrative and industrial center
of Guinea, concentrates almost half of the urban population. Moreover, it seems that the important
disparities in economic opportunities, access to employment, and public services demonstrate the
attractiveness of Conakry to other cities. For instance, in a report on urban development in Conakry,
the World Bank stated that over 60% of all industrial enterprises were located in the Conakry area,
that these businesses accounted for about 50% of employment in the secondary sector, and that the
proportions were similar for trade and public administration [8].

5.2. LRM

An LRM was established to examine the relationship between urban growth and the various
driving forces and to simulate an urban growth probability map for the study area. The LRM results
(Table 8) indicated that the socioeconomic proximity variables (distances to urbanized area, to industrial
zones, and to major roads) and the topography variables (slope and elevation) were positive and were
significantly correlated with the urban growth processes in the study area. These results illustrate
that urban growth has been affected by both socioeconomic proximity factors and topography factors.
Urban growth in Conakry has been very uneven, with much of the growth concentrated along major
roads which are located at high elevation, as can be observed from elevation and major road maps in
Figure 7. This finding is also supported by study conducted by the World Bank on accessing urban
services and poverty in Conakry [39]. The World Bank found that living far away from major roads
greatly reduced the ability of the population to access urban services. The same study also found
that the poor population was more vulnerable because they lived on the outskirts of the city and had
to travel some distance to reach the major roads. Similar case studies of cities in other developing
countries Tripoli (Lybia) and Lagos (Nigeria) have shown that socioeconomic proximity variables and
topograhy factors were key drivers of the urban growth process. These results are very similar to
our findings in Conakry with small differences in the order of the drivers. Furthermore, Conakry is
a coastal city; and has never ceased to attract people. In recent years, urbanization has become quite
rapid; however, the potential impact of the hazards is largely driven by the increasing concentration of
population and economic activities. Studies have shown that many cities in the world could suffer
serious losses due to flooding over the next decades [40]. Therefore, an emphasis on policies of
sustainable urban planning and management is urgently needed.



Urban Sci. 2017, 1, 12 12 of 15

Urban Sci. 2017, 1, 12  12 of 15 

5.2. LRM  

An LRM was established to examine the relationship between urban growth and the various 
driving forces and to simulate an urban growth probability map for the study area. The LRM results 
(Table 8) indicated that the socioeconomic proximity variables (distances to urbanized area, to 
industrial zones, and to major roads) and the topography variables (slope and elevation) were positive 
and were significantly correlated with the urban growth processes in the study area. These results 
illustrate that urban growth has been affected by both socioeconomic proximity factors and topography 
factors. Urban growth in Conakry has been very uneven, with much of the growth concentrated along 
major roads which are located at high elevation, as can be observed from elevation and major road 
maps in Figure 7. This finding is also supported by study conducted by the World Bank on accessing 
urban services and poverty in Conakry [39]. The World Bank found that living far away from major 
roads greatly reduced the ability of the population to access urban services. The same study also found 
that the poor population was more vulnerable because they lived on the outskirts of the city and had to 
travel some distance to reach the major roads. Similar case studies of cities in other developing countries 
Tripoli (Lybia) and Lagos (Nigeria) have shown that socioeconomic proximity variables and topograhy 
factors were key drivers of the urban growth process. These results are very similar to our findings in 
Conakry with small differences in the order of the drivers. Furthermore, Conakry is a coastal city; and 
has never ceased to attract people. In recent years, urbanization has become quite rapid; however, the 
potential impact of the hazards is largely driven by the increasing concentration of population and 
economic activities. Studies have shown that many cities in the world could suffer serious losses due to 
flooding over the next decades [40]. Therefore, an emphasis on policies of sustainable urban planning 
and management is urgently needed.  

 

 

Urban Sci. 2017, 1, 12  13 of 15 

  

Figure 7. Raster images of the explanatory variables included in the LRM (a) distance to the active 
economic center (DAEC), (b) distance to urbanized areas (DUR), (c) distance to industrial zones (DIZ), 
(d) distance to major roads (DMR), (e) distance to the international airport (DIA), (f) slope, and (g) 
elevation. 

