

Systematic Review The Genus Bryonia L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities

Bachir Benarba ^{1,2,*} and Khadidja Belhouala ¹

- ¹ Laboratory Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Mascara 29001, Algeria; khadidja.belhouala@univ-mascara.dz
- ² Thematic Research Agency in Health and Life Sciences, Oran 31000, Algeria
- * Correspondence: bachirsb@yahoo.fr

Abstract: The *Bryonia* genus (Cucurbitaceae) is divided into 13 plants considered medicinal species with a significant pharmacological value fortreating as well as preventing various ailments. The current systematic review aims to present useful and updated findings published onthis genus inthe last two decades. Based on PubMed, Science Direct, JSTOR, and Google Scholar, 42 of the available previous studies on *Bryonia* have been selected from 2000 to 2022. Thereafter, these studies were analyzed, summarized, and separately recorded according to the topic or section, adding some comments foreach. Our review provided a botanical description of the genus, followed by itsindigenous uses. Furthermore, more than 150 reported phytochemical compounds were grouped into families such as terpenoids, alkaloids, flavonoids, glycosides, saponins, and volatile oils. Hereby, thebiological activities part of this genus wereexposed, including itsantimicrobial, antioxidant, antidiabetic, antinociceptive, and anti-inflammatory functions, along with an interesting anticancer efficiency. Overall, our findings could contribute to forthcoming investigations that may lead to determining the responsible phytoconstituents for *Bryonia*'s efficiency.

Keywords: Bryonia; systematic review; phytochemistry; botany; biological activities

1. Introduction

Sinceantiquity, the world population has resorted to plants for medical purposes in order to provide for their healthcare needs [1]. Today, about 80% of itrelies on folk phytotherapy involving indigenous knowledge, traditional culture, and medicinal herbs from itssurroundings [2]. Certain plant families offer a highly curative effect with a worldwide distribution and large diversity, such as Cucurbitaceae. This family covers almost 100 genera spread across tropical and subtropical areas [3–5]. Among these genera that have shown significant importance as medicinal plants is the Bryonia genus. It comprises 10 direct children (B. cretica L., B. multiflora Boiss. and Heldr., B. monoica Aitch. and Hemsl., B. aspera Steven ex Ledeb. and B. alba L., B. lappifolia Vassilcz., B. melanocarpa Nabiev, B. syriaca Boiss., B. verrucosa Aiton, and B. flexuosa Yıld.) and 3 accepted subspecies (B. dioica Jacq., B. marmorata (E. Petit) Jauzein, and *B. acuta* Desf) across dioecious and monoecious types [6,7]. Some species are widely distributed with slight morphological dissimilarities from one to another, especially in the fruits, while others have a limited range. Additionally, all Bryonia species have an Irano-Turanian origin, prospering in many Mediterranean regions [8]. Bryonia was well known in ancient times for it shealing value. In fact, various diseases were traditionally treated using *Bryonia* species, for example, infectious diseases, tissue inflammation, cough, influenza, lung disease, cancers, hemorrhoids, diabetes, peritonitis, jaundice, typhoid, bone pain, and nervous and cardiac disorders [9–12]. These diversified therapeutic uses and medicinal properties of the genus are due to interesting phytochemical components such as polyphenols, flavonoids, triterpene, glycosides, sterols, saponins, and alkaloids [13,14].

Citation: Benarba, B.; Belhouala, K. The Genus *Bryonia* L. (Cucurbitaceae): A Systematic Review of Its Botany, Phytochemistry, Traditional Uses, and Biological Activities. *Sci* **2024**, *6*, 7. https://doi.org/10.3390/sci6010007

Academic Editor: Fernando Lidon

Received: 13 December 2023 Revised: 29 December 2023 Accepted: 15 January 2024 Published: 18 January 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Nonetheless, a few *Bryonia* species have a significant toxic potentiality, where the most poisonous part is the roots [15,16]. Furthermore, in this smallest genus of the Cucurbitaceae family, *B. alba* Linn.and *B. dioica* Jacq. are the common species used in folk medicine as valuable remedies against serious ailments [11,17]. Despite this phytochemical and historical medical distinction of *Bryonia*, the species from this genus still face scientific deficiency, with slight interest shown in recent studies. Therefore, the present study aimed to systemically summarize the botanical, ethnobotanical, biological, and phytochemical properties of species belonging to the genus *Bryonia*. Moreover, this systematic review ended the controversy over the exact number of *Bryonia* species.

2. Methodology

In accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), the current systematic review was designed and reported.

2.1. Search Strategy

The search was conducted in the following databases: the JSTOR "www.search.scielo.org (accessed on 30 December 2022)", PubMed[®] "www.pubmed.ncbi.nlm.nih.gov (accessed on 30 December 2022)", ScienceDirect[®] "www.sciencedirect.com/search (accessed on 30 December 2022)" and Google Scholar "www.scholar.google.com (accessed on 30 December 2022)" databases. The term "*Bryonia*" was the main word used in the searches individually or in association with other keywords such as "botany", "phytochemistry", "GC-MS", "HPLC", "pharmacology", "biological activity", "ethnomedicine", "traditional use", "cancer", "anticancer", "antiproliferative", "antitumor", "cytotoxicity", and "toxicity". The accepted species of this genus were obtained from thedatabases The Plant List (TPL) (www.theplantlist.org/, accessed on 30 December 2022), world Flora Online (WFO) (www.worldfloraonline.org/, accessed on 30 December 2022), and Plants of the World Online (POWO) (www.powo.science.kew.org/, accessed on 30 December 2022), validating their scientific names. Moreover, we adopted the Boolean operator "AND" in the searches that contained two or more of these keywords.

2.2. Study Selection

With the use of only verified accepted species names and selected keywords in the search and analysis, articles published in the last 22 years (2000–2022) reporting specifically botanical, phytochemical, pharmacological, and toxicological data on *Bryonia* species were included, following the following eligibility criteria:

- Validated source of material: plant materials were identified to the taxonomic levels of genus and species.
- (2) Appropriate methodology: standard methods for pharmacological assays both in vitro and in vivo were employed, along with phytochemical investigation.
- (3) Access to the full-text article in the English language: articles published only in non-English languages were excluded.

On the other hand, review articles, e-books, book chapters, and doctoral theses were excluded. Moreover, articles with titles containing the word *Bryonia* as synonyms of other species not referring to the genus *Bryonia* or even unverified names, not dealing with the previous search terms, and not available in the full text were excluded.

2.3. Data Extraction

Overall, 111 scientific documents were selected from the databases and screened. After reading the title and/or abstract, 26 documents that did not fit into the scope of this review were excluded. A total of 44 articles had their full text analyzed, being screened by the title, abstract, and specific information throughout the text. Consequently, 42 articles with data on the traditional uses, pharmaceutical activities, phytochemicals, and toxicity of *Bryonia* species were included in this study. The available information on *Bryonia*

was categorized into many sections: botanical description, phytochemicals and bioactivecompounds, traditional uses of *Bryonia*, in vivo and in vitro pharmacological studies, and the anticancer and toxicity potential of *Bryonia*. The identification and selection process isillustrated in Figure 1.

Figure 1. Identification and selection process of the bibliographic sources based on a PRISMA 2020 flow diagram.

3. Results and Discussion

3.1. Botany (Taxonomy, Description, and Distribution)

The *Bryonia* genus belongs to the Cucurbitaceae family and comprises 13 known taxa with accepted names (Table 1). Previously, *B. alba, B. verrucosa, B. syriaca, B. lappifolia, B. cretica, B. multiflora, B. monoica, B. melanocarpa,* and *B. aspera* were the only accepted species included in the *Bryonia* genus, while the status of the 10th species (*B. flexuosa* Yıld) was reported as unresolved [18]. According to the recent articles and updated taxonomy (POWO and WFO), the genus *Bryonia* includes a total of 10 accepted direct species and 3 subspecies, namely *B. acuta, B. marmorata,* and *B. dioica,* considered *B. cretica* subspecies [6,7,19–21]. In the same line, Tutin et al. (2010) reported the presence of three subspecies belonging to the *B. cretica* species [4].

Scientific Name	Status	Synonym
Bryonia alba L.	Accepted	<i>B. dioica</i> M.Bieb. <i>B. monoeca</i> E.H.L.Krause <i>B. nigra</i> Gilib. <i>B.vulgaris</i> Gueldenst ex Ledeb.
<i>Bryonia aspera</i> Steven ex Ledeb.	Accepted	<i>B. afghanica</i> Podlech <i>B. haussknechtiana</i> Bornm. <i>B. macrostylis</i> Heilbr. and Bilge
Bryonia cretica L.	Accepted	B. cretica f. monoica (Nábělek) Feinbrun B. cretica var. Monoica Nábělek
Bryonia cretica subsp. acuta (Desf.) Tutin	Accepted	<i>B. acuta</i> Desf. <i>B. dioica</i> var. <i>acuta</i> (Desf.) Cogn.
<i>Bryonia cretica</i> subsp. <i>dioica</i> (Jacq.) Tutin	Accepted	B. dioica Jacq. B. ruderalis Salisb. B. scarlatina Dumort. B. acuta var. sicula (Jan) Fiori and Paol. B. digyna Pomel B.dioica var. digyna (Pomel) Batt. B. dioica var. elongata Ten. B.dioica var. lavifrons Pau B.dioica var. lutea Ser. B. dioica var. sicula Jan B.lutea Bastard ex Ser. B.nitida Link B.sicula (Jan) Guss. B.tineoi A.Huet ex Cogn
<i>Bryonia cretica</i> subsp. <i>marmorata</i> (E.M.A.Petit) Jauzein	Accepted	 B. angulosa (Mabille ex Gillet) Bouchard B. corsica (Maire) A.W. Hill B. cretica subsp. marmorata (E. Petit) Govaerts B. dioica f. corsica Maire B. dioica var. angulosa Mabille ex Gill. B. marmorata E.Petit B. syriaca var. marmorata (Petit) Fiori and Paol
Bryonia lappifolia Vassilcz.	Accepted	
Bryonia melanocarpa Nabiev	Accepted	
Bryonia monoica Aitch. and Hemsl.	Accepted	B. transoxana Vassilcz
Bryonia multiflora Boiss. and Heldr.	Accepted	 B. lasiocarpa Mouterde B. macrophylla Kotschy ex Boiss. B. macrophylla var. condensata Boiss. B. subsessilis (Boiss.) Bornm
Bryonia syriaca Boiss.	Accepted	B. micrantha Boiss. B. multiflora var. pauciflora Post B. syriaca f. monoica Feinbrun B. hadarifelia Loca
Dryonia Cerrucosa Anton	Accepted	B. neuerijoitu jacq.
Dryoniu pexuosa 111a.	Accepted	

Table 1. Bryonia accepted species and subspecies according to WFO and POWO databases [6,7].

Bryonia species are flowering annual herbs defined by tuberous roots, palmate-lobed leaves (about 3–5 at sharp angles), small flowers with threestamens, and several types of spherical berries with oblate–ovoid seeds. On the contrary, these bryonies show non-similar external morphological characteristics differing from one species to another.

