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Abstract: In this paper, our goal is to perform a virtual restoration of an ancient coin from its
image. The present work is the first one to propose this problem, and it is motivated by two
key promising applications. The first of these emerges from the recently recognised dependence
of automatic image based coin type matching on the condition of the imaged coins; the algorithm
introduced herein could be used as a pre-processing step, aimed at overcoming the aforementioned
weakness. The second application concerns the utility both to professional and hobby numismatists
of being able to visualise and study an ancient coin in a state closer to its original (minted)
appearance. To address the conceptual problem at hand, we introduce a framework which
comprises a deep learning based method using Generative Adversarial Networks, capable of
learning the range of appearance variation of different semantic elements artistically depicted on
coins, and a complementary algorithm used to collect, correctly label, and prepare for processing
a large numbers of images (here 100,000) of ancient coins needed to facilitate the training of the
aforementioned learning method. Empirical evaluation performed on a withheld subset of the data
demonstrates extremely promising performance of the proposed methodology and shows that our
algorithm correctly learns the spectra of appearance variation across different semantic elements, and
despite the enormous variability present reconstructs the missing (damaged) detail while matching
the surrounding semantic content and artistic style.

Keywords: deep learning; computer vision; Cycle-GAN; image reconstruction

1. Introduction

The aim of the work described in the present paper is to generate a realistic looking synthetic
image of an ancient coin prior to suffering damage through wear and tear, from an image of an actual
coin in a damaged state. This is a novel challenge in the realm of computer vision and machine learning
based analysis of ancient coins, introduced herein for the first time. It is motivated by the value it adds
in two key application domains. The first of these concerns hobby numismatists who would benefit
from seeing what their coins looked like originally, as well as from being more readily able to identify
them—a formidable task for non-experts. The second target audience concerns academic numismatists,
who use information on ancient coins as well as contextual information of finds (geographic location
of the find, manner in which the coins were deposited, which coins are found together, etc.). Being able
to create synthetic images of less damaged coins could be of great benefit as a pre-processing step
for automatic methods for coin analysis, such as identification [1] or semantic description [2], as the
performance of such methods has been shown to be significantly affected by the state of preservation
of the imaged coins [3].
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2. Background: A Brief Introduction to Ancient Numismatics for the Non-Specialist

Learning about the distant past relies in large part on the use of artefacts in various forms such
as tools, skeletons, pottery, drawings, scripts, and many others. The knowledge which emerges
from these is inherently reliant on the process of interpretation—a challenging and interesting task
both in practical and methodological terms. When it comes to the period widely known as classical
antiquity, which is usually taken to have begun in the 8th century BC (foundation of Rome and the
first Olympiad) and ended in the 6th century AD (ultimate fall of the Western Roman Empire and
the decisive dominance of the Eastern Roman Empire), an artefact type of particular interest is that
of a simple coin. Thus the term numismatics is used to describe both the formal, academic study
of currency, as well as, colloquially, the popular hobby of collecting coins, tokens, and other means
of payment.

There are many reasons why coins are important to historians. Firstly, by their very
nature, they were widely used objects. Information on where certain coins were found provides
valuable insight into migratory patterns of peoples, trading routes, cultural points of contact, etc.
Moreover, coins themselves, by virtue of the content depicted on them, are inherently informative.
Coins were used to mark important social events (e.g., the murder of Caius Iulius Casear, Roman
conquest of Judea), architectural feats (e.g., Trajan’s bridge, Colosseum), natural phenomena (e.g.,
comet sightings, Sun eclipses), as well as to spread political messages and propaganda (e.g.,
post-recession promises of better times ahead, emperor’s divinity); see Figure 1. Indeed, some Roman
emperors are only known from their coins, with no other historical record of their existence remaining
(e.g., usurper Domitianus, following a coin find in Oxfordshire, UK; not to be confused with the 1st
century emperor Domitian).

2.1. Basic Terminology

The specialist vocabulary of numismatics is extremely rich, and its comprehensive review is
beyond the scope of the present article. Herein, we introduce a few basic concepts which are important
for the understanding of our work.

