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Abstract: The conventional theory of neutron beams interacting with many-body systems treats the
beam as a classical system, i.e., with its dynamical variables appearing in the quantum dynamics
of the scattering process not as operators but only as c-numbers. Moreover, neutrons are described
with plane waves, i.e., the concept of a neutron’s (finite) coherence length is here irrelevant. The
same holds for electron, atom or X-ray scattering. This simplification results in the full decoupling of
the probe particle’s dynamics from the quantum dynamics of the scatterer—a well-known fact also
reflected in the standard formalism of time-correlation functions (see textbooks). Making contact with
modern quantum-theoretical approaches (e.g., quantum entanglement, “which-path information”
versus interference, von Neumann measurement, Weak Values (WV), etc.), new observable effects
of non-relativistic quantum beam scattering may be exposed and/or predicted, for instance, a
momentum-transfer deficit and an intensity deficit in neutron scattering from protons of hydrogen-
containing samples. A new WV-theoretical treatment is provided, which explains both these “deficit
effects” from first principles and on equal footing.

Keywords: quantum beams; quantum entanglement; which-path information; von Neumann mea-
surement; non-relativistic neutron scattering; incoherent inelastic neutron scattering; neutron Comp-
ton scattering; plane-waves impulse approximation; momentum-transfer deficit; H-intensity deficit

1. Introduction

The well-known particle-wave dual nature of a quantum object, known as comple-
mentarity, allows for various (often strange appearing) quantum correlation and interfer-
ence phenomena, like, e.g., the delocalization and self-interference of very large organic
molecules [1], and the “bomb detection” method in a Mach–Zehnder interferometer (MZI)
with the aid of the so-called interaction-free-measurement (IFM) method discovered by
Elitzur and Vaidman [2]. The most striking of these non-classical phenomena is quantum
entanglement (QE), which has been the most debated element of quantum mechanics ever
since the theory was formulated about 100 years ago. QE (see e.g., [3]) is the phenomenon
that two or more particles can exist in a shared quantum state, regardless of how far apart
they are. Einstein criticized QE as a “spooky action at a distance” and Schrödinger said
it was quantum mechanics’ most important trait; see, e.g., [4,5]. “The Nobel prize in
physics 2022” statement of grounds refers to QE as quantum mechanics’ most important re-
source [5], which also pioneered quantum information science and the associated emerging
new quantum technologies; cf. [6–10].

In this paper, all the considerations and results are specifically focused on non-
relativistic scattering of particles off many-body (or condensed matter) systems, with
a particular emphasis on incoherent neutron scattering (INS). When we say “incoherent”,
we mean that a neutron (or any other particle such as a photon, electron or atom) collides
and scatters from a single particle, such as a nucleus, atom or molecule. When neutrons
scatter from protons (commonly referred to as H atoms), the scattering is predominantly
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incoherent due to the neutron–proton spin-flip mechanism involved in the collision process.
Details about this spin-flip mechanism can be found in textbooks such as [11,12].

Essentially, this means that the scattering process provides “which-path information”,
as, e.g., described in the texbook [13], allowing us to identify and isolate the scattering
proton from all other potential scatterers. Consequently, this destroys any possible interfer-
ences between different paths that the neutron could take during the scattering process.

A clear first-principles explanation of this effect, and of coherent versus incoherent
scattering, may be found in the Feynman Lectures [14], in particular Section 3.3 of [14].
Consider neutron scattering from a crystal consisting of atoms with nuclear spin 1/2 (as the
neutron, too), in particular the case where the neutron has spin-up and the crystal nuclei
have spin-down (before scattering), in which case spin-exchange (or -flip) can happen. This
causes the incoherent part of the scattering process which produces no sharp interference
peaks in the scattered neutron beam (the latter being characteristic of coherent scattering).
This spin-flip corresponds to “which-path knowledge”—the specific spin-flip scattering
nucleus (now having spin-up) is singled out; i.e., which-path information concerning
the neutron does exist. This constitutes a generally valid quantum-mechanical feature
that suppresses quantum interference phenomena. Moreover, Feynman emphasizes this
phenomenon as follows:

• “You may argue, “I don’t care which atom is up.” Perhaps you don’t, but nature knows; and
the probability is, in fact, what we gave above—there isn’t any interference.”; [14], page 3–9.