As shown in Table 2, almost all *Bryonia* species flower in spring (March to May), while the flowering of other species may extend into summer (*B. alba* and *B. cretica*). The flowers are green or yellow or even a mixed color between the two, together forming a tiny greenish yellow mass of 3–4 flowers on the stem, which climbs in threes due to itslong tendrils. On the other hand, *B. dioica* has blue or white flowers [11]. With the exception

of *B. alba*, *B. monoica*, and *B. aspera*., all *Bryonia* species are dioecious, and their ripe fruits are often red, having a similar shape. Moreover, the macroscopy details are still poorly described for *B. melanocarpa*, *B. marmorata*, and *B. lappifolia* besides the anatomical structures of all species.

Table 2. Description and distribution of *Bryonia* species.

	Vernacular		FI :]	Macroscopy Detail	s	D 1 <i>C</i>	-
Species	Names	Native to	Flowering	Fruit	Leaves	Flower	Reproduction	Ref.
<i>B. dioica</i> Jacq.	Red bryony Fashra	Central/Southern Europe, North Africa, Western Asia	May	red	five-pointed	blue or white	dioecious	[11]
B. alba L.	White bryony	Central, E. and S.E. Europe to Kazakhstan	May–June/July	black fruits	5-angular, irregular palmate	whitish, green-veined	monoecious	[19,22]
B. acuta (Desf.) Tutin	/	Algeria, Libya, Sicilia, Tunisia		bright red	3–5 lobed	white	dioecious	[8]
B. marmorata E. Petit		Corse, Sardegna					dioecious	[8]
<i>B. verrucosa</i> Aiton		Canary Islands	March to May	orange-yellow	rough and warty	greenish-white to light yellow	dioecious	[8]
<i>B. syriaca</i> Boiss.		Lebanon–Syria, Palestine, Sinai		red	Palmate, three-pointed	/	dioecious	[8]
B. lappifolia Vassilcz.		Tadzhikistan						
B. cretica L.		Europe to N. Africa and Central Asia	May to August	bay	palmate	green	dioecious	[8,22]
B. multiflora Boiss. and Heldr.		Turkey, S. Syria, N. Iraq, W. and S.W. Iran	March-April	purple berries	palmate and have 5–7 deep lobes	yellow	dioecious	[8]
B. monoica Aitch. and Hemsl.		N.E. Iran to Central Asia and Pakistan	/		orbicular	yellowish green	monoecious	[8]
B. melanocarpa Nabiev		Kazakhstan, Uzbekistan		black				[23]
<i>B. aspera</i> Steven ex Ledeb.	Rough Bryony (Andaz)	Pakistan, N.W. India, N. Afghanistan, N. and N.E. Iran, Caucasus, and Turkey		red or yellow	heart-shaped- cordate–ovate, five-lobed	corymbose, yellow	monoecious	[24]
B. flexuosa Yıld.		Turkey, the Mediterranean			alternate	White/yellow, tubular		

Owing to their adaptability, *Bryonia* species are widely dispersed all over the world and cultivated in different environmental conditions, which may explain their distribution in different regions such as the Mediterranean to Central European territories, Northern Africa, and Central Asia [25]. Nonetheless, some species are considered native to specific regions such as *B. dioica* and *B. cretica* from North Africa (Algeria, Morocco) and Western Europe and *B. multiflora*, *B. aspera*, and *B. alba* from Turkey [3,26,27].

3.2. Traditional Uses

Bryonia species have been used for centuries to treat different diseases or manage a variety of disorders with a focus on theirtuberous roots' proprieties (bitter, toxic. . .) [8,25]. Figure 2 illustrates different disease categories treated traditionally using *Bryonia* species. Ethnobotanical studies showed that *B. dioica*, *B. aspera*, *B. alba*, and *B. cretica* are the most involved species. Nonetheless, *B. dioica* seems to be more known than others species in Northern Africa due to its anticancer property (Algeria, Morocco, and Tunisia) [2,11,28]. *B. dioica* is used to treat breast cancer, nose cancer, skin cancer, and uterus tumors as well asbruises, rheumatic pains, arthritis, minor wounds, and lesions. Other investigations reported that theroots of *B. dioica* are used as remedies for liver failure, stomachache, ulcers, and diabetes [11,15]. Furthermore, the species is used in Iraq to treat bronchitis, while the leaves and seeds are used to cure fevers using internal or external administration [29].

Figure 2. Bryonia species traditionally used to treat several ailments.

In eastern and northern Europe, the *B. alba* root has been used in diverse systems including the gastrointestinal, respiratory, and skeletomuscular systems to treat intestinal worms, convulsions, peritonitis, jaundice, headaches, and pneumonia [13]. The root extract is applied torheumatic and joint pain in Turkish folk medicine, whereas white bryony is commonly applied for the treatment of skin diseases, edemas, and bruises [21]. On the other hand, *B. aspera* was reported to be commonly used in the Turkmen Sahara region (northeast of Iran) to treat gastrointestinal and cardiac diseases and some cancer types [24,30]. Likewise, the roots of *B. cretica* were used by Egyptian healers to treat gastric disorders and diabetes [31].

3.3. Pharmacological Proprieties (In Vivo/In Vitro Application)

Different *Bryonia* species have shown interesting biological properties including antioxidant, anti-inflammatory, antibacterial, anti-parasitic, anticancer, etc. (Table 3).

Antioxidant

Gholivand and Piryaei (2012) investigated the antioxidant ability of the methanolic extract of *B. dioica* (leaves, stems, and flowers) using DPPH scavenging, β -carotene bleaching, and reducing power tests. The polar subfraction of the flowers provided the highest radicalscavenging activity with the lowest IC₅₀ value of 23.17 ± 4.24 µg/mL. Despite this result, both the polar and nonpolar subfractions of all parts provide a high radical scavenging inhibition. In the β -carotene bleaching assay, the flowers' polar subfraction and leaves' nonpolar subfraction had a notable result against linoleic acid oxidation, with inhibition values of 98.35 ± 8.7 and 83.62 ± 5.91%, respectively [32]. Likewise, a promising antioxidant potential has been demonstrated for the methanolic extract of leaves of the Iraqi *B. dioica* [33]. In another study on immature and ripened fruits of Portuguese *B. dioica*, it has been found that immature fruit extract exhibited the lowest antioxidant activity with an EC₅₀ value ranging from 1.07 to 18.01 mg/mL due to its lower phenolic and flavonoid contents (33.37 and10.32 mg CE/g extract, respectively). On the other hand, the fruit extract showed an important antioxidant potential at the maturity stage (EC₅₀: 0.22–1.21 mg/mL) [34].

InRomania, more studies have focused on the antioxidation potential of *B. alba* species using different approaches (cell-free systems and cellular assays) to evaluate the peroxidase-inhibiting effect, as well as justify the antioxidant/antiradical activity of the leaf extract and its isolated flavonoids. An important inhibition of myeloperoxidase and horseradish peroxidase has been reported and shown according to its active molecules lutonarin and saponarin (IC₅₀ = $0.92 \pm 0.55 \,\mu$ g/mL). Moreover, the best inhibition of the ROS produced by neutrophils and macrophages was obtained using the isolated compounds isoorientin and lutonarin [35]. Similarly, Lelciu et al. (2019) investigated the antioxidant capacity of methanolic extract of *B. alba*'s aerial parts using six in vitro assays. A significant antioxidant capacity

related to the flavonoid content has been demonstrated (DPPH: $IC_{50} = 99.8 \pm 0.92 \ \mu g/mL$; TEAC: $IC_{50} = 19.9 \pm 0.89 \ \mu g/mL$; CUPRAC: $IC50 = 238 \pm 2.24$; FRAP: $IC_{50} = 217 \pm 2.45$; SNPAC: $IC_{50} = 217 \pm 2.45$; and EPR: $IC_{50} = 427 \pm 2.46 \ \mu g/mL$) [14]. Similar results have been reported for *B. alba* from Turkey [13].

Anti-inflammatory

Based on the ethnomedicinal uses of some *Bryonia* species to treat inflammatory disorders, several in vitro and in vivo investigations have been carried out to evaluate the anti-inflammatory potential of *Bryonia* species, especially *B. alba* and *B. dioica* (Table 3).

Ukiya et al. (2002) evaluated the anti-inflammatory activity of MeOH extract of the *B. dioica* roots and its fractions (n-hexane, EtOAc, n-butanol, and H₂O) using an in vivo TPA-induced inflammation assessment in mice. Among the four fractions, a remarkable inhibition effect of the EtOAc-soluble fraction (inhibitory ratio 90% at 1 mg/ear) was pointed out. Moreover, the same test was further used to assess the inhibitory effects of six pure triterpene glycosides (four new compounds, bryoniosides **2–5**, with two known compounds, cabenoside D and bryoamaride) isolated from the EtOAc-soluble fraction. A strong anti-inflammatory effect was shown (ID₅₀ = 0.2–0.7 mg/ear) against TPA-induced inflammation compared to that of a reference drug (1.6 mg/ear) [36]. In the same line asthese findings, n-hexane, EtOAc, and MeOH extracts of *B. alba* exhibited promising in vivo anti-inflammatory effects [13]. Likewise, an extract of *B. alba* leaves and its flavonoids showed anti-inflammatory effects through the inhibition of the pro-oxidant enzyme myeloperoxidase [17].

Antibacterial

As shown in Table 3, the antibacterial activity of *B. dioica* was tested on nine bacterial strains. Significant antimicrobial activity has been reported against three of them: *E. coli*, *K. pneumonieae*, and *P. valgaris* [33]. Furthermore, Dhouioui et al. (2016) stated that Grampositive bacteria were more susceptible to the lipid fraction of *B. dioica* roots than that of the fruits. However, the lipid fractions extracted from both plant parts were less active than antibiotics [37].

Antiparasitic

By using two parasitic strains 3D7 (chloroquine sensitive) and W2 (chloroquine resistant), an extract *B. alba*'s aerial partswas tested for its anti-plasmodial potential, showing no cellular toxicity in these Plasmodium falciparum strains [14].

Anti-infection

In a study carried out by Goswami et al. (2022), a 14-day-old chick embryo (*Gallus gallus domesticus*) inoculated with recombinant Delta SARS-CoV-2 spike RBD protein was injected with a diluted ethanolic extract of *B. alba* before the inoculation as pretreatment and after the inoculation as post-treatment. The results showed that the *B. alba* extract was able to upregulate IFN- α and IL-10, especially in post-treatment, indicating an immunomodulatory effect through a pro-inflammatory cytokine decrease [38].

Antidiabetic

Chekroun et al. (2017) used astreptozotocin (STZ)-induced diabetic rat model to establish the antidiabetic effect of *B. dioica* root aqueous extract. After 21 days of daily treatment using the *B. dioica* extract (20 mg/kg i.p), the *B. dioica* extract exhibited a similar effect to the standard drug inreducingtheblood glucose levels by -59% and -51%, respectively, restoring the normal biochemical parameters levels, as well as reversing the reduction in body weight of the rats [39]. Likewise, Uyar et al. (2017) investigated the protective effects of *B. multiflora* extract on pancreatic, liver, and kidney cells. The findings showed a significant increase in the insulin antibody immune-positive areas for thetreated groups with extract doses of 100, 200, and 400 mg/kg BW/day, inducing a significant improvement in the beta cells' function. Besides this effect, *B. multiflora* extract was found to inhibit the damage formed in the liver, kidneys, and pancreas; hence, the ability of the plant in the treatment of diabetes and its complications has been connected to its antioxidant activity [40].