Firstly, when referring to a ‘coin’, the reference is being made to a specific object, a physical
artefact. It is important not to confuse it with the concept of a (coin) ‘type” which is more abstract in
nature. Two coins are of the same type if the semantic content of their obverses and reverses (heads and
tails, in modern, colloquial English) is the same. For example, if the obverses are showing individuals
(e.g., emperors), they have to be the same individuals, be shown from the same angle, have identical
headwear (none, crown, wreath, etc.), be wearing the same clothing (drapery, cuirass, etc.), and so
on. Examples are shown in Figure 2. Moreover, any inscriptions, usually running along the coin
edge (referred to as ‘legend’), also have to be identical, though not necessarily be identically arranged
spatially letter by letter [4].
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Figure 1. A small set of examples illustrating the breadth of messaging on ancient coins: (a) one of

the most desirable Roman coins amongst collectors which celebrates the killing of Caius Iulius Caesar,
(b) emperor Vespasian’s coin commemorating the conquest of Judaea, (c¢) contemporary depiction
of Colosseum, (d) Trajan’s bridge over Danube, (e) the comet associated with the birth of Jesus by
Christians, (f) solar eclipse observed during the reign of Hadrian, (g) the promise of better times (FEL
TEMP REPARATIO) circulated across the empire weakened by the 3rd century economic crisis, and (h)
Commodus shown as Hercules reincarnated.
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Figure 2. (a—c) Three specimens of the same coin type (silver denarius of Commodus, RIC 251). Observe
that the exact placement of letters as well as artistic detail are different in all three cases, due to different
dies used in the minting process. However, in terms of their semantic content, the motifs (legend, lion
cladding, beard, club, etc.) on the obverses and reverses are identical.

2.2. Grading

An important consideration in numismatics regards the condition of a particular coin.
As a millennium and a half to three millennia old objects, it is unsurprising that in virtually all
cases they have suffered damage. This damage was effected by a variety of causes. First and foremost,
most coins being used for day to day transactions, damage came though proverbial wear and tear.
Damage was also effected by the environment in which coins were stored, hidden, or lost, before being
found or excavated—for example, moisture or acidity of soil can have significant effects. Others were
intentionally modified, for example for use in decorative jewellery. Figure 3 illustrates some of the
common modes of damage.

The amount of damage to a coin is of major significance both to academic and hobby numismatists.
To the former, the completeness of available information on rare coins is inherently valuable but equally,
when damaged, the type of damage sustained by a coin can provide contextual information of the
sort discussed earlier. For hobby numismatists, the significance of damage is twofold. Firstly, a better
preserved coin is simply more aesthetically pleasing. Secondly, the price of the coin, and thus its
affordability as well as investment potential, are greatly affected: the cost of the same type can vary
1-2 orders of magnitude.

To characterise the amount of damage to a coin due to wear and tear, as the most common type of
damage, a quasi-objective grading system is widely used. Fair (Fr) condition describes a coin so worn
that even the largest major elements are mostly destroyed, making even a broad categorisation of the
coin difficult. Very Good (VG) coins miss most detail but major elements remain relatively clear in
the outlines. Fine (F) condition coins show significant wear with many minor details worn through
but major elements still clear at all the highest surfaces. Very Fine (VF) coins show wear to minor
details, but clear major design elements. Finally, Extremely Fine (XF) coins show only minor wear to
the finest detail.
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(c) Cuts (d) Clipping

Figure 3. Examples of some of the most common types of damage suffered by ancient coins. (a) Worn
out sestertius, a low denomination coin, which due to high weight and extensive use is rare in
unworn condition. (b) Greek tetradrachma showing corrosion on the obverse. (c) Greek drachma
with intentional contemporary cuts used to ascertain its authenticity and composition. (d) Clipped 4th
century Roman siliqua, with major visual elements missing.

3. Related Work on Computer Vision and Machine Learning for Ancient Numismatics

Challenges emerging from the numismatics community first attracted the attention of computer
vision and machine learning specialists some decade and a half ago, and since then, this interest has
grown at an increasing pace, spurring an entire new sub-field of research. Most previous work has
focused on one of the first tasks that one is confronted with when handing a new coin, namely the
question ‘what coin is this?’. More precisely put, given an image of a coin, the challenge is that of
identifying the unique identifier of its type in a standard reference such as the magnum opus that is
Roman Imperial Coins [5].

The early attempts at visual type matching of ancient coins reasonably attempted to apply
existing object recognition approaches in the form of local features [6-9], which have shown good
performance in a wide range of general object recognition tasks [10]. However, it quickly became
apparent that their application in this domain is inadequate. The foremost fundamental problems
which were identified stem from the similarity of local appearances across semantically unrelated
elements of coins (unsurprisingly, given that coins are made of uniform material and exhibit little
type specific albedo variability), and the loss of spatial information between local features [11].
Thus, local feature based approaches only showed some success in specimen matching and even
that only in reasonably controlled conditions—those with little to no variability in illumination,
and absent of clutter—invariance being needed solely with respect to in-image-plane rotations. An
attempt to build upon local features and create compound, higher level features which combine
local appearance and geometry achieved some (though limited) success [11], still performing far
off requirements by virtually any practical application. Other approaches attempted to divide a
coin into predefined regions, thus explicitly encoding some geometric information but the implicit
assumption of perfect centering, registration, and flan shape was shown to lead to no performance
improvement even on modestly sized data sets [3]. Although the legend can be a valuable source of
information, relying on it for identification is problematic because it is often significantly affected by
wear, illumination, and minting flaws [12] as well as major additional challenges which emerge in the
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process of automatic data preparation, that is segmentation, normalisation of scale, orientation, and
colour [13]. Recently, a number of deep learning approaches have been proposed [1]. The reported
results, especially in the light of large data sets used, are highly promising and motivate further work
in new approaches in this realm.