This quotation is strongly related to the intrinsic physical connections between the
basic quantum-mechanical concepts of wave-particle duality, complementarity, uncertainty
principle and which-path knowledge versus interference. These have attracted great interest
and are still under vivid theoretical and experimental investigations; see Refs. [13,15–22]
and references cited therein.

The presentation below is organized as follows. Section 2 considers in some detail
the fact that conventional (neutron) scattering theory treats the neutron beam as a classical
system and even as a plane wave. In the light of modern quantum mechanics, this has
certain severe theoretical and experimental consequences, which are examined in the
following sections. The introductory Section 3 about the “neutron beam as a quantum
object” gives an introduction to the specific topics of impulsive (von Neumann or strong)
measurement and creation of QE caused by the scattering. Section 4 introduces (very)
shortly the basic concepts of Weak Value (WV) and Two-State Vector Formalism (TSCF).

The next two sections discuss real neutron-scattering experiments. In Section 5 the
theory is further developed with respect to the experimental field of incoherent and inelas-
tic neutron scattering (INS) with thermal neutrons [23]. Section 6 extends the theoretical
investigation towards the field of epithermal neutron scattering (i.e., in the energy transfer
range 1–100 eV) which is known as neutron Compton scattering (NCS) [24–26]. Both
Sections 5 and 6 contain subsections dealing explicitly with concrete experiments and their
theoretical interpretations, which also include examples of effects that have no interpreta-
tion within conventional theory.

The last section, Section 7, provides some additional discussion of the main aspects
and succinct features of scattering of a quantum beam from a quantum scattering system.
Here, as well as in appropriate places during the preceding presentations, the theoreti-
cal connection of our investigations with modern quantum-theoretical approaches and
concepts is stressed (e.g., quantum entanglement, ‘which-path detection’ versus quantum
interference, complementarity and weak values).

2. Conventional Theory: Neutron Beam as a Classical Object

In the conventional non-relativistic neutron-scattering theory, the concept of quantum
entanglement (QE) is not explicitly mentioned, leaving uncertainty about its role in the
theory [11,12,23]. Although a neutron is a quantum object and would generally be expected
to become entangled with a colliding nucleus or atom (see Setion 3), this process is not
considered in this theory. Specifically, the neutron’s quantum degrees of freedom are not
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properly incorporated into the fundamental scattering formulas of the theory, such as
the equation for the partial differential cross-section or the van Hove correlation func-
tions. Instead, these formulas only involve classical values (c-numbers) associated with
the neutron.

To illustrate this point, let us examine the basic formulas of the theory, including the
expression for the partial differential cross-section.

d2σA
dΩdω

=
k f

ki
σAS(K, ω) (1)

(E = h̄ω. dΩ: solid angle measured/covered by the detector. ki and k f : initial and final
wavevectors of the scattered neutron. ka: absolute value of ka. K: momentum transfer from
the neutron to the system due to the collision, K = ki − k f . σA: scattering cross-section of
scattering system A).

S(K, ω) is the dynamic structure factor of the scattering system A (also known as
scattering function of A), which contains dynamical variables of A only. (In simpler terms,
the wavefunction of the complete neutron-A system contains dynamical variables referring
to the scatterer only, but not to the neutron). Thus, the neutron is “downgraded” to a
classical object. That is, no operator quantity appears here, only c-numbers referring to the
neutron: the scattering cross-section σA of the neutron-A collision process and the initial
(ki) and final (ki) wavevectors of the impinging and scattered neutron.