Hepatoprotective effect

Kadhim (2014) investigated the hepatoprotective action of anethanolic extract of *B. dioica* leaves on rats with CCl4-induced hepatotoxicity. This assay was based on examination of the transaminase (ALT and AST) activity and the histopathological changes in the rats' livers. The results confirmed the protective capacity of *B. dioica* against the toxic effects of CCL4 since the extract showed the recovery of the hepatic architecture from CCL4-induced necrosis and of the decline in the ALT and AST activities to a normal level [29].

Antinociceptive

The antinociceptive ability of ethyl acetate extract obtained from *B. alba* roots was assessed using p-benzoquinone-induced abdominal constriction and tail flick tests in mice. The first assay showed a significant antinociceptive effect with the lowest writhing number of 26.0 ± 4.3 compared to those of the other extracts (n-hexane and methanolic) and identical to that of the reference drug (aspirin). However, none of the extracts prepared from *B. alba* roots showed any activity in the second assay [13].

Anti-polycystic ovary syndrome

In a recent experiment by Tahvilian et al. (2022), a *B. dioica* root methanolic extract was evaluated against polycystic ovary syndrome in female rats receiving subcutaneous injections of testosterone enanthate. After 28-day treatment, the hormone (FSH and LH) and glucose levels were significantly normalized besides a decrease in theLDL level and LDL/HDL ratio in the *B. dioica* groups, showing an ameliorative as well as a preventive effect on PCOS-induced rats [41].

Anticancer

Increasing evidence emphasizes the anticancer activity of *Bryonia* species, especially that of its cucurbitacin constituents, given an interesting anticancer profile to this genus. These triterpene-type compounds, mainly obtained from the root parts, present potential as biomarkers in herbal therapy, showing particular promise as anticancer agents, with a general mechanism based on cell cycle blockage and programmed death, like apoptosis or autophagy [42]. Cucurbitacins exert their cytotoxic effects against cancer cells by inhibiting their proliferation, invasion, and migration [43].

Anethanolic extract of *B. cretica* roots was found to exhibit important antiproliferative action againsthuman leukemia U937 cells. Furthermore, two cucurbitane-type triterpenes (cucurbitacins B and E) isolated from the same extract displayed a comparable effect oncell growth inhibition with IC₅₀ values of 9.2 and 16 nM after 72 h, respectively, along with that of camptothecin (8.6 nM) [31]. Likewise, cucurbitacin E showed a strong cytotoxic activity (IC₅₀ = 40 nM after 72 h) on HT1080 cells dissimilar to that of isocucurbitacin D (0.71 uM) [44]. Moreover, Pourgonabadi et al. (2017) reported thesignificant inhibitory activity and apoptotic effects exerted by a hydro-alcoholic root extract of *B. aspera* against Hela and HN-5 cell lines [30]. In another study, *B. aspera* methanolic extract induced thecell death and apoptosis of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) [45]. Similar results were reported for achloroform extract of *B. aspera* roots and two of its identified compounds (cucurbitacin L, and neocucurbitacin C) [46]. Significant cytotoxic activity has been exerted by *B. aspera* species against different tumor cells, including MCF7 (human breast adenocarcinoma), HepG2 (hepatocellular carcinoma), and WEHI (mouse fibrosarcoma) [45].

B. dioica has also been studied for its anticancer effects. Indeed, several studies have demonstrated that different extracts of the species were able to inhibit the growth of cancer cells, induce apoptosis, and result in cell cycle arrest through a variety of molecular mechanisms. Benarba et al. (2012) demonstrated that anaqueous extract of *B. dioica* roots

significantly inhibited the cell growth of the Burkitt's lymphoma BL41 cell line by inducing apoptosis through the mitochondrial pathway (activation of caspase-3 and caspase-9, PARP cleavage, and loss of the mitochondrial membrane potential) [28]. In another study, Benarba et al. (2019) found that the same extract at a lower concentration (50 μ g/mL) was able to induce both apoptosis and G2/M cell cycle arrest in MDA-MB 231 breast cancer cells. This anticancer activity was attributed to its identified major phenolic compound myricetin [47]. Furthermore, amethanol extract of *B. dioica* showed in vitro and in vivo anticancer effects against B16F10 melanoma cells, in which the cucurbitacins obtained from this extract were able to induce apoptosis, as well as arrest cell cycle progression [48].

Other studies based on anti-inflammatory analysis have demonstrated that the triterpenes from *B. dioica* roots areexpected to have a high anti-tumor-promoting role inmice. Likely, a compound isolated from *B. dioica*, namely bryoside, has been noticed as an antiinflammatory and anti-tumor agent [36].

3.4. Phytochemistry and Bioactive Compounds

Phytochemical studies on *Bryonia* species have led to the isolation and identification of approximately 150 primary and secondary metabolites to date (Figure 3). Table 4 shows their names, types, corresponding plant sources, and the nature of the extracts, with an illustration of some of the main compound structures in Figures 4–8.

As primary metabolites, elements have the highest percentage with 19 compounds, followed by fatty acids with 15 compounds, and sugars with 12 compounds (Figure 3). In fact, at the time of writing this review, the presence ofboth sugars (8%) and vitamins (5%) has been reported in only two species of *Bryonia*: *B. dioica* and *B. alba*. Meanwhile, elements (12%) were particularly detected in *B. dioica*. Likewise, a few proteins (four compounds) such as lectin, bryodiofin, and bryodin were found in the *B. dioica* roots.

Figure 3. Phytoconstituent classes found in Bryonia species.

Considering secondary metabolites, this review reports a total of 100 compounds identified in this genus from 2000 to the present day (Table 4). Predominantly, the terpenoidclass was detected in *Bryonia* species, including triterpenoids as the main type, with 64 compounds; sesquiterpenoids; and tetraterpenoids. Moreover, flavonoids were remarkably revealed with 22 compounds. However, chemicals such as alkaloids, saponins, steroids, and coumarans were marginally reported (Figure 3).

Ailments/ Activities	Bryonia Species (Family/Part)	Product	^A Model/Strains	^B Inhibitory Assay	Dosage	Control (Negative ⊖/Positive ⊕)	Effects	Ref.			
				In vitro	assays						
	<i>B. dioica</i> fruits, leaves, stems, flowers, roots	Methanolic/ethanolic extract	DPPH, RP, inhibition of lipid	of B-carotene bleaching, peroxidationTBARS	1 mg/mL	Extract	An antioxidant effect	[32,34]			
	<i>B. alba</i> roots	N-hexane, ethylacetate (EtOAc), methanol (MeOH)	DPPH, ABTS, FR radicalscave	DPPH, ABTS, FRAP, and hydroxyl radicalscavenging assay			EtOAc extract showed strong DPPH and ABTS radicalscavenging activity	[13]			
t			L012 substrate (probe)	Horseradish peroxidase (HRP)-catalyzed oxidation assay		Enzyme alone enzyme and probe					
Anti-Oxida Fea			Myeloperoxidase	Direct MPO assay	2 and 100 lg/mL	Buffer DMSO	- Inhibition of the peroxidase-catalyzed reactions				
	B. alba B. alba leaves, aerial parts B. alba B. alba B	Flavonoids (lutonarin, saponarin, isoorientin, isovitexin)	Neutrophils	Effects on the total ROS produced by PMA-activated neutrophils		Non-PMA-activated cells	showed significant antioxidant activity, proved to pass through cell membranes and to exhibit their antioxidant/antiradical effect	[14,17]			
								HL-60	Effects on the ROS produced by PMA-activated HL-60 monocytes		Non-activated cells
			SN: E	PAC PR	1 mg/mL		An antioxidant effect				
acterial	<i>B. dioica</i> roots, fruits	Lipid fraction	E. coli, S. typhimurium E. faecium, S. agalactiae, S. aureus	Disk diffusion method according to NCCLS method inhibition zone	15 uL	Ampicillin	Inhibited the growth of all the test bacterial strains	[37]			
Antiba	B. dioica leaves	Ethanolic extract	E. coli, S. aureas, K. pneumoniea, S. typhi, P. aeruginosa, P. valgaris	Well diffusion assay	$200 (mg mL^{-1})$		Antimicrobial activity against three Gram-negative microorganisms <i>E. coli, K. pneumoniea</i> , and <i>P. valgaris</i> .	[33]			
Anti-Plasmodial	<i>B. alba</i> aerial parts	Methanolic extract	Plasmodium falciparum strains: 3D7 and W2	Activity of the plasmodial lactate dehydrogenase (pLDH) at 630 nm	0.8 and 100 ug/mL	Infected and uninfected erythrocytes	No cellular toxicity on the parasitic strains used	[14]			
rative	<i>B. aspera</i> roots	Hydro-ethanolic	HN-5 and Hela cells	MTT assay	12.5 to 500 μg/mL		Decreased cell viability in Hela and HN-5 cell lines in a concentration- and time-dependent manner	[30]			
nolifer	B. cretica roots	Triterpene glycosides, bryoniosides A and B	Humanleukemia U937 cells	Cytotoxicity assay	9.2 and 16 nM 72 h		Inhibition of cell proliferation	[31]			
Anti-pı	B. cretica roots	Ísocucurbitacin D (MeOH)	HT1080 cells	MTT assay	1 uM	Positive control Cucurbitacin E	Cytotoxic effects with the disruption of the target protein cofilin	[31]			

Table 3. *Bryonia* species in vivo/in vitro applications.

Ailments/ Activities	<i>Bryonia</i> Species (Family/Part)	Product	^A Model/Strains	^B Inhibitory Assay	Dosage	Control (Negative ⊖/Positive ⊕)	Effects	Ref.
				In vitro	assays			
	<i>B. alba</i> roots	23, 24-dihydrocucurbitacin D (dhc D) Ethanol	Cancer cells A-549, COLO 205, SK-MEL-2, L121O	Cytotoxicity test			Antitumor effect on tumor cells	[49]
	B. dioica roots	Bryoniosides, cucurbitacins, cucurbitacin A, cucurbitacin G methanolic extract	In vitro B16F10 melanoma cancer cells	MTT assay Apoptotic effects			Increasing number of cells that express a block in cell cycle progression in the sub-G1phase, followed by cell death induced by apoptosis, anti-melanoma effects by inhibiting cell migration, and invasion through the FAK and Srcsignaling pathways	[48]
_ umor	B. dioica roots	Methanolic extract Cucurbitaneglycosides	EBV-EA activation Rajicells (virus nonproducer)	Method of probit-graphic interpolation	1×10 mol ratio/TPA	MeOH-CHCl ₃ -H ₂ O	Deglycosylation enhances the inhibitory effects on EBV-EA activation (anti-tumor)	[36]
Cancer/Tu	B. dioica roots	Aqueous extract	Burkitt's lymphoma BL41 cells Propidium iodide (PI) staining of cell DNA	Corroborative assays Flow cytometry analysis of dot-blot light scatter profiles	250 to 500 ug/mL	Untreated cells	Inducesapoptosis in Burkitt's lymphoma cells line BL41 by triggering the mitochondria-mediated pathway (exp: activation of caspase-9 and -3 the cleavage of PARP and degradation of PUMA)	[28]
	<i>B. aspera</i> aerial parts	Methanolic	NALM-6 and REH cell lines	MTT assay	200–300 uL/mL		Cytotoxic effect causing apoptosis induction	[45]
_	B. aspera roots	Hydro-ethanolic extract	HN-5 and Hela cell lines	Apoptosis assay	12.5–100 μg/mL 48 h	Cells + Dulbecco's modified Eagle's medium (DMEM) Normal cells	Cell death is involved in B. aspera-induced toxicity in Hela and HN-5 cell lines	[30]
_	B. aspera roots	Neocucurbitacin C and 7β-hydroxy dihydrocucurbitacin D chloroform extract	Cancer cell lines (MCF7, HepG2, and WEHI) and normal cells MDBK	MTT assay	<50 μg/mL	5-fluorouracil and tamoxifen Non-treated cells	Strongly reduced growth of cancer cells	[46]
tivity	<i>B. alba</i> leaves	Flavonoids (lutonarin, saponarin, isoorientin, isovitexin)	A549, HeLa, WI38, neutrophils, HL-60 cells	Cell viability		Non-treated cells	Very low toxicity or absence of toxicity of the tested samples	[17]
ity ac	<i>B. alba</i> aerial parts	Methanolic extract	A549, HeLa, WI38	Cytotoxicity assay	100 ug/mL	-Non-treated cells + Camptothecin	No cellular toxicity	[14]
ytotoxic	B. alba roots	Aqueous and methanol extracts	Human normal (lymphocytes) (HeLa and Caco-2) cells	Comet assay			No genotoxic effects	[50]
- '0' -	B. dioica	Aqueous extract	BL41 cells	MTT assay	250–500 ug/mL		Cytotoxicity effect	[28]