In practical terms, it is also important to note that nearly all existing work in this area is inherently
limited by the reliance on visual matching [6-9,11] and the assumption that the unknown query coin is
one of a limited number of gallery types against which it can be compared. However, this assumption
is unrealistic due to the very large number of different coin types [5]—Online Coins of the Roman
Empire, a joint project of the American Numismatic Society and the Institute for the Study of the
Ancient World at New York University, lists 43,000 published types. Only few of these have been
imaged. The effort, both in terms of labour and coordination (e.g., many types are extremely rare),
to image them all is impractical. The first to make the point were Cooper and Arandjelovi¢ [2,14]
who instead proposed an approach which uses deep learning and information from free form text
descriptions of coins to learn the semantics of visual, artistically depicted elements. These are the first
steps towards an automatic description of arbitrary, unseen specimens which may not have image
exemplars in a gallery of known types.

4. Generative Adversarial Networks: A Brief Overview

A GAN in its simplest form (‘vanilla GAN’) comprises two CNNSs, referred to as the Generator
and Discriminator networks, which are trained jointly [15]. As the name suggests, given data in
some input domain, the Generator synthesises data in the target domain [16]. On the other hand,
the Discriminator tries to distinguish between real data in the target domain and synthetic data
produced by the Generator [15,16]. The joint training of the two networks drives the Generator
to improve in achieving realism of synthetically generated data and the Discriminator to become
more nuanced in its discrimination. This process can be seen as a competition between two players,
each trying to beat the other in a min-max game i.e., the two have adversarial objectives [17]. Some of
the main advantages of employing GANS for this kind of cross-domain translation include the absence
of need for Markov style sampling) [18,19] or a heuristic functions (e.g., pixel-wise mean square error)
for representation learning [20].

4.1. Limitations of GANs

Notwithstanding the advantages that vanilla GAN-based approaches offer, as they are constituted
now, they also exhibit some notable limitations. A detailed treatment of these is outside the scope of
the present work, so herein, we discuss those that are of most relevance to our methodology.

Firstly, GANs have no means of driving the choice of modes that are generated from the data [18].
In an attempt to address this, a variation usually referred to as conditional GAN has been proposed
and successfully applied in a wide range of tasks such as image from image generation [18,21],
attribute driven image synthesis [22,23], captioning [24], and others [16,25-29]. Secondly, there is
a danger of overfitting, for example by learning to map a set of images to any random permutation of
the target output, producing a non-injective mapping [30].

4.2. Relevant Related Variations of GANs

As noted earlier, the present work is the first attempt to argue for the task of synthetic generation
of coin images as a means of reconstructing the appearance of damaged ancient coins. Hence, no direct
prior work in the field exists. However, for completeness we now identify and discuss conceptually
related work which was done in other fields.

In terms of its technical underpinnings, the closest work in spirit to our method is the dual
learning approach introduced by Xia et al. [31]. Their algorithm consisted of two GANs learning to
translate natural language at the same time (side-by-side); in particular from English to French and
vice versa. The key idea was that the model which accepts English as input can also evaluate the
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output from the model that has English as its output (target domain), thereby creating a consistent
boostrap of learning, reducing the amount of labelled data needed.

A major limitation of the algorithm of Xia et al. lies in the requirement that the two GANs are
trained on monolingual data. In an attempt to overcome this limitation Zili et al. [21] introduced
a method whereby the input domain is adaptive. Specifically, in their method the generative error
is evaluated as the mean of absolute error between the input domain and the output domain. The
success of the has since been demonstrated on tasks such as super-resolution [28], image generation
from maps [16], and video based prediction [25].