This is related to properties of the first Born approximation and the so-called Fermi’s
Golden Rule which the conventional theory is based on [11,12,24,25]. As a consequence, the
complete dynamics of the two systems (neutron and scattering system) become decoupled—
the neutron dynamics do not appear in Equation (1), since it contains only c-numbers of
neutron quantities, i.e., only the quantum dynamics of the system A captured with the
dynamical structure factor S(K, ω).

This imposed classicality for the neutron has as a consequence that the typical quantum
concept of the particle’s (or beam’s) coherence length, lcoh, is also absent in the frame of
conventional neutron-scattering theory. As a matter of fact, the main Equation (1) contains
the values of the initial and final wavevectors only, which are considered as plane waves—
another basic element of conventional theory.

In other terms, the scattering process describes the scattering probability from an
infinitely well-defined state ki to an accordingly precise final state k f . Of course, the
actually observed quantity is the (double) average over the finite distributions of ki and k f
associated with a real experimental setup.

Now the following crucial point made by conventional theory should be considered:
According to standard quantum mechanics, there are no quantum interference effects
between incoming particles (or photons) with different wavenumbers. Thus, it seems
natural to argue that there is no experimentally detectable difference between (a) a wave
packet with a given finite coherence length (i.e., a coherent superposition of waves with
different wavenumbers) and (b) an incoherent classical ensemble of plane waves, i.e., waves
with infinitely well-defined wavenumbers (which means that their coherence lengths are
infinite) and with no definite phase relations between them.

This is because every observable scattering quantity is expected to only depend on the
square |a(k)|2 of the k-component of the incoming beam and not on products |a(k1)a∗(k2)|
of components with different wavenumbers (k1 6= k2), where the asterisk indicates complex
conjugation. This is consistent with Dirac’s famous remark in his textbook: “Each photon then
interferes only with itself. Interference between two different photons never occurs.” See (p. 9, [27]).

In summary, standard scattering theory holds that an experimental problem is com-
pletely characterized by the classical wavenumber distributions of the incoming and outgo-
ing particle (or photon) beams; structural details of the wavefunctions of the beam particles
are irrelevant and thus also the coherence properties of these wavefunctions. Impinging
and scattered neutrons are described by plane waves.
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Further Explanatory Remarks on the Basic Formula Equation (1)

Some additional remarks on the validity of Equation (1) are in order. In conventional
theory, the following holds

S(K, ω) =
1

2πh̄

∫ ∞

−∞
exp(−iω t)F(K, t) dt (2)

where F(K, t) is the intermediate correlation function

F(K, t) =
1
N

N

∑
j,k
〈exp(−iK · r̂j(0)) exp(iK · r̂k(t))〉 (3)

Operators rj(t), with j = 1, ...N, represent the spatial positions (in the Heisenberg represen-
tation) of the particles of the N-body scattering system A with Hamiltonian HA, A being
assumed to be isolated. 〈...〉 represents an appropriate average over all N particles.

However, note that the complete neutron–system Hamiltonian is

H = HA + Hn + HnA

The unitary time evolution operator

UA(t) = exp(− i
h̄

HAt) (4)

which defines the Heisenberg operators

r̂j(t) = U†
A(t)r̂j UA(t) (5)

(j = 1, . . . N) refers to the complete N-body system A, but not to the neutron [11,12]. That is,
the neutron–system interaction Hamiltonian HnA and the Hamiltonian of the free neutron
Hn play no role here.

The Heisenberg operators r̂j(t) in Equations (3) and (5), if “interpreted” in classical
terms, represent the particles’ positions. Obviously this is a crude oversimplification,
because the unitary operator UA(t) is an N-body operator depending on the N-body
Hamiltonian HA of the scattering system—and so any operator r̂j(t) is (for t 6= t0) an
N-body quantity, too. (The pathological limiting case of A consisting on N non-interacting
atoms is irrelevant for the present paper.)

3. Neutron Beam as a Quantum Object—Introductory Considerations

As already pointed out, the above considerations refer to conventional neutron scat-
tering theory, but the situation in neutron interferometry theory is totally different. Here,
wavepackets with finite coherence length for the initial and final neutron states represent
the standard situation in real experiments.