Ailments/ Activities	Bryonia Species (Family/Part)	Product	^A Model/Strains	^B Inhibitory Assay	Dosage	Control (Negative ⊖/Positive ⊕)	Effects	Ref.
				In vivo	assays			
	B. dioica roots	Glycosides	Female ICR mice	TPA-Induced Inflammation	1 mg per ear	MeOH-CHCl ₃ -H ₂ O	Inhibitory effects against TPA-induced inflammation Anti-tumor	[36]
Imation		Ni hovano		Carrageenan-induced hind paw edema model	0.1 mg/kg		EtOAc extract showed a statistically significant	
Inflam	B. alba roots	ethylacetate (EtOAc), methanol (MeOH)	Swiss albino mice	Acetic-acid-induced increase in capillarypermeability (Whittle method)	0.2 mL/20 g	25 µL of saline PC	anti-inflammatory activity in a carrageenan-induced hind paw edema model and an acetic-acid-induced increase in capillary permeability	[13]
Diabetes	B. dioica roots	Aqueous extract	n5-STZ diabetic rats (Wismar)	Acute toxicity	30 mg/kg, i.p/21 days	Non-diabetic (5 mL/kg b.w./day of saline solution NaCl 9‰; i.p.); diabetic (5 mL/kg b.w./day of saline solution NaCl 9‰; i.p.)	Significantly decreased the level of serum glucose with 64% reductions. The body weight as well as serum levels of total cholesterol, triglycerides, and urea were markedly reversed secondary to subacute administrationof the aqueous extract. Changes in the weight of internal organs were restored to normal by the prolonged effect of the BDRaq extract appeared to have maximum antidiabetic activity in normalizing all studied parameters during the acute and subacute treatments	[39]
_	B. multiflora		Wistar albino male rats	Acute toxicity test	100, 200 and 400 mg/kg	Citrate buffer STZ	Prevented damage withliver, kidney, and pancreasamelioration in the functioning of the betacells.	[40]
Hepatotoxicity	B. dioica Leaves	Ethanolic extract	Albino male rats	CCL4-induced hepatic damage	250 mg/kg	Saline Ccl4	Protection against the toxic effects of CCL4, hepatoprotective effect	[29]
Anti-nociceptive	B. alba Roots	N-hexane, ethylacetate (EtOAc), methanol (MeOH)	Swiss albino mice	P-benzoquinone- induced abdominal constriction Tail flick test	0.1 mg/kg	Vehicle/aspirin Morphine	EtOAc extract displayed antinociceptive activity in the p-benzoquinone-induced writhing mouse model Marked anti-inflammatory effects, with 50% inhibitory doses (ID50) of 0.2–0.6 mg None of the extracts showed any activity in the tail flick test	[13]
SARSCoV-2 infections	Bryonia alba	Ethanolic extract	Gallus gallus embryo	Induced pathogenesis assay	10 µg/mL	Alcohol (70%)	Upregulation of IFN-α, IFN-β, and TGF-β by Delta SARS-CoV-2 spike protein RBD antigen	[38]

Bryonia Species **Control** (Negative Ailments/ A Model/Strains ^B Inhibitory Assay Ref. Product Dosage Effects Activities (Family/Part) ⊖/Positive ⊕) In vivo assays Polycystic ovary syndrome Protective effect on PCOS rats and normalized the Immature female DHEA 30 mg/kg/day for Saline hormones, glucose, LDL, and LDL/HDL ratio, Methanolic extract B. dioica [41] Wistar rats antiandrogenic assay 28 days Metformin improvement effect on the symptoms and markers of PCOS and fertility Dose higher than 250 mg/kg was shown to be toxic B. dioica Acute/subacute 250–1000 mg/kg for mice in acute toxicity Male mice Distilled water [15] Aqueous extract 62.5-250 mg/kg Dose up to 250 mg/kg was shown to be safe for Roots oral toxicity animals in subacute toxicity Toxicity Flavonoids No changes in the parameters were noticed within B. alba the 72 h, similar to the ones of the negative control (lutonarin, saponarin, Zebrafish larvae In vivo toxicity assay 25 embryos not treated [17] Leaves isoorientin, isovitexin) Absence of zebrafish toxicity was confirmed B. alba Methanolic extract Zebrafish (Danio rerio) 0.1 - 100 ug/mLNon-treated larvae Lack of toxicity [14] In vivo acute toxicity Aerial parts 23, B. alba 24-dihvdrocucurbitacin ICR mice sarcoma 180 5 to 10 mg/kg 0.2% ethanol + saline Antitumoric test Antitumor effect [49] Roots D (dhc D) ascites tumor cells 60 days Sarcoma 180 + saline Ethanol Cancer Bryoniosides, Cell death induced by apoptosis anti-melanoma cucurbitacins, B16F10-injected B. dioïca effects in vivo by inhibiting cell migration and 50 mg M/kg/dcucurbitacin A, Balb/c in mice Apoptotic effect mice treated only [48] Root (for 28 days) invasion through the FAK and cucurbitacin G with PBS Srcsignaling pathways Methanolic extract

^A HN-5: head and neck squamous cell carcinoma, Hela: cervix adenocarcinomacell lines, ICRmice: mice from the Institute of Cancer Research, HL-60: human leukemia cells, HT1080: fibrosarcoma cells, A549: lung cancer cells, WI38: fetal lung fibroblast cells, NALM6: human B-cell precursor leukemia cell line, REH: non-B acute lymphoblastic leukemia cell line, MDBK: Madin–Darby bovine kidney, EBV-EA: Epstein–Barr virus earlyantigen. ^B DPPH: diphenyl-2-picrylhydrazyl radical scavenging, RP: reducing power, TBARS: inhibition of lipid peroxidation using thiobarbituric-acid-reactive substancesin brain tissue homogenates, ABTS: [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] radicalscavenging assay, FRAP: ferric-reducing antioxidant power, PMA: phorbol-12-myristate-13-acetate, SNPAC: silver nanoparticle antioxidant capacity, EPR: electron paramagnetic resonance, TPA: 12-O-tetradecanoylphorbol-13-acetate, DHEA: dehydroepiandrosterone, CCl4: carbon tetrachloride.

Table 3. Cont.

Compounds	Species	Plant Part	Area	Extract ¹	Analysis ²	Ref.	
Primary metabolites							
Elements							
Fe, Si, P, Al, Mn, Mg, Pb, Ni, Mo, Ca, Cu, Zn, Na, K, Sr, Co, Cd, As, and Hg	B. dioica B. alba	Root	Ukraine	Ash	AAS	[51]	
Emistaça			Sugars				
Giucose	B. dioica	Fruit	Portugal	MeOH		[34]	
Trahalasa							
Raffinos							
Ribose							
Rhamnose							
Arabinose	B. alba	Root	Ukraine	0.Hb	CC/MS	[52]	
Xylose	B. multiflora	Root	Okranie	ungo		[02]	
Fucose							
Mannose							
Galactose							
			Vitamins				
α-Tocopherol							
β-Tocopherol						FO (1)	
γ-Tocopherol	В. d101са	Fruit	Portugal	MeOH		[34]	
δ-Tocopherol							
Ascorbic acid		Р	roteins/a.a				
Lectin			,				
Bryodiofin	B. dioica	Root					
Bryodin							
N4-(2-hydroxyethyl)-L- asparagine	B. dioica						
Other a.a	B. alba B. mutiflong	Root	Ukraine	dH ₂ O,	HPLC	[34,53]	
	Б. тинуюти	ī	atty acida	WeOT			
Methyl jasmonate	B. dioica						
α-linolenic acid	B. dioica		-				
acids							
Bryonolicacid (Ba)	B. multiflora	Root	~				
C-Friedoolean-8en-29-Oic	B. alba					[38]	
acid		Fruit aerial					
Other essential oils	B. dioica	parts, root	Tunisia	Oil	GC-FID/GC-MS	[37]	
		Second	lary metabolites				
		Terpeno	ids (Triterpenoid))			
Dihydrocucurbitacin B	B. cretica	Root	Egypt	EtOH	ныс –	[31]	
(DHCB)	B. aspera	Root	Iran	TCM	TH EC	[46]	
Dihydrocucurbitacin D	B. alba	Root	Armenia	MeOH	H/C-NMR UV MS	[46,49]	
(DHCD) -	B. aspera	Root	Iran	TCM	11/C 1 with 0.0 , with	F,]	
Dihydrocucurbitacin E (DHCE)	B. cretica	Root	Egypt	EtOH	HPLC	[31]	
Hexanorcucurbitacin D	B. cretica	Root	Egypt	EtOH	HPLC	[31]	

Table 4. Phytochemical compounds identified in Bryonia species.