An alternative approach was proposed in the form of the so-called Coupled GAN (CoGAN) [32].
Much like in Cycle-GANSs [30] and Dual-GANs [21], CoGANSs train two networks simultaneously
without needing explicit pairing of input and target domain data. However, unlike the former two,
in CoGANS’s the two networks are in no way connected i.e., they are completely independent in their
learning. They instead learn the joint distribution of data from the two given domains. High level
semantics in feature extraction can therefore be learnt by employing weight sharing. CoGAN can thus
force the two networks to make sense of those semantics. The disadvantage is that weight-sharing
techniques, although robust for CNNs [33] and similar approaches to solutions [34,35], tend to lock the
network to domain specific as weight sharing has to be set a priori.

5. Technical Contribution: The Proposed Method

Our cycle-GAN two generators and two discriminators in a cyclic manner: each generator learns
the mapping from one domain to the other, namely from F to XF, and XF to F respectively. In other
words, the first generator is learning to produce synthetic images of Extremely Fine coins using as
input images of Fine coins. The second generator does the same but in the opposite direction, in effect
learning to model the degradation process experienced by ancient coins over time. This is illustrated
in Figure 4.

S
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Latent Space l] Latent Space 4"""}_’
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Discriminator Discriminator
XF F

Figure 4. Conceptual diagram of the key components and processing stages of our network.

5.1. Network Architecture

We adopt the use of two ResNets, one with 6 residual networks having as input 128 x 128 pixel
images, and one with 9 residual layers and 256 x 256 pixel input images. Although Batch Normalisation



Sci 2020, 2, 52 8 of 18

is used in transitional layers by most work in the literature, we found that on the present task Instance
Normalisation was superior and was hence adopted instead. An additional advantage of following this
approach is to be found in the absence of need for large batches required by Batch Normalisation [15].
For the Discriminator we used an architecture which is much shallower than that of the Generator.
Our Discriminator model is made up of five layers inspired by the PatchGAN [27,30]. We used
29 x 29 pixel output.

5.2. Training and Parameter Choice

We found that in comparison with most work in the literature, to ensure successful training
a higher number of learning epochs was required in the present task. For example, we found
that 200 epochs used by Zhu et al. [30] were insufficient; instead we used significantly more,
50%, i.e., 300 epochs. This is likely a consequence of the highly challenging nature of our data and the
ultimate task, that is the subtle nature of the artistic style and semantic elements depicted on Ancient
Roman coins.

5.3. Gradient Optimiser and Batch Size Choice

Considering the novelty of our application domain and thus the lack of relevant information
from prior research which could inform our optimiser choice, we considered it important not to
follow automatically the consensus and instead compare different optimisers” performance: Stochastic
Gradient Descent (SGD) [36] and Adaptive Moment Estimation (Adam) [2]. The momentum parameter
for SGD (specifically, the variant termed Online SGD [36]) was set to 0.9, and the Adam parameters
and $; to 0.5 and 0.99 respectively. Figure 5 illustrates our typical findings when the two approaches are
compared with one another, whereas Figure 6 summarises the effects of batch size on the performance
of SGD. In terms of image reconstruction diversity, the use of Adam was found to match or outperform
SGD. This is consistent with the observation that the Generator losses with SGD decayed significantly
more slowly. Consequently, the adversarial loss also ceases to change, which suggests that at that stage
little new information is being passed to the Generator. In conclusion, our findings clearly motivated
the use of Adam as the preferred optimiser choice, which unless stated otherwise should be assumed
for all results reported hereafter.

—— Discriminator
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Figure 5. Comparison of loss variability during training using a Stochastic Gradient Descent and
Adam. All parameters were set to be equal for both optimisers.
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Figure 6. The effect on loss of increasing batch size, using the Stochastic Gradient Descent optimiser.

5.4. Learning Rate

Unlike most previous work, which sets the learning rates of the Discriminator and the Generator
to be equal (usually 2 x 10~%), in this work, we deviate from this tradition substantially. In particular,
we found that on the problem under consideration, with equal learning rates the Discriminator was
prone to overfitting, consistently learning around the same mode in the data. We observed that this
often corresponded to the pixel intensity contrast which makes sense: with coins being metallic and
exhibiting specular behaviour, the level of preserved detail greatly affects the manner in which light
is reflected off their surface. This motivated a substantially higher Generator learning rate for the
Discriminator. What is more, since the learning gradient is more accurately computed on large batch
sizes, a higher learning rate makes sense in that larger adjustment (steps) can be more confidently
made [36-38]. In the end, we set the learning rate of our Discriminators to be 2 x 10~* and that of our
Generators 6 x 1074,

5.5. Data Augmentation and Normalisation

Being created for use in auctions by reputable auction houses, unlike those sourced from user
driven web sites like eBay [13], the images in our data set are reasonably homogeneous as regards
geometry and photometry. Nevertheless, there remain a number of extrinsic sources of variability
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which do not cause problems when the images are used by humans who partake in auctions, but which
can affect machine learning significantly.