Perhaps the most important fact to stress from the beginning is the following. After
scattering of a neutron n from a particle (say, H, as in the experiments considered below),
the neutron and the particle are in an entangled state, in general. This always happens
if the scattering interaction is strong enough, so that an initial not entangled two-body
product state evolves into a linear superposition of final two-body states

|ψn〉 ⊗ |φH〉 −→∑
j

cj |ψn,j〉 ⊗ |φH,j〉 (6)

with amplitudes cj (j = 1, 2, ...) and ∑ |cj|2 = 1. In general, this final state is entangled.
Trivially, this basic quantum-theoretical fact is not captured within conventional theory
since there is no QE of a quantum with a classical (here: neutron) object. Parenthetically,
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QE between indistinguishable (identical) particles belonging to a many-particle scattering
system may exist, in principle, also within conventional theory; see, e.g., [28]).

Let us emphasize here again that the QE shown in Equation (6) is impossible within
the frame of conventional neutron-scattering theory.

An important feature in the following investigations is that here the scattering is
mainly incoherent; cf. the Introduction. Moreover, Feynman’s citation given in the In-
troduction appears to play a decisive role in the theoretical analysis and interpretation
of the neutron-scattering experimental results considered below. Interestingly, the fun-
damental point stressed by Feynman is intimately related with several basic concepts of
quantum theory, e.g., which-path information versus interference, complementarity and
uncertainty principle.

The neutron (and, more generally, the incoming beam of particles or photons) is
assumed to be a quantum system and so, in this respect, it has to be treated on an equal
footing with the quantum scatterer. That is, the dynamical variables of the neutron (or
at least some of them) have to be represented by operators (instead of c-numbers) and
should appear explicitly in the theoretical derivations and results. Obviously, when the
above requirements are fulfilled, then the obtained results may be expected to be beyond
the reach of conventional theory.

The simplest and best known theoretical model of the interaction between two quan-
tum systems is given by the von Neumann interaction Hamiltonian [29]

Hint = g(t) Â ⊗ M̂ (7)

which also plays a central role in the theoretical derivations below. Operator Â refers to
the first system and M̂ to the second one. g(t) is a real function describing the interaction
strength and it is assumed to be nonzero only for a very short time interval. As an example,
M̂ may correspond to a neutron (electron, atom, etc), i.e., it is associated with the quantum
beam of a scattering process as considered below; Â represents an observable of the (many-
body) scattering system. In the case of neutron scattering, g(t) is proportional to the
delta-like Fermi pseudo-potential; see textbooks, e.g., [11,12].

Parenthetically, the following investigations will appear to have a strong similar-
ity with well-established theoretical approaches in the field of so-called quantum optics,
quantum circuits theory and quantum information theory; e.g., see [6,7,13].

4. On Weak Values, Two-State-Vector Formalism and Impulsive Weak Measurements

Some introductory remarks about the theory of WV and TSVF (in short also denoted
as TV-TSVF) [30,31] are in order. Consider the standard expression of the expectation value

〈A〉 = 〈ψi|Â|ψi〉 (8)

Â is the operator representing an observable A and |ψi〉 is the state of the system just before
the measurement interaction, which is assumed to be of short duration. Â is hermitian and
〈A〉 is a real number.

Now one defines

Aw ≡
〈ψ f |Â|ψi〉
〈ψ f |ψi〉

(9)

in which appears the final state |ψ f 〉 of the system, i.e., the system’s state after the interaction
is turned off. Note that this number, Aw, is a complex in general. Aw is called the weak
value (WV) of Â. |ψi〉 is called the initial, or pre-selected, state and |ψ f 〉 is called the final or
post-selected state. (Hint is assumed to be sufficiently weak; see below.) Note that these two
states are assumed to be experimentally accessible [30]. Hence, the real and the imaginary
parts of Aw are experimentally accessible quantities. For some examples, see the review
article [32].
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Obviously, the following holds

if |ψi〉 = |ψ f 〉 then 〈A〉 = Aw (10)

Hence, Equation (9) represents a generalization of the common expectation value, Equation (8).
Note that, for sufficiently weak measurements, the denominator in Equation (9) does not
vanish, 〈ψ f |ψi〉 6= 0 [30].