Compounds	Species	Plant Part	Area	Extract ¹	Analysis ²	Ref.
		Secon	dary metabolites			
		Terpeno	oids (Triterpenoid)			
	B. multiflora		Turkey	MeOH		
Cucurbitacin B(CuB)	B. verrucosa	Root			HPLC	[54]
(minine)	B. cretica			ICM		
Cucurbitacin G	B. cretica	Root	Egypt	MeOH	NMR, X-ray crystallography	[27]
Cucurbitacin H	B. cretica	Root	Egypt	MeOH	NMR, X-ray crystallography	[27]
	B. alba		T 1	MeOH		
	B. multiflora		Turkey -	TCM	- HPLC	
Cucurbitacin I (Elatericin B)	B. dioica	Root		MeOH	_	[27,31,36,54]
(Enterient D)	B. verrucosa	_	Germany	EtOH	C-Sephadex LH-20	_
	B. cretica		Egypt	MeOH	HPLC	_
	B. alba			E+OH		
Cucurbitacin D	B. verrucosa	Root		Eton	HPLC	[31,54]
	B. cretica		Egypt	MeOH		
Cucurbitacin E (α-Elaterin)	B. alba	Root				
	B. verrucosa	Root	Faunt	E+OH	_ HPLC	[31,54]
. ,	B. alba	Root	Egypt	Elon		
Cucurbitacin I	B. dioica	Root			HPLC	[31.54]
	B. cretica		Egypt	EtOH		
	B. alba	Root				[24 54]
Cucurbitacin K	B. dioica	Root				[36,54]
	B. alba					
	B. melanocarpa		Uzbekistan	N OU	H/C-NMP	
Cucurbitacin L	B. dioica	Root	Germany	MeOH	TLC, C- Sephadex	[23,36,46,54,55]
	B. cretica				LH-20	
	B. aspera		Iran	TCM	_	
Cucurbitacin S	B. dioica					
	B. melanocarpa		Uzbekistan		H/C-NMR	
Bryoamaride	B. dioica	Root	Japan	MeOH	TLC, C/H NMR	[23,36,55]
Isomultiflorenol	B. melanocarpa		<i>y</i> 1			
bryocoumaricacid	B. dioica					
3a-hydroxy-multiflora-7, 9 (11)-dien-29a-oic acid	B. dioica					
Arvenin IV	B. alba					
Isocucurbitacin G	B. cretica	Root	Egypt	MeOH	NMR, X-ray crystallography	_
Isocucurbitacin H	B. cretica	Root	Egypt	MeOH	NMR, X-ray crystallography	[27]
Isocucurbitacin D	B. cretica	Root	Egypt	MeOH	NMR, X-ray crystallography	

Compounds	Species	Plant Part	Area	Extract ¹	Analysis ²	Ref.	
		Second	dary metabolites				
		Terpenc	oids (Triterpenoid	l)			
Iso Dihydrocucurbitacin D							
Epi-Iso Dihydrocucurbitacin B							
7β-hydroxy dihydrocucurbitacin D	B. aspera						
25-Oglucosyl Dihydrocucurbitacin D				ТСМ			
2-O-Glucosyl Dihydrocucurbitacin D		Root	Iran	MeOH	2D NMR	[26,46]	
4-Hydroxy-N-(2- hydroxyethyl)-benzamide (bryonamide A)							
4-Hydroxy-3-methoxy-N-(2- hydroxyethyl)-benzamide (bryonamide B)							
Bryonolic acid	B. aspera	Root	Iran	ТСМ	2D NMR	[26.46]	
	B. melanocarpa	1001	muit	MeOH		[=0,10]	
Tirucalla-5, 24-dien-3b-ol	B. dioica	Root		MeOH			
25-O-acetyl bryoamaride	B. dioica	Root	Germany	MeOH	C-Sephadex LH-20		
Bryodiosides A							
Bryodiosides B	B. dioica	Root	Japan	EtOH	C-Sephadex LH-20		
Bryodiosides C							
Bryodulcoside	B. dioica	Root	Germany	MeOH		[36]	
Bryonoside	B. dioica	Root	Japan	EtOH	C-Sephadex LH-20 FDMS, H/C NMR		
Bryoside	B. dioica	Root			Chemical, FDMS, H/C NMR		
Cucurbitacin I 2-O-â-D-glucopyranoside	B. dioica	Root	Germany	MeOH	C-Sephadex LH-20		
10α-cucurbitadienol	B. dioica	Root	Japan	ACE -MeOH	HPLC		
(24R)-24-ethyl-5a-cholest-7- en-3b-ol	B. melanocarpa						
B-sitosterol-3-O-glucoside Stigmasta-7E, 24	B. cretica						
(28)-dien-3b-ol							
4a-methyl stigmasta-7E, 24 (28)-dien-3b-ol	B. melanocarpa	Root					
(24R)-24-ethyl-5a-cholest-7- en-3b-ol	г						
10 Ic							
2-O-B-D-glucopyranoside							
Elaterinide	B. dioica	Root	Algeria	MeOH	C-Sephadex LH-20	[28,36]	
Tetrahydrocucurbitacin	B. dioica	Root	Algeria			[36]	
Bryonioside A	B. dioica B. cretica	Root	Japan Egypt	EtOAc EtOH	HPLC	[26,36]	
Bryonioside B	B. dioica B. cretica	Root	Japan Egypt	EtOAc EtOH	HPLC	[26,36]	

Compounds	Species	Plant Part	Area	Extract ¹	Analysis ²	Ref.
		Second	ary metabolites			
		Terpenoi	ds (Triterpenoid)	1		
Bryonioside C						
Bryonioside D	-					
Bryonioside E	B. dioica	Root	Japan	MeOH	HPLC	[36]
Bryonioside F	-					
Bryonioside G	-					
Cabenoside D	B. dioica	Root	Japan	EtOAc	C/H NMR	
Bryodulcosigenin	B. dioica	Root	Japan	EtOAc	C/H NMR	[36]
Bryosigenin	B. dioica	Root	Japan	EtOAc	C/H NMR	_
Bryogenin	B. dioica		/			
22-deoxocucurbitosides A	B. alba B. multiflora	Root		EtOH		
22-deoxocucurbitosides B	B. alba			EtOH		
22-deoxocucurbitosides D	B. multiflora	Root				
22-deoxocucurbitacin D	B. alba		/	EtOH		
Neocucurbitacin C	B. aspera	Root	Iran	TCM	2D NMR	[26,46]
		Terpenoids	(Sesquiterpenoid	ds)		
Maaliol	B. dioica	Root	Morocco	dH ₂ O	GC-MS	[15]
		S	Saponins			
Brydiosides A	_					
Brydiosides B	B. dioica	Root	Algeria			[26,28,49]
Brydiosides C	_					
			Steroids			
Delta7-stigmastenol	B. dioica		1			
		F	lavonoids			
Saponarin	B. dioica B. alba	Root Leaves/aerial part	Algeria Romania	MeOH	HPLC-DAD, MS/NMR	[14,17,28,39]
Isovitexin	D 11	A orial parts	D ·	MOU		[14 17]
Vitexin	- В. шой	Aeriai parts	Komania	MeOH	HPLC-DAD	[14,17]
Vicenin	B. dioica					[11]
Lutonarin	B. alba	Leaves/aerial parts	Romania	MeOH	HPLC–DAD, MS/NMR	[14,17]
Isoorientin	B. alba	Leaves/aerial parts	Romania	MeOH	HPLC-DAD, MS/NMR	[14,17]
5, 7, 4'-trihydroxy flavone 8-Cglucopyranoside	B. alba					
Alliaroside	B. dioica					

Compounds	Species	Plant Part	Area	Extract ¹	Analysis ²	Ref.
		F	Flavonoids			
Apigenin-C-Hexoside-O- Hexoside						
Apigenin-6-C-Glucoside-8- C-Glucoside						
Apigenin-6-C-Glucoside-7- O-Glucoside						
Apigenin-C-Hexoside-O- Hexoside	B. dioica	Fruit	Portugal	EtOH	HPLC-DAD-ESI/MS	[56]
Apigenin-6-C-Glucoside (Isovitexin)						
Quercetin-3-O- Neohesperidoside						
Quercetin-O-Rhamnosyl- Pentoside						
Quercetin-O-Rhamnosyl- Rhamnoside					/	/
Quercetin-O-Hexoside 8						
Kempferol 3,7-Di-O-Rhamnoside						
Kaempferol-O-Rhamnosyl- Hexoside-O-Rhamnoside	B. dioica	Root				[12]
Kaempferol-3-O- Neohesperidoside						
Kaempferol-O-Pentosyl- Rhamnoside						
Kaempferol-3,4'-Di-O- Rhamnoside						
	D	т.	Alkaloid	FOLL		
Bryonicine	B. alba	Leaves	Coumarans	EtOH		[38,57]
Coumaran	B. dioica	Root	Morocco	dH ₂ O	GC-MS	[15]
			Pigments			
Chlorophyll A	B dioica	Fruit	Portugal	MeOH		[34]
Chlorophyll B	2					[+ +]
Lycopene			Deut 1			
β-carotene	B. dioica	Fruit/shoot	Portugal Spain	MeOH		[34,58]
Lutein					·	
Neoxanthin	B. dioica	Shoot	Spain		HPLC-PDA	[58]
Violaxanthin						

¹ EtOH: ethanolic extract, EtOAc: ethyl acetate extract, MeOH: ethanol extract, TCM: chloroform extract, dH₂O: aqueous extract, ² HPLC: high-performance liquid chromatography, GC–MS: gas chromatography–mass spectrometry, H/C-NMR: proton/carbon nuclear magnetic resonance, GC-FID: gas chromatography with flame ionization detection, HPLC–PDA: high-performance liquid chromatography–photodiode array detection, HPLC–DAD–ESI/MS: high-performance liquid chromatography–diode array detection–electro-spray ionization mass spectrometry, 2D NMR: two-dimensional nuclear magnetic resonance spectroscopy, FDMS: field desorption mass spectrometry, TLC: thin-layer chromatography, UV: ultraviolet, MS: mass spectrometry.

Terpenoids

Terpenoids are considered the largest phytochemical class widely distributed in almost all plants. According to their carbon units, terpenoids include monoterpenes, diterpenes, triterpenes, sesquiterpenes, and sesterpenes [59]. Triterpenoids were found to be abundant in *Bryonia* species. Among them, cucurbitacins are considered the most important triterpenoids of the *Bryonia* species. Cucurbitacins, highly oxygenated triterpenoids with a 19-

 $(10\rightarrow9\beta)$ -abeo-10 α -lanost-5-ene ring skeleton and 5,(6) -double bond, are often tetracyclic and highly unsaturated [60]. Actually, cucurbitacins E, B, I, D, J, K, and L, dihydrocucurbitacins E and B, and tetrahydrocucurbitacin I were identified in Bryonia roots, with some differences due to the harvest period, geographical location of the plant, and extraction methods [61]. Sallam et al. (2010) isolated two cucurbitacins, isocucurbitacins G and H, from Bryonia roots [27]. Earlier, other triterpenoids, namelybryonoside and bryoside, were isolated [62]. Ukiya et al. (2002) isolated ninetriterpene glycosides: bryoniosides A-G, cabenoside, and bryoamaride [36] (Figure 4).

On the other hand, three tetraterpenoids (lycopenetetra, chlorophyll A, and β -carotene) along with a sesquiterpenoid (Maaliol) have been reported in methanolic and aqueous extracts from *B. dioica* species (Figure 5).

Cucurbitacin L

Figure 4. Cont.

Figure 4. Triterpenoid-type molecules isolated from *Bryonia* genus.

Figure 5. Tetraterpenoid/sesquiterpenoid-type molecules isolated from *Bryonia* genus ((A–C) tetraterpenoids and (D) sesquiterpenoid).