Firstly, as regards geometric variability, the rotational alignment (registration) of coin motifs is
not perfect. In part, this is a consequence of different die designs and thus the fact that the correct
orientation is fundamentally ill-defined, and in part by the lack of practical need (in terms of what the
images were acquired for) for absolute precision. Similarly, there is variation in scale which again is
inconsequential in the context of human observation but salient when the images are to be used within
an automatic framework. Non-uniformity in scale can also be due to fundamental factors, such as
inconsistent flan size effected by the primitive minting process, and the aforementioned practical
reasons. Similar observations can be made with respect to confounding photometric heterogeneity,
the illumination conditions between lots can vary, especially as images were acquired at different
times, by different photographers, in different studios, and using different imaging equipment [39].

To facilitate robust learning in the presence of the described confounding factors, we perform data
augmentation prior to training our networks. This is a common strategy which has proven successful
both in deep learning [1] and machine learning in general [40,41].

Specifically, herein, we augment our original data set with synthetic images simply generated
from a random subset of the original images. In particular, we apply random rotations and rescaling
by drawing the relevant parameters, namely the rotation angle and the scaling factor, from uniform
distributions over the ranges of respectively £15° and 0.7-1.4. Photometric variability is dealt with
not by data augmentation but rather normalisation, whereby all data is photometrically rescaled to the
same mean and unit variance.

6. Data, Preparation Thereof, and Automatic Label Extraction

In the previous section, we focused on the main technical underpinnings of the approach proposed
in the present paper. The data, that is, images, used for training, were implicitly assumed to be
in a canonical format and correctly labelled in terms of class membership (coins in either Fine or
Extremely Fine condition). However, meeting these requirements in the real world is non-trivial and
in fact rather challenging. Hence, in this section, we describe another important contribution of this
work, in the form of a preprocessing pipeline which starts from a readily available, large data set
of images and unstructured meta data collected “in the wild”, and produces data which is correctly
labelled and normalised in a manner which meets the requirements of the framework proposed in the
previous section.

6.1. Raw Data

Our unprocessed data set costs of 100,000 lots of ancient coins sold by reputable auction houses
across the world (mainly based on Europe and the USA). These were kindly provided to us for research
purposes by the Ancient Coin Search auction aggregator https://www.acsearch.info/. Each lot
comprises an image of a coin (the images of the obverse and the reverse of the coin come concatenated,
forming a single image) and the associated free form text description of the coin.

6.1.1. Image Preparation

As noted previously, the raw images in our data set contain images of coin obverses and reverses
concatenated, just like those in Figure 1. This makes the extraction of obverses, which we focus on
in this work, rather straightforward. It is likely that even a simple vertical splitting of raw images
halfway would suffice but considering that we could not manually inspect the entire data set due to its
size, we opted for a more robust approach. In particular, we first detect the vertical band separating
the obverse from the reverse by finding the region of extrema in the vertical integral (i.e., along the
y-axis) of pixel intensities. The centre point of this band is set to split the raw image, with the left hand
part (by the universally adopted convention) corresponding to the obverse.
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It should also be noted that although the original images are in colour, we treat them as being
greyscale for two reasons. The foremost one is to be found in the conceptual novelty of the present work
and thus the desire to start with a simpler challenge first, so as to understand how tangible the task is
and the potential unforeseen difficulties. The second one is of a computational nature—learning in
greyscale is faster and necessitates less data, and again given the pioneering nature of the work, it was
not clear a priori how many data are needed to tackle the challenge adequately. This consideration
also motivated conservatism in approach.

6.1.2. Label Extraction

Each of the sale lots in our database contains a free form text description of the lot.
These descriptions vary in structure, length, and content, and can be in different languages.
English language descriptions are most common but there is a substantial number of entries in German
and French, and a smaller number in Spanish and Italian. To illustrate some of these challenges,
we show a few different descriptions in Figures 7 and 8.

Recalling that our goal is to produce synthetic images of coins prior to their being damaged, the
labels that we wish to extract from this free form text are the condition descriptors of coins. In particular,
for reasons which will be explained in the next section, we are looking for coins in Fine and Extremely
Fine conditions.

An additional difficulty in extracting this information from the given textual descriptions emerges
from the lack of uniformity in how the condition of a coin is stated, i.e., whether it is in its full or
abbreviated form; see Table 1.