5.3. Weakness of This Study 

It is important to recognize that only socioeconomic proximity and topography factors were 
included in this model, and that the model could be improved by incorporating additional explanatory 
factors such as demographic (population density) and socioeconomic indicators (income per capita in 
urban and rural areas, migration). However, due to a lack of available geospatial and socioeconomic 
data in developing countries such as Guinea, we focused on certain variables. We implemented a robust 
statistical approach to explicitly examine the relationship between urban growth processes and various 
drivers, and developed an urban growth probability map for Conakry. The results of this research will 
not only assist urban planners and policy makers in Conakry, but will also serve as an important 
reference for future urban sustainability studies in Guinea. 

6. Conclusions  

The aim of the present study was to integrate GIS and RS techniques with an LRM to analyze 
and quantify urban growth patterns in the capital of Guinea, Conakry, and to investigate the 
relationship between urban growth and various explanatory variables. The LULC change results 
indicated patterns of a degraded and disturbed LULC and a continuous increase in urban land area. 
This net increase in urban area was likely caused by different anthropogenic activities such as 
conversion of vegetation cover to urban land cover. Subsequently, LRM was used in modeling and 
understanding the drivers in the urban growth process and simulate an urban growth probability 
map that showed likely areas of urban. The results have shown that the proximity variable, distance 
to major roads 	(β = 0.67)	and the topography variable, elevation (β 	= 	1.76)	had the highest 
coefficients and resulted in the model with the best fit, which impling a high probability of urban 
growth areas with high elevation and near major roads.  

Acknowledgments: The Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) 
supported this study for the promotion of science. 

Author Contributions: Arafan Traore conducted the fieldwork, analyzed the datasets, Arafan Traore and Teiji 
Watanabe wrote the first draft of the manuscript, and addressed the reviewers’ comments. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. United Nations. World Urbanization Prospects 2014: Highlights, United Nations Environment Programme; 
United Nations: New York, NY, USA, 2014. 

2. Linard, C.; Tatem, A.J.; Gilbert, M. Modelling spatial patterns of urban growth in Africa. Appl. Geogr. 2013, 
44, 23–32. 

0 4 8 12 162
km

Figure 7. Raster images of the explanatory variables included in the LRM (a) distance to the active
economic center (DAEC), (b) distance to urbanized areas (DUR), (c) distance to industrial zones
(DIZ), (d) distance to major roads (DMR), (e) distance to the international airport (DIA), (f) slope,
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5.3. Weakness of This Study

It is important to recognize that only socioeconomic proximity and topography factors were
included in this model, and that the model could be improved by incorporating additional explanatory
factors such as demographic (population density) and socioeconomic indicators (income per capita in
urban and rural areas, migration). However, due to a lack of available geospatial and socioeconomic
data in developing countries such as Guinea, we focused on certain variables. We implemented
a robust statistical approach to explicitly examine the relationship between urban growth processes
and various drivers, and developed an urban growth probability map for Conakry. The results of
this research will not only assist urban planners and policy makers in Conakry, but will also serve as
an important reference for future urban sustainability studies in Guinea.
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6. Conclusions

The aim of the present study was to integrate GIS and RS techniques with an LRM to analyze and
quantify urban growth patterns in the capital of Guinea, Conakry, and to investigate the relationship
between urban growth and various explanatory variables. The LULC change results indicated patterns
of a degraded and disturbed LULC and a continuous increase in urban land area. This net increase in
urban area was likely caused by different anthropogenic activities such as conversion of vegetation
cover to urban land cover. Subsequently, LRM was used in modeling and understanding the drivers in
the urban growth process and simulate an urban growth probability map that showed likely areas of
urban. The results have shown that the proximity variable, distance to major roads (β4 = 0.67) and
the topography variable, elevation (β7 = 1.76) had the highest coefficients and resulted in the model
with the best fit, which impling a high probability of urban growth areas with high elevation and near
major roads.
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