• Flavonoids

Considered the second major phytochemical group in the genus *Bryonia*, 23 flavonoids (Table 4, Figure 6) have been isolated from this genus, including 9 flavanols and 11 flavones, during the latest 22 years. Lelciu et al. (2019) identified four flavonoids in the crude extract of the aerial parts of *B. alba* [17]. These flavonoids were lutonarin, saponarin, isoorientin, and isovitexin. Earlier, saponarin and vicenin-2 were reported in *B. dioica* [63]. Moreover,

Barreira et al. (2013) reported the presence of both O- and C-glycosides of flavonoids in the methanolic extract of *B. dioica* fruits. Actually, they identified O- and C-glycosides of two flavonols-quercetin (Quercetin-3-O-neohesperidoside, Quercetin-O-rhamnosylpentoside, Quercetin-O-rhamnosyl-rhamnoside, Quercetin-O-hexoside) and kaempferol (Kaempferol-O-rhamnosyl-hexoside-O-rhamnoside, Kaempferol-3-O-neohesperidoside, Kaempferol-O-pentosyl-rhamnoside, Kaempferol-O-pentosyl-rhamnoside, Kaempferol-3,4'-di-O-rhamnoside)—and one flavone: apigenin (Apigenin-6-C-glucoside, Apigenin-Chexoside-O-hexoside, Apigenin-6-C-glucoside-8-C-glucoside, Apigenin-6-C-glucoside-7-O-glucoside, Apigenin-C-hexoside-O-hexoside) [56].

Among the flavonols, five kaempferol and four quercetin flavonols were revealed completely in the B. dioica roots with no reports on he extraction method or even the detection method. Nevertheless, Quercetin-3-O-Neohesperidoside and Quercetin-O-Rhamnosyl-Pentoside were found in an ethanol extract of B. dioica fruit using HPLC–DAD–ESI/MS. Likewise, the flavone apigenin (Apigenin-C-Hexoside-O-Hexoside, Apigenin-6-C-Glucoside-8-C-Glucoside, Apigenin-6-C-Glucoside-7-O-Glucoside, Apigenin-C-Hexoside-O-Hexoside, Apigenin-6-C-Glucoside) was detected. In addition, both B. alba and B. dioica leaves showed other type of flavonoids such as saponarin, lutonarin, and isoorientin via different methods (HPLC–DAD and MS/NMR). Gholivand and Piryaei (2012) reported that flavonoids were obtained from *B. dioica* flowers, leaves, and stems using several extracts (polar and nonpolar) [32]. Similarly, amethanolic extract of B. alba's aerial parts showed the presence of lutonarin, saponarin, isoorientin, and isovetexin [14].

Saponarin

Isovitexin

Figure 6. Cont.

Lutonarin

Isoorientin

Figure 6. Flavonoid-type molecules isolated from Bryonia genus.

• Alkaloids

Few data on the alkaloid composition of *Bryonia* L. have been reported. One of the alkaloid compounds mentioned was bryonicine, extracted from the leaves of *B. alba* through maceration with ethanol [38,57].

• Fatty acids

Methyl jasmonate, α -linolenic acid, trihydroxyocdecadeinoicacids, and Bryonolic Acid (Ba) 3 β -Hydroxy-D:C-Friedoolean-8en-29-Oic Acid are the fatty acids found and reported in previous studies on *B. multiflora*, *B. alba*, and *B. dioica* [37] (Figure 7).

Trihydroxyocdecadeinoicacids

Bryonolicacid (Ba)

Figure 7. Fatty acids isolated from *Bryonia* genus.

• Other compounds:

In particular, *B. dioica* roots were studied and revealed the identification of coumaran in their aqueous extract, beside saponins (brydiosides) and a steroid (Delta7-stigmastenol), for which the details are still unknown (Figure 8). Furthermore, other compounds were reported in the *B. dioica*, *B. alba*, and *B. cretica* species, especially terpenoids as mainly bioactive compounds (Table 4).

Delta7-stigmastenol

Figure 8. Other molecules isolated from Bryonia genus. ((A) Coumaran, (B) saponin, and (C) steroid).

In this review, other compounds, namely C-glycosides, emerged as significant building blocks for many naturally occurring triterpenoids, bryoniosides (Figure 4), and the flavonoid apigenin-6-C-glucoside-7-O-glucoside (Figure 6) [64]. These compounds have attracted plenty of attention as bioactive agents, flavor precursors, and detergents, which are either extracted from plant materials or chemically synthesized [65]. However, these methods suffer from low yields as a matter of their stability and functionality. Thus, various approaches have been developed for the formation of C-glycosidic usingimproved biocatalytic processes involving GT enzymes [65]. A previous study focused on developing efficient protocols for the synthesis of 1,2-annulated glycosides. The study reported the synthesis of sugar-fused indolines via C(sp2)–H/NeH activation starting from 2-nitroglycals using palladium-catalyzed CeH amination reactions [66]. Moreover, another study adopted the Prins cyclization approach using pivaloyl protection to form 2-deoxy-3,4-fused C-aryl/alkyl glycosides [67]. These strategies succeeded in synthesizing a protected C-glycoside compound viadecomposition from the first step.

Furthermore, among the identified phytochemicalsin *Bryonia*, a few compounds were isolated as pure bioactive molecules from different genera and investigated for their biological effects (Table 5). Most of them, such as isoorientin, isovitexin, cucurbitacin A, B, C, and D, and 23,24-dihydrocucurbitacin D, exhibited anticancer activity against gastric cancer, lung cancer, and ovarian cancer [68–74]. Moreover, bryoniosides A and B and isocucurbitacin D showed an antiproliferation capacity [31]. Besides their antioxidant properties, other flavonoid compounds, namely lutonarin and saponarin, were considered anti-inflammation agents due to theirinhibition of the phosphorylation of signaling

effectors and the expression of inflammatory mediators, especially tumor necrosis factor (TNF)- α and the inflammatory enzyme cyclooxygenase-2 (COX-2) [75,76].

Table 5. The main bioactive compounds identified in Bryonia genus with important bioactivities.

Compounds	Agent against	Effects	Ref.
Lutonarin	Oxidation Inflammation	Inhibition of the peroxidase-catalyzed reactions with significant antioxidant/antiradical effect. Suppression of LPS-induced expression, phosphorylation, and nuclear translocation of NF-κB. Inhibition of LPS-induced upregulation of proinflammatory cytokines IL-6 and TNF-α and of the inflammatory enzymes COX-2 and iNOS.	[14,17,75]
Saponarin	Inflammation	Inhibition of phosphorylation of extracellular signal-regulated kinase (ERK) and p38. Inhibition of both β -hexosaminidase degranulation and phosphorylation of signaling effectors and the expression of inflammatory mediators TNF- α , IL-4, IL-5, IL-6, IL-13, COX-2, and FccRI α/γ . Inhibition of expression of macrophage-derived chemokine, thymus, and activation-regulated chemokine, IL-33, and thymic stromal lymphopoietin, and the phosphorylation of signaling molecules in TNF- α - and interferon (IFN)- γ -stimulated HaCaT cells. Induction of the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells. Inhibition of factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells.	[76]
Bryoniosides A/B	Proliferation	Inhibition of cell proliferation.	[31]
Isocucurbitacin D	Tiometation	Cytotoxic effects with the disruption of target protein cofilin.	[31]
Isoorientin		Inhibition of cellmigration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells.	[68]
Isovitexin		Inhibition of cell proliferation and glucose metabolism via downregulating the expression of PKM2 to enhance the antitumor activity of DDP against lung cancer cells and improve DDP-induced immunotoxicity in mice.	[69]
23, 24-dihydrocucurbitacin D	Cancer	Antitumor effect on tumor cells Suppression of gastric cancer cell proliferation, migration, and invasion through targeting ERK2 and disrupting the Ras/Raf/ERK/MMP9 signaling pathway. Dual transcriptional regulation of LDLR and PCSK9 in HepG2 cells by increasing SREBP2 protein levels and decreasing HNF1 α protein levels in the nuclei. Decrease in the expression of important proteins in the PI3K/Akt/mTOR cascade. Induction of apoptosis in HeLa cells and caused ROS-mediated shifts in the Δ Ym.	[49,74,77,78].
Cucurbitacin A		Inhibition of the expression of key proteins in thePI3K/Akt/mTOR signaling pathway in ovarian cancer cells.	[70]
Cucurbitacin C		Inhibition of growth of cancer-cell-derived xenograft tumors in athymic nude mice and induction of apoptosis.	[72]
Cucurbitacin B Cucurbitacin D		Decrease in the phosphorylation of TYR-705 in STAT3 and suppression of STAT3 target gene expression, including c-Myc and Bcl-xL in gastric cancer. Inhibition of growth of cervical-cancer-cell-derived orthotopic xenograft tumors in athymic nude mice	[71] [73]
Cucurbitaneglycosides		Deglycosylation enhances the inhibitory effects on EBV-EA activation (anti-tumor). Moderate anti-tumor activity toward HeLa cell lines.	[36,79]
Neocucurbitacin C		Cytotoxic.	[46]

4. Limitations

Although a systematic process was applied to the research, selection, and analysis of the included studies, there are several limitations to point out. First, the small number

of studies deserves consideration. Also, the selected studies focused on certain species, providing, in general, some biological data. Moreover, most of the included investigations were conducted on species extracts as sources of pharmacological agents and did not consider the isolation of active compounds, whereas some of the selected studies recorded the detected compounds without experimental applications. On the other hand, the lack of in vivo assessments of the toxicity profiles remains a challenge when interpreting the *Bryonia* research. Although previous studies reported the significant anticancer potential of compounds such as cucurbitacins, the molecular mechanisms involved and signaling pathways targeted remain unclear and need to be further investigated. Importantly, in spite of the significant biological activities reported here, no clinical trials have been undertaken to demonstrate the clinical usefulness of such products. However, this systematic review allowed us to summarize the research on particular compounds and identify important pharmacological activities that could be addressed in future research projects.

5. Conclusions

This systematic review documented interesting findings showing the diversity of Bryonia species spread across the world, isolated molecules from their different parts, and their therapeutic potential. Here, we found that some species such as *B. dioica*, *B. aspera*, B. alba, and B. cretica were more studied than other species in the genus due to their traditional uses. These plants maypossess important economic value aseasily cultivable species that represent a large reservoir of chemical components, principally triterpenoids (cucurbitacins and dihydrocucurbitacins). According to most of the previously published papers, this major class, besides flavonoids, especially lutonarin, saponarin, isoorientin, andisovitexin, showed remarkable pharmaceutical properties as antioxidant, anti-inflammatory, and mainly anticancer agents. Although the current report provides a detailed account of the updated information in terms of valuable results on taxonomy, geographic distribution, ethnopharmacology, and more on the phytochemical and therapeutic aspects, some limitations regarding the isolation of active compounds, clinical usefulness, and pharmaceutical application of Bryonia species should be considered. Therefore, further studies should be focused on identification and clarification of the molecular mechanisms of the biological activities of phytochemicals isolated from Bryonia species, in particular from the root parts of both B. alba and B. dioica. The genus needs more in-depth research to reveal the molecules responsible for these biological activities, which may lead to discovering novel and unique therapeutic molecules.