The first part of our label extraction process uses text only. In particular we use a regular
expression that matches the patterns of the target condition descriptors in different languages, as per
Table 1. In most cases this step alone is sufficient but there remain a number of ambiguous cases.
For example, in some instances breaks in a coin’s legend can produce fragments which match a specific
abbreviated descriptor. Say, to denote a spatial break in a legend such as ‘FELICITAS’, the legend may
be written as ‘F ELICITAS’, the leading ‘F’ thus being incorrectly identified as corresponding to a grade
descriptor. Hence, we follow up on this first, purely text based step, by an additional one which uses
complementary information: the actual image of a coin.

Table 1. Standard abbreviations in different languages for the two coin grades referred to as ‘Fine” and
‘Extremely Fine’ in English. The languages shown account for nearly all of our data, reflecting the
locations of the most popular auction houses and their target audiences. For clarity, following each
abbreviation is the corresponding expression in full (in brackets).

US English  F (Fine) EF (Extremely Fine)

UK English  F (Fine) XF (Extremely Fine)

French TB (Trés Beau) SUP (Superbe)

Spanish BC+ (Bien Conservada+) EBC (Extraordinariamente Bien Conservada)
German S (Schon) VZ (Vorziiglich)

Italian MB (Molto Bello) SPL (Splendido)
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Hadrian

Hadrian, 117 - 138 n. Chr. Denar 134 - 138 n. Chr. Rom. 3.01 g. Vs.: HADRIANVS AVG
COS III P P, Kopf n. r. Rs.: FIDES PVBLICA, Fides mit Obstkorb u. Ahren. RIC 241a;
C. 716; BMC 627; Strack 237. Etwas rau, vz/ss

HADRIEN(11/08/117-10/07/138)Publius lius Hadrianus Quinaire N v21_2511

Date : 119 ou 121

Nom de 1l’atelier : Rome

Métal : argent

Diamétre : 14mm

Axe des coins : 6h.

Poids : 1,56g.

Degré de rareté : R2

Etat de conservation : TB+ Prix de départ : 150 Estimation : 200

Prix réalisé : 150

Commentaires sur 1’état de conservation : Exemplaire parfaitement identifiable et
lisible en bon état pour un type monétaire souvent défecteux. Beau portrait. Flan
éclaté a 12 heures au droit. Une épaisse patine grise recouvre l’ensemble de la
monnaie. N dans les ouvrages de référence : C.1137 (10f.) - RIC.108 - BMC/RE.23

5 - H.1/133 ou 196 - RSC.1137

Pedigree : Cet exemplaire provient d’une vieille collection du Sud de la France.
Titulature avers : IMP CAESAR TRAIAN - HADRIANVS AVG.

Description avers : Buste lauré d’Hadrien & droite, drapé sur 1’épaule gauche (0%2).
Traduction avers : ’Imp Csar Traianus Hadrianus Augustus’, (L’empereur césar Trajan
Hadrien auguste).

Titulature revers : P M T-R P - COS III.

Description revers : Victoria (la Victoire) assise & gauche, les ailes déployées,
tenant une couronne de la main droite et une palme de la main gauche.

Traduction revers : ’Pontifex Maximus Tribunicia Potestate Consul tertium’, (Grand
pontife revétu de la puissance tribunitienne consul pour la troisiéme fois).
Commentaires : Ce quinaire est frappé soit a l’occasion de la deuxiéme distribution
d’argent effectuée par Hadrien en 119, liée au commencement de la troisiéme année de
régne et a 1l’annulation des dettes avant la consécration de Matidie soit a
1’occasion de la troisiéme libéralité en 121 accompagnant le ‘Natalis Urbis”’
(anniversaire de la naissance de Rome 21 avril 753 avant J.-C.).

Historique : Hadrien est né en 76 & Italica. Pupille de Trajan, il épousa en 100 la
petite-niéce de 1l’empereur, Sabine, et fit carriére dans 1’état-major de 1l’empereur,
en particulier lors de la campagne dacique. En 117, il succéda a Trajan, et voyagea
pendant vingt ans, visitant 1l’ensemble de 1’Empire, le seul empereur a 1l’avoir fait.
En 122, Hadrien se rendit en Espagne. Sans enfant, il choisit d’abord Aélius pour
lui succéder en 136, mais ce dernier mourut le ler janvier 138. Hadrien adopta alors
Antonin le 25 février et choisit lui-méme Marc Auréle et Lucius Vérus comme
héritiers d’Antonin. Il décéda le 10 juillet 138.