Now we consider once more the expectation value of Â, Equation (8), and presume
the expansion |ψi〉 = ∑j cj|j〉. The set of kets {|j〉} denote an orthogonal basis of the Hilbert
space associated with the considered system. Now we may assume that we carry out a
measurement of the observable Â with respect to this basis and, additionally, also make a
post-selection of the results associated with the final state |j〉. In other terms, we envisage
a strong (called projective or von Neumann) measurement associated with the projector
|j〉〈j|. Hence, in this case we are interested in determining the average of the measuring
results; we obtain:

〈A〉 = 〈ψi|Â|ψi〉 = ∑
j

c∗j 〈j|Â|ψi〉 = ∑
j
|cj|2
〈j|Â|ψi〉
〈j|ψi〉

≡∑
j
|cj|2 Aw

j,ψi
(11)

As defined above, Aw
j,ψi

is the WV of Â with respect to the pre- and post-selected states

|ψi〉 and |j〉, respectively. |cj|2 is the probability of the appearance of |j〉; cf. [30,33,34]. Thus,
we see that possibly existing experimental features associated with the experimentally
accessible quantity Aw

j,ψi
become “smeared out” in the common expectation value 〈ψi|Â|ψi〉.

Indeed, Aharonov, Vaidman and collaborators have demonstrated the basic physical
significance of Equation (9). Namely, in well-defined and properly designed experimental
setups, WVs become measurable quantities [30]. As WVs are unknown in standard quan-
tum mechanics (see textbooks), their existence and experimental accessibility should be
considered to represent a novelty and/or discovery.

Further physical insight into the basic quantum nature of the concept of WV may be
provided by the following consideration by Pati and Wu [35].

To start with, one notices the formula

Â|ψi〉 = 〈Â〉|ψi〉+ ∆Â|ψi〉 (12)

which may be found in the textbook [30], p. 39, or in Ref. [35]. |ψi〉 is a state orthogonal to
|ψi〉, Â represents an observable, and 〈Â〉 = 〈ψi|Â|ψi〉. Further, ∆Â denotes the uncertainty
of the observable A when the system is in the state |ψi〉; that is, (∆Â)2 = 〈ψi|(Â−〈Â〉)2|ψi〉.
Taking the scalar product of 〈ψ f | with both sides of Equation (12) we obtain

Aw = 〈Â〉+ ∆Â
〈ψ f |ψi〉
〈ψ f |ψi〉

≡ 〈Â〉+ δAw (13)

Hence, we may say that δAw is the WV-correction to the conventional-theoretical expectation
value 〈Â〉.

This simple derivation shows the crucial reason for the term δAw, which represents
the difference between the common quantity 〈Â〉 and the WV Aw. This difference is caused
(1) by a non-vanishing uncertainty ∆Â > 0 and (b) by an accompanying non-vanishing
scalar product 〈ψ f |ψi〉 6= 0. Obviously, the latter relation means that the two states |ψ f 〉
and |ψi〉 are capable of producing quantum interferences.

It should be emphasized that the aforementioned condition 〈ψ f |ψi〉 6= 0 is fully un-
known in conventional quantum dynamics (exact or perturbative). Or, in simpler terms, this
condition appears nowhere in conventional-theoretical treatments and/or interpretations
of experimental observations or results. This also demonstrates the novelty of the two-state
vector formalism (TSVF) which is an indispensable part of the general WV-theory [30,31].
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In summary, the remarkably short derivation presented in Equations (12) and (13)
shows that the new effects interpretable within WV-TSVF are caused by the quantum
interference of the post-selected state with a quantum state being orthogonal to the pre-
selected state of the system [35].