Author Contributions: B.B. and K.B. contributed equally to the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Assefa, B.; Glatzel, G.; Buchmann, C. Ethnomedicinal Uses of *Hagenia abyssinica* (Bruce) J.F. Gmel. Among Rural Communities of Ethiopia. *J. Ethnobiol. Ethnomedicine* **2010**, *6*, 20. [CrossRef]
- Belhouala, K.; Benarba, B. Medicinal Plants Used by Traditional Healers in Algeria: A Multiregional Ethnobotanical Study. *Front. Pharmacol.* 2021, 12, 760492. [CrossRef]
- Kocyan, A.; Zhang, L.-B.; Schaefer, H.; Renner, S.S. A Multi-Locus Chloroplast Phylogeny for the Cucurbitaceae and Its Implications for Character Evolution and Classification. *Mol. Phylogenetics Evol.* 2007, 44, 553–577. [CrossRef] [PubMed]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. *Flora Europea*; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA; Melbourne, Australia, 2010; Volume 3, pp. 297–299.
- Schaefer, H.; Renner, S.S. Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae). *Taxon* 2011, 60, 122–138. [CrossRef]

- 6. WFO. Available online: http://www.worldfloraonline.org (accessed on 30 December 2022).
- 7. POWO. Available online: https://powo.science.kew.org (accessed on 30 December 2022).
- 8. Volz, S.; Renner, S.S. Phylogeography of the ancient Eurasian medicinal plant genus *Bryonia* (Cucurbitaceae) inferred from nuclear and chloroplast sequences. *Taxon* **2009**, *58*, 550–560. [CrossRef]
- 9. Patel, S.; Showers, D.; Vedantam, P.; Tzeng, T.-R.; Qian, S.; Xuan, X. Microfluidic Separation of Live and Dead Yeast Cells Using Reservoir-Based Dielectrophoresis. *Biomicrofluidics* **2012**, *6*, 34102. [CrossRef] [PubMed]
- 10. Kadhim, M.; Thacker, M.; Kadhim, A.; Holmes, L. Treatment of Unicameral Bone Cyst: Systematic Review and Meta Analysis. *J. Child. Orthop.* **2014**, *8*, 171–191. [CrossRef] [PubMed]
- 11. Benarba, B. Ethnomedicinal study of *Bryonia dioica*, a plant used as anti-breast cancer herbal therapy in North West Algeria. *J. Med. Herbs Ethnomed.* **2015**, *1*, 113.
- 12. Jasiem, T.M.; Eldalawy, R.; Alnaqqash, Z.A.E. Pharmacological Activities and Chemical Constituents and of *Bryonia dioica* L.: A Review. *Indian J. Public Health Res. Dev.* **2020**, *11*, 2189. [CrossRef]
- 13. Ilhan, M.; Dereli, F.T.G.; Tümen, I.; Akkol, E.K. Anti-inflammatory and antinociceptive features of *Bryonia alba* L.: As a possible alternative in treating rheumatism. *Open Chem.* **2019**, *17*, 23–30. [CrossRef]
- 14. Ielciu, I.; Frédérich, M.; Hanganu, D.; Angenot, L.; Olah, N.-K.; Ledoux, A.; Crișan, G.; Păltinean, R. Flavonoid Analysis and Antioxidant Activities of the *Bryonia alba* L. Aerial Parts. *Antioxidants* **2019**, *8*, 108. [CrossRef]
- 15. Bourhia, M.; Bari, A.; Ali, S.W.; Benbacer, L.; Khlil, N. Phytochemistry and Toxicological Assessment of *Bryonia dioica* Roots Used in North-African Alternative Medicine. *Open Chem.* **2019**, *17*, 1403–1411. [CrossRef]
- 16. Neogi, S.B.; Roy, D.K.; Sachdeva, A.K.; Sharma, R.; Gupta, R.; Ganguli, A. Evidence of prenatal toxicity of herbal based indigenous formulations for sex selection in rat models. *J. Tradit. Complement. Med.* **2021**, *11*, 9–15. [CrossRef] [PubMed]
- Ielciu, I.; Mouithys-Mickalad, A.; Franck, T.; Angenot, L.; Ledoux, A.; Păltinean, R.; Cieckiewicz, E.; Etienne, D.; Tits, M.; Crişan, G.; et al. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a *Bryonia alba* L. (Cucurbitaceae) leaves extract. *J. Pharm. Pharmacol.* 2018, *71*, 230–239. [CrossRef]
- 18. TPL. Available online: www.theplantlist.org (accessed on 30 December 2022).
- 19. Rus, L.M.; Ielciu, I.I.; Păltinean, R.; Vlase, L.; Ștefănescu, C.; Crişan, G.C. Morphological and Histo-Anatomical Study of *Bryonia alba* L. (Cucurbitaceae). *Not. Bot. Horti Agrobot. Cluj-Napoca* **2015**, *43*, 47–52. [CrossRef]
- 20. Volz, S.M.; Renner, S.S. Hybridization, polyploidy, and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). *Am. J. Bot.* **2008**, *95*, 1297–1306. [CrossRef] [PubMed]
- 21. Kujawska, M.; Svanberg, I. From Medicinal Plant to Noxious Weed: *Bryonia alba* L. (Cucurbitaceae) in Northern and Eastern Europe. *J. Ethnobiol. Ethnomedicine* **2019**, *15*, 22. [CrossRef]
- Baars, E.W.; Zoen, E.B.-V.; Willcox, M.; Huber, R.; Hu, X.-Y.; van der Werf, E.T. CAM treatments for cough and sore throat as part of an uncomplicated acute respiratory tract infection: A systematic review of prescription rates and a survey among European integrative medical practitioners. *Eur. J. Integr. Med.* 2020, *39*, 101194. [CrossRef]
- Isaev, M.I. Bryonia isoprenes. II. Cucurbitacin L and bryoamaride from Bryonia melanocarpa. Chem. Nat. Compd. 2000, 36, 292–294. [CrossRef]
- Ghorbani, A. Studies on Pharmaceutical Ethnobotany in the Region of Turkmen Sahra, North of Iran. J. Ethnopharmacol. 2005, 102, 58–68. [CrossRef]
- Renner, S.S.; Scarborough, J.; Schaefer, H.; Paris, H.S.; Janick, J.; Pitrat, M. Dioscorides's Bruonia Melaina Is *Bryonia alba*, Not *Tamus communis*, and an Illustration Labeled Bruonia Melaina in the Codex Vindobonensis Is *Humulus lupulus* Not *Bryonia dioica*. In Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008; pp. 273–280.
- Sahranavard, S.; Naghibi, F.; Siems, K.; Jenett-Siems, K. New Cucurbitane-Type Triterpenoids from *Bryonia aspera*. *Planta Medica* 2010, 76, 1014–1017. [CrossRef]
- Sallam, A.A.; Hitotsuyanagi, Y.; Mansour, E.-S.S.; Ahmed, A.F.; Gedara, S.; Fukaya, H.; Takeya, K. Cucurbitacins from Bryonia cretica. Phytochem. Lett. 2010, 3, 117–121. [CrossRef]
- 28. Benarba, B.; Meddah, B.; Aoues, A. *Bryonia dioica* Aqueous Extract Induces Apoptosis through Mitochondrial Intrinsic Pathway in BL41 Burkitt's Lymphoma Cells. J. *Ethnopharmacol.* 2012, 141, 510–516. [CrossRef]
- 29. Kadhim, E.J. Phytochemical investigation and hepato-protective studies of Iraqi *Bryonia dioica* (Family Cucurbitaceae). *Int. J. Pharm. Pharm. Sci.* **2014**, *6*, 187–190.
- Pourgonabadi, S.; Amiri, M.S.; Mousavi, S.H. Cytotoxic and Apoptogenic Effects of *Bryonia aspera* Root Extract against Hela and HN-5 Cancer Cell Lines. DOAJ Dir. Open Access J. 2017, 7, 66–72.
- Matsuda, H.; Nakashima, S.; Abdel-Halim, O.B.; Morikawa, T.; Yoshikawa, M. Cucurbitane-Type Triterpenes with Antiproliferative Effects on U937 Cells from an Egyptian Natural Medicine, *Bryonia cretica*: Structures of New Triterpene Glycosides, Bryoniaosides A and B. *Chem. Pharm. Bull.* 2010, 58, 747–751. [CrossRef]
- 32. Gholivand, M.B.; Piryaei, M. The antioxidant activity, total phenolics and total flavonoids content of *Bryonia dioica* Jacq. *Biologija* **2012**, *58*, 3. [CrossRef]
- Khamees, A.H.; Kadhim, E.J.; Sahib, H.B.; Mutlag, S.H. In vitro analysis of antioxidant and antimicrobial activity of Iraqi Bryonia dioica. Int. J. Pharm. Sci. Rev. Res. 2017, 43, 248–252.