Figure 7. Typical free form text descriptions of lots (coins) in our data set. Also see Figure 8.
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Roman Imperial Coins

Hadrian. A.D. 117-138. AR denarius (18 mm, 3.55 g, 6 h). Anomalous (’Eastern’)
issue, A.D. 128/9. HADRIANVS AVGVSTVS P P, laureate head of Hadrian right / C-0S
III, Aequitas standing facing, head left, holding scales and cornucopiae. Cf. RIC
339 (Rome); BMC 1035; RSC 382. Lightly toned. Nice very fine. Ex CNG E262 (17
August 2011), 334. The ’Eastern’ mint denarii of Hadrian are all quite rare. There
are two large assemblages of types published, but unfortunately neither are
comprehensive: BMCRE vol. II, pp. 372-81, ppl. 68-71, and the section on Hadrian’s
Imperial coinage at the Beast Coins website
(http://www.beastcoins.com/RomanImperial/II/Hadrian/Hadrian.htm). With the
exception of the small subset of Antioch mint issues, Metcalf prefers to call
these non-Rome mint denarii of Hadrian ""anomalous"" as they do not follow the
same agenda as Hadrian’s cistophori (Hadrian’s cistophori combine Roman legends on
the obverse with local Greek types on the reverse, the purpose being ""to restore
federal government in the provinces and use the coinage as a tradition of the past
functioning in a contemporary context"" (Beastcoins.com). In addition to BMCRE and
the Beast Coins website, anyone wishing to study these anomalous denarii further
should consult both P. L. Strack, Untersuchungen zur romischen Reichsprigung des
zweiten Jahrhunderts (3 vols. Stuttgart, 1931-1937), and the Michael Kelly
Collection of Roman Silver Coins (Spink, 18 November 1997), lots 1033-1042.

Figure 8. Typical free form text description of lots (coins) in our data set. Also see Figure 7.

Intuitively, our motivation stems from the understanding of the process which causes damage
to ancient coins. Specifically, as summarised in Section 2.2 the type of damage relevant here (and
indeed the most commonly observed one) is mainly caused by ‘wear and tear” (coins rubbing against
one another while carried in moneybags, exchanged on hard surfaces) and environmental abrasion,
both first and foremost affecting fine detail. In the context of the corresponding digital images, this
translates to a loss of high frequency detail—for a long time a widely exploited observation in a variety
of image processing tasks. This readily translates into a simple algorithm whereby discrimination
between higher and lower grade coins—in our case those in Extremely Fine and Fine condition
respectively—is performed by thresholding on the image signal energy content above a certain
frequency (we used frequencies higher than one sixth of the highest possible frequency). We found
that this complementary approach works extremely well in resolving labelling ambiguities when they
occur in the first, text based step.

7. Evaluation

In many recent applications of GANs for cross-domain translation, the evaluation process is
challenging. The key reason for this lies in the practical (if not inherent) impossibility of obtaining
the ground truth against which synthetically generated data can be compared. This methodological
challenge is particularly apparent in the context of the problem at hand: ancient coins imaged today
were produced millennia ago and each coin being different from all others (even if struck with the same
die, due to the primitive minting process used at the time), it is impossible to know what exactly it
looked like before being damaged. Hence, the primary way of evaluating the result has to be subjective
and rely on expertise of an experienced numismatist who is able to assess the realism of the artistic
style of the coins in synthetic images, identify the accuracy of fine features of recovered (or indeed
non-recovered) semantic elements, etc. To this end our results were inspected by a numismatist with
nearly 30 years of experience in the study of Ancient Roman coins in particular.

A sample of typical results which illustrate the performance of our method is shown in Figure 9.
Each example shows the input image of a real, damaged coin in Fine condition on the left, and the
corresponding synthetically generated image of the same specimen with lesser damage on the right.
It is readily apparent even to a non-numismatist that our results are extremely promising. Note how
a wide range of fine details, entirely absent in the original images are reconstructed, from strands
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of hair (correctly matching the depicted person’s hair style, e.g., curls, strands, or waves) and facial
features, to details on bodily garments (draperies and the like) and head ornaments (wreaths in this
case). For emphasis, a magnification of a particularly interesting region of the image in Figure 9d is
shown magnified in Figure 10. The region shown corresponds to one of the parts of the coin (a silver
denarius of emperor Trajan) which contains some of the highest surface points. These are most prone
to wear and tear damage, especially when they feature fine detail. The damage is severe in the example
shown, as evident from the region in the input image; see Figure 10a. However, the corresponding
reconstruction in Figure 10b contains remarkably restored detail. Moreover, the reconstructed detail
is stylistically impressively accurate. It is clear, first and foremost, that our algorithm has correctly
learnt the spectrum of appearance variation of hair specifically—the reconstructed detail is hair, rather
than some arbitrary detail which may be found elsewhere on a coin. What is more, the style of hair is
correct, despite the enormous variability across different individuals depicted on common obverses
(locks, braids, waves, curls, etc.). Lastly, the missing detail fits the surrounding context well. All of this
is especially impressive considering the relatively low resolution (in the context of the frequency of
fine coin detail we are interested in) of the images, as readily apparent in Figure 10. As demonstrated
by previous work in the field [3], the loss of this kind of detail can have a profound effect on the
performance of computer vision based ancient coin recognition algorithms, providing evidence for
one of the key premises motivating the present contribution—that of using the proposed method as
a pre-processing step to further automatic analysis.