Impulsive von Neumann Measurement and WV-TSVF Theory

In WV-TSVF theory, the measurement process is characterized by an impulsive von
Neumann interaction Hamiltonian [29]; see below. This incorporates an observable for
a pointer or measuring apparatus, whose wavefunction is denoted by |Φ〉. That is, the
pointer itself is also a quantum object.

The implementation of the von Neumann model, which describes an ideal case, is
modeled by the two-body interaction Hamiltonian

Hint = g(t) Â ⊗ M̂ with g(t) = gδ(t− t0) (14)

where M̂ is a dynamical variable of the pointer and Â is the system’s operator representing
the physical quantity to be measured. g(t) is a (small and real) coupling function, and t0
specifies the time of the impulsive two-body collision. In an ideal measurement, g(t) is
nonzero only during a very short time interval—formally captured with the delta function—
and thus the free Hamiltonians of the participating systems during this time period can
be neglected.

The von Neumann measurement, also known as a strong measurement, provides the
eigenvalues of the measured observable. However, it simultaneously disturbs the measured
system, resulting in a change in its initial state. The final state corresponds to an eigenstate
of the operator representing the observable. Alternatively, by weakly coupling a measuring
device to the system, a technique known as Weak Measurement (WM), it becomes possible
to extract specific information while limiting the disturbance induced by the measurement
on the system. As initially proposed by Aharonov and collaborators [36,37], additional
physical insights are unveiled when one selectively post-selects a specific outcome of
the experiment.

Let the initial system-apparatus state, i.e., for t < t0 be ψi ⊗Φi. Due to the interaction,
this evolves as follows:

ψi ⊗Φi → e−igÂ⊗M̂ψi ⊗Φi (15)

For convenience and as often done in theoretical papers, in the following derivations we
temporarily put h̄ = 1. We also may write g instead of g(t).

Then one post-selects (with a strong measurement) a specific final state of the system,
say ψ f . The experimental result is associated with the corresponding apparatus’ final state,
Φ f , from which the measurement’s result is determined. Φ f is obtained by tracing out the
dynamical variables of the system, i.e.,

Φ f = 〈ψ f |e−igÂ⊗M̂|ψi〉Φi (16)

In the following, one considers the weak interaction limit (i.e., small g) and obtains
through power expansion of the exponent:

Φ f ≈ 〈ψ f |1− igÂ⊗ M̂|ψi〉Φi = 〈ψ f |ψi〉(1− igAw M̂)Φi ≈ 〈ψ f |ψi〉e−igAw M̂ Φi (17)

Aw is the WV of the system’s observable Â. It is assumed that 〈ψ f |ψi〉 6= 0. Thus, the state
of the measuring device evolves with an effective one-body Hamiltonian ĤM = gAw M̂, i.e.,

Φi → e−igAw M̂Φi (18)

Hence the following interesting result is obtained: The pointer’s dynamics displays infor-
mation about the system only through the single complex number Aw.
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For the following theoretical derivations we will make the specific choice

M̂ = p̂ (19)

In other words, the pointer’s variable in the interation Hamiltonian will be its momentum.
We will also need the variance of p̂ in its initial pointer state

Varp = 〈Φi| p̂2|Φi〉 − 〈Φi| p̂|Φi〉2 (20)

In the theoretical treatment of the experimental neutron-scattering results presented
below, it will be shown that the imaginary part Im[Aw] of Aw is of particular interest.
According to the general WV-TSVF theory, the pointer momentum after the interaction
changes from 〈p〉i (its initial value) to

〈p〉 f = 〈p〉i + 2 g Im[Aw]Varp (21)

(its final value). Note that Varp refers to the apparatus (or pointer). Moreover, the real part
of the weak value, Re[Aw], is determined by the shifted position (x-shift) of the pointer, i.e.,

〈x〉 f = 〈x〉i + g Re[Aw] (22)

For full derivations and further explanations, see, e.g., [33,38]. It will be shown that, in our
investigations, the relevant WV entering the scattering process is purely imaginary. The
physical significance of an imaginary WV was analyzed by Dressel and Jordan [39].

5. Momentum-Transfer Deficit in the INS Scattering in the Frame of WV Theory

Let us point out already here, for clarity, that the following derivations refer to a
possible correction to a conventionally expected measurement outcome, as predicted by
Weak Values (WM) and Two-State Vector Formalism (TSVF); see, e.g., Equation (29) below.

For simplicity of notation, we take the direction of momentum-transfer vector, KA,
due to scattering of a neutron with initial momentum, pn, to be parallel to the x-axis of the
laboratory system. Now we consider the von Neumann-type interaction Hamiltonian

Hint = g p̂⊗ X̂ (23)

(g: small coupling constant, as discussed above), with the understanding that Hint should
theoretically describe a (possibly existing) deviation from the conventional momentum
transfer due to the neutron–system collision. X̂ is the position operator of the system (or a
system’s part, e.g., a nucleus) being hit by the neutron, which has the momentum operator
p̂. The sign of g is not specified yet.

Now one has to calculate the WV of the system variable x̂ ≡ X̂, according to Equa-
tion (9)

Xw ≡
〈ψ f |X̂|ψi〉
〈ψ f |ψi〉

(24)

Clearly, the explicit forms of the state vectors in configuration space are very complicated
(and time-dependent even over a short time interval around the time t0 of collision). So we
may be able to perform a part of the calculation in the momentum space—as done in our
earlier works [40,41]. To do so, one may use the replacement

X̂ → −1
i

∂

∂P̂
(25)

(recall the aforementioned convention h̄ = 1), where P̂ is the associated momentum variable
of the quantum system. (Note that the fundamental commutation relation [P̂, X̂] = 1/i
is fulfilled.)
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Let us now calculate Xw in the momentum representation, causing the usual assump-
tion of the wavefunctions of initial and final states to be approximated by Gaussians (i.e.,
of the form G(P) = exp(−P2/2σ2

P)). This gives for the nominator

〈ψ f |X̂|ψi〉 = (−1/i)〈ψ f |
∂

∂P̂
|ψi〉 = (−1/i)〈G(P− KA)|

∂

∂P̂
|G(P)〉

= (−1/i) (−1/σ2
P)〈G(P− KA)|P̂|G(P)〉

= −i 1/σ2
P 〈ψ f |P̂|ψi〉 (26)

The integral 〈ψ f |P̂|ψi〉 is exactly the same as the one that appeared in the calculation
of the WV of momentum P in the treatment of INS [40,41]. Those calculations showed that
Pw is real and positive. Thus, we immediately arrive at the interesting result that Xw is
purely imaginary.

It is in order to repeat the short calculation of Pw here, see [40,41], that

Pw =
〈G f |P̂|Gi〉
〈G f |Gi〉

=

∫
dP G(P− KA) f P G(P)i∫
dP G(P− KA) f G(P)i

= +
KA
2
≡ +

K
2

(27)

In Equations (26) and (27) holds by definition KA ≡ K. The value of the integral in the
numerator follows immediately from the following facts: (a) the two functions G are
positioned symmetrically around the middle point P̄ = KA/2—one function is centered at
0, the other at KA; and (b) in this integral, P is a linear factor. Note also that this result is
independent of the width of the Gaussian G.

Of course, this integral, and thus Pw, should change with variations of the assumed
shape (and width) of the final state G f . See the discussion of this issue given in [40].

Thus, we obtain from Equations (26) and (27)

Xw = −i g 1/σ2
P

K
2

(28)

which is a negative imaginary number (if the smallness parameter g is positive). It may be
noted that an imaginary WV is associated with the back-action of one system on the second,
due to the interaction [39].

We apply now the main result (21) of the WV-TSVF theory [33,38]. By re-introducing
explicitly the factor h̄ in the expression for momentum transfer, K → h̄K, we obtain for the
WV-correction to the conventionally expected pointer momentum,[