- 34. Rafael, M.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Topical anti-inflammatory plant species: Bioactivity of *Bryonia dioica, Tamus communis* and Lonicera periclymenum fruits. *Ind. Crop. Prod.* 2011, 34, 1447–1454. [CrossRef]
- 35. Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and ethnobotanical dermatology practices in Romania and other Eastern European countries. *Clin. Dermatol.* **2018**, *36*, 338–352. [CrossRef]
- Ukiya, M.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Toriumi, M.; Koike, K.; Kimura, Y.; Nikaido, T.; Aoi, W.; Nishino, H.; et al. Anti-Inflammatory and Anti-Tumor-Promoting Effects of Cucurbitane Glycosides from the Roots of *Bryonia dioica*. J. Nat. Prod. 2002, 65, 179–183. [CrossRef]
- Dhouioui, M.; Boulila, A.; Jemli, M.; Schiets, F.; Casabianca, H.; Zina, M.S. Fatty Acids Composition and Antibacterial Activity of Aristolochia longa L. and Bryonia dioïca Jacq. Growing Wild in Tunisia. J. Oleo Sci. 2016, 65, 655–661. [CrossRef]
- Goswami, P.; Chatterjee, D.; Ghosh, S.; Paira, K.; Das, S. Balanced cytokine upregulation by diluted ethanolic extract of *Bryonia* alba in Delta SARS-CoV-2 Spike protein RBD-induced pathogenesis in Gallus gallus embryo. *Bull. Natl. Res. Cent.* 2022, 46, 169. [CrossRef]
- 39. Chekroun, E.; Bechiri, A.; Azzi, R.; Adida, H.; Benariba, N.; Djaziri, R. Antidiabetic Activity of Two Aqueous Extracts of Two Cucurbitaceae: Citrullus Colocynthis and *Bryonia dioica*. *Phytotherapie* **2016**, *15*, 57–66. [CrossRef]
- Uyar, A.; Yaman, T.; Kele, O.; Alkan, E.; Celik, I.; Yener, Z. Protective Effects of Bryonia Multiflora Extract on Pancreatic Beta Cells, Liver and Kidney of Streptozotocin-Induced Diabetic Rats: Histopathological and Immunohistochemical Investigations. *Indian J. Pharm. Educ. Res.* 2017, *51*, s403–s411. [CrossRef]
- 41. Tahvilian, R.; Gravandi, M.M.; Noori, T.; Papzan, A.; Jamshidi, N.; Iranpanah, A.; Afsaneh, M.; Shirooie, S. The therapeutic effect of methanolic extract *Bryonia dioica* Jacq. in a female rat model of polycystic ovary syndrome. *J. Rep. Pharm. Sci.* **2022**, *11*, 79.
- 42. Hussain, H.; Green, I.R.; Saleem, M.; Khattak, K.F.; Irshad, M.; Ali, M. Cucurbitacins as Anticancer Agents: A Patent Review. *Recent Patents Anti-Cancer Drug Discov.* 2019, 14, 133–143. [CrossRef]
- Kumar, A.; Sharma, B.; Sharma, U.; Parashar, G.; Parashar, N.C.; Rani, I.; Ramniwas, S.; Kaur, S.; Haque, S.; Tuli, H.S. Apoptotic and antimetastatic effect of cucurbitacins in cancer: Recent trends and advancement. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 2023, 396, 1867–1878. [CrossRef]
- 44. Nakashima, S.; Oda, Y.; Morita, M.; Ohta, A.; Morikawa, T.; Matsuda, H.; Nakamura, S. Analysis of Active Compounds Using Target Protein Cofilin—Cucurbitacins in Cytotoxic Plant *Bryonia cretica*. *Toxins* **2022**, *14*, 212. [CrossRef]
- 45. Yazdanpanah, S.; Esmaeili, S.; Bashash, D.; Nayeri, N.D.; Farahani, M.E.; Gharehbaghian, A. Cytotoxic and Apoptogenic Activity of *Bryonia aspera* Extract on Pre-B Acute Lymphoblastic Leukemia Cell Lines. *DOAJ Dir. Open Access J.* **2018**, *12*, 204–212.
- 46. Sahranavard, S.; Naghibi, F.; Ghaffari, S. Cytotoxic activity of extracts and pure compounds of *Bryonia aspera*. *Int. J. Pharm. Pharm. Sci.* **2012**, *4*, 541–543.
- 47. Benarba, B.; Elmallah, A.; Pandiella, A. *Bryonia dioica* Aqueous Extract Induces Apoptosis and G2/M Cell Cycle Arrest in MDA-MB 231 Breast Cancer Cells. *Mol. Med. Rep.* **2019**, *20*, 73–80. [CrossRef] [PubMed]
- Abdessamad, I.B.; Bouhlel, I.; Chekir-Ghedira, L.; Krifa, M. Antitumor Effect of Bryonia Dioïca Methanol Extract: In Vitro and In Vivo Study. Nutr. Cancer 2019, 72, 747–756. [CrossRef] [PubMed]
- 49. Sohn, H.O.; Lee, Y.G.; Lim, H.B.; Kwon, N.S.; Aprikian, G.V.; Lee, D.W. Antitumor Activity of 23, 24-dihydrocucurbitacin D Isolated from *Bryonia alba* L. *Toxicol. Res.* **2000**, *16*, 263–267.
- 50. Nersesyan, A.k.; Ar, C. Possible Genotoxic Activity of Extracts of *Bryonia alba* Roots on Human Lymphocytes and Transformed Cells. *Neoplasma* **2002**, *49*, 114–116. [PubMed]
- Karpiuk, U.V.; Al Azzam, K.M.; Abudayeh, Z.H.M.; Kislichenko, V.; Naddaf, A.; Cholak, I.; Yemelianova, O. Qualitative and Quantitative Content Determination of Macro-Minor Elements in *Bryonia alba* L. Roots using Flame Atomic Absorption Spectroscopy Technique. *Adv. Pharm. Bull.* 2016, *6*, 285–291. [CrossRef] [PubMed]
- Karpyuk, U.V.; Kislichenko, V.S.; Gur'eva, I.G. Carbohydrate Composition of *Bryonia alba*. Chem. Nat. Compd. 2016, 52, 672–673. [CrossRef]
- 53. Karpyuk, U.V.; Kislichenko, V.S.; Gur'eva, I.G. HPLC Determination of Free and Bound Amino Acids in *Bryonia alba*. *Chem. Nat. Compd.* **2015**, *51*, 399–400. [CrossRef]
- 54. Toker, G.; Erdemoğlu, N.; Toker, M.C. High performance liquid chromatographic analysis of cucurbitacins in some Bryonia species. *FABAD J. Pharm. Sci.* **2000**, *25*, 153–156.
- Khan, M.T.H.; Choudhary, M.I.; Rahman, A.U.; Mamedova, R.P.; Agzamova, M.A.; Sultankhodzhaev, M.N.; Isaev, M.I. Tyrosinase inhibition studies of cycloartane and cucurbitane glycosides and their structure–activity relationships. *Bioorganic Med. Chem.* 2006, 14, 6085–6088. [CrossRef]
- Barreira, J.C.; Pereira, E.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. *Bryonia dioica, Tamus communis* and Lonicera periclymenum fruits: Characterization in phenolic compounds and incorporation of their extracts in hydrogel formulations for topical application. *Ind. Crop. Prod.* 2013, 49, 169–176. [CrossRef]
- 57. Nasrollahzadeh, M.; Yek, S.M.; Motahharifar, N.; Gorab, M.G. Recent Developments in the Plant-Mediated Green Synthesis of Ag-Based Nanoparticles for Environmental and Catalytic Applications. *Chem. Rec.* **2019**, *19*, 2436–2479. [CrossRef] [PubMed]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J.; Olmedilla-Alonso, B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (*Asparagus acutifolius* L., *Humulus lupulus* L., *Bryonia dioica* Jacq. and *Tamus communis* L.). J. Sci. Food Agric. 2014, 94, 1914–1916. [CrossRef]

- 59. Zhang, T.-L.; Yu, H.; Ye, L. Metabolic Engineering of Yarrowia Lipolytica for Terpenoid Production: Tools and Strategies. *ACS Synth. Biol.* **2023**, *12*, 639–656. [CrossRef]
- 60. Kaushik, U.; Aeri, V.; Mir, S.R. Cucurbitacins—An insight into medicinal leads from nature. *Pharmacogn. Rev.* 2015, *9*, 12–18. [CrossRef] [PubMed]
- 61. Pohlmann, J. Die Cucurbitacine in Bryonia alba Und Bryonia dioica. Phytochemistry 1975, 14, 1587–1589. [CrossRef]
- 62. Hylands, P.J.; Kosugi, J. Bryonoside and bryoside—New triterpene glycosides from *Bryonia dioica*. *Phytochemistry* **1982**, 21, 1379–1384. [CrossRef]
- 63. Krauze-Baranowska, M.; Cisowski, W. High-performance liquid chromatographic determination of flavone C-glycosides in some species of the Cucurbitaceae family. *J. Chromatogr. A* **1994**, *675*, 240–243. [CrossRef]
- 64. Parida, S.P.; Das, T.; Ahemad, M.A.; Pati, T.; Mohapatra, S.; Nayak, S. Recent advances on synthesis of C-glycosides. *Carbohydr. Res.* **2023**, 530, 108856. [CrossRef]
- Schwab, W.; Fischer, T.; Wüst, M. Terpene Glucoside Production: Improved Biocatalytic Processes Using Glycosyltransferases. Eng. Life Sci. 2015, 15, 376–386. [CrossRef]
- Verma, A.K.; Chennaiah, A.; Dubbu, S.; Vankar, Y.D. Palladium catalyzed synthesis of sugar-fused indolines via C(sp2)–H/N H activation. *Carbohydr. Res.* 2019, 473, 57–65. [CrossRef] [PubMed]
- Dubbu, S.; Chennaiah, A.; Verma, A.K.; Vankar, Y.D. Stereoselective synthesis of 2-deoxy-β-C-aryl/alkyl glycosides using Prins cyclization: Application in the synthesis of C-disaccharides and differently protected C-aryl glycosides. *Carbohydr. Res.* 2018, 468, 64–68. [CrossRef]
- Huang, H.-K.; Lee, S.-Y.; Huang, S.-F.; Lin, Y.-S.; Chao, S.-C.; Lee, S.-C.; Cheng, T.-H.; Loh, S.-H.; Tsai, Y.-T. Isoorientin Decreases Cell Migration via Decreasing Functional Activity and Molecular Expression of Proton-Linked Monocarboxylate Transporters in Human Lung Cancer Cells. Am. J. Chin. Med. 2020, 48, 201–222. [CrossRef] [PubMed]
- Chen, R.; Wang, Z.; Huang, P.; Sun, C.; Yu, W.-Y.; Zhang, H.; Yu, C.; He, J. Isovitexin Potentiated the Antitumor Activity of Cisplatin by Inhibiting the Glucose Metabolism of Lung Cancer Cells and Reduced Cisplatin-Induced Immunotoxicity in Mice. *Int. Immunopharmacol.* 2021, 94, 107357. [CrossRef]
- Liu, J.; Liu, X.; Ma, W.; Kou, W.; Li, C.; Zhao, J. Anticancer Activity of Cucurbitacin-A in Ovarian Cancer Cell Line SKOV3 Involves Cell Cycle Arrest, Apoptosis and Inhibition of MTOR/PI3K/Akt Signaling Pathway. J. BUON 2018, 23, 124–128.
- Xu, J.; Chen, Y.; Yang, R.; Tong, Z.; Wei, K.; Su, Y.; Yang, S.; Zhang, T.; Li, X.; Zhang, L.; et al. Cucurbitacin B Inhibits Gastric Cancer Progression by Suppressing STAT3 Activity. Arch. Biochem. Biophys. 2020, 684, 108314. [CrossRef] [PubMed]
- 72. Wu, D.; Wang, Z.; Lin, M.; Shang, Y.; Wang, F.; Zhou, J.; Huang, W. In vitro and in vivo antitumor activity of cucurbitacin C, a novel natural product from cucumber. *Front. Pharmacol.* **2019**, *10*, 1287. [CrossRef] [PubMed]
- 73. Sikander, M.; Bin Hafeez, B.; Malik, S.; Alsayari, A.; Halaweish, F.T.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. *Sci. Rep.* **2016**, *6*, 36594. [CrossRef]
- Liu, H.; Wang, H.; Dong, A.; Huo, X.; Wang, H.; Wang, J.; Si, J. The Inhibition of Gastric Cancer Cells' Progression by 23,24-Dihydrocucurbitacin E through Disruption of the Ras/Raf/ERK/MMP9 Signaling Pathway. *Molecules* 2022, 27, 2697. [CrossRef]
- Yang, J.Y.; Woo, S.-Y.; Lee, M.J.; Kim, H.Y.; Lee, J.H.; Kim, S.-H.; Seo, W.D. Lutonarin from Barley Seedlings Inhibits the Lipopolysacchride-Stimulated Inflammatory Response of RAW 264.7 Macrophages by Suppressing Nuclear Factor-κB Signaling. *Molecules* 2021, 26, 1571. [CrossRef]
- 76. Min, S.-Y.; Park, C.-H.; Yu, H.-W.; Park, Y.-J. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. *Int. J. Mol. Sci.* **2021**, *22*, 8431. [CrossRef]
- 77. Li, H.; Li, J.; Zhang, X.; Li, J.; Xi, C.; Wang, W.; Lu, Y.; Xuan, L. 23,24-Dihydrocucurbitacin B Promotes Lipid Clearance by Dual Transcriptional Regulation of LDLR and PCSK9. *Acta Pharmacol. Sin.* **2019**, *41*, 327–335. [CrossRef]
- Zhang, J.X.; Wei-Tan, H.; Hu, C.Y.; Wang, W.Q.; Chu, G.H.; Wei, L.H.; Chen, L. Anticancer activity of 23, 24-dihydrocucurbitacin B against the HeLa human cervical cell line is due to apoptosis and G2/M cell cycle arrest Retraction in/10.3892/etm. 2021.10033. *Exp. Ther. Med.* 2018, *15*, 2575–2582.
- 79. Soh, D.; Bakang, B.T.; Tchouboun, E.N.; Nganso, Y.O.D.; Defokou, U.D.; Sidjui, L.S.; Nyassé, B. New cucurbitane type triterpenes from Momordica foetida Schumach.(Cucurbitaceae). *Phytochem. Lett.* **2020**, *38*, 90–95.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.