(c) Example 3 (d) Example 4

Figure 9. Cont.
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(e) Example 5 (f) Example 6

Figure 9. Typical results obtained by applying our method on images of six different lower grade (Fine)
ancient coins. Each subfigure comprises the original, input image of a real, damaged coin on the left,
and the corresponding synthetically generated image of the same specimen with lesser damage on the
right. Impressive reconstruction of appearance is clear, showing that our algorithm is correctly learning
the range of appearances that different coin elements exhibit (compare with the work of Cooper and
Arandjelovi¢ [2,14]), and is appropriately applying this model to match the overall visual context.
Also see Figure 10.

_H:

(g) Input (h) Output

Figure 10. Magnified detail from the example shown in Figure 9, featuring a denarius of emperor
Trajan. It is clear that our algorithm has correctly learnt the spectrum of appearance variation of hair
and appropriately reconstructed the detail missing due to damage of the coin in the input image,
matching the style of hair and the surrounding context.

8. Conclusions and Future Work

In this paper, we introduced a new problem to the field of computer vision and machine learning
applications in ancient numismatics. Thus, the first contribution of the work lies in the conceptual
argument for the need for this problem to be addressed. In particular, our goal was to perform virtual
reconstruction of an ancient coin, that is, given an image of a damaged coin to synthesise an image
of the coin more closely resembling the specimen in its original (minted) state. We motivated this by
recognising the potential for use of this synthetic imagery, for example as input to automatic coin type
matching algorithms, or for study and visualisation purposes. Our second contribution is a technical
one and it consists of a deep learning based algorithm designed as the first attempt to solve the
problem. In particular, we introduce an algorithm which uses adversarial learning, with a Generative
Adversarial Network at its heart, as a means of learning to model phenomenologically the processes
which effect damage on ancient coins. To facilitate this learning, we also describe a methodology
for obtaining correctly labelled data from unstructured raw data ‘in the wild’, needing no manual
intervention. Our analysis of the method’s learning performance also makes a series of contributions
which are of benefit to researchers in the field considering the novelty of the task at hand—we found
that the unique features of the type of data of interest required rather different design choices from those
made in seemingly related applications in other domains. Lastly, we demonstrated the effectiveness
of the proposed algorithms empirically. Impressive results were obtained, evident from the correct
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learning of the spectra of appearance variation of different semantic elements on coins. Despite the
enormous variability present, missing detail was successfully reconstructed in a manner which respects
the artistic style of ancient Roman coins and the broader surrounding semantic content.

In addition to the specific, direct contributions summarized above, the importance of the present
work lies in its opening new avenues for further work. We highlight a few which are on the top of our
list but expect that the wider community will come up with an even broader range of ideas. Firstly, we
would like to analyse the performance of our method on Ancient Greek and Celtic coins. In the present
paper we chose to focus on Roman Imperial coins for several reasons. Firstly, thus far they have been
the focus of most computer vision and machine learning based work in ancient numismatics. Abundant
training data is also more readily available for this category of coins (they are more numerous and
are more widely collected by hobby numismatists). Secondly, notwithstanding the artistic variability
emphasised earlier, it can be reasonably expected that there is a greater degree of style standardization
across mints of a single empire, like Rome, than across different different city states which comprised
what is colloquially understood as Ancient Greece (let alone across different Celtic tribes, see Figure 11).
Understanding the performance of the proposed method when applied to Ancient Greek and Celtic
coins would likely bring insight as to how the method would be improved further. As regards future
work pertaining to the technical underpinning of our method, our immediate plan is to investigate
different forms of normalization. Specifically, while in this work we employed Instance Normalization,
recent reports in the literature suggests that benefits can be conferred by improved Batch Normalization
on small batches or the use of different types of normalization such as Group Normalization or Ghost
Batch Normalization.

(d) Celtic imitation (e) Celtic imitation

Figure 11. (a) Original Greek Macedon tetradrachm of Philip II (342-336 BC) and (b-e) different Celtic
imitations (circa 3rd-2nd Century BC) thereof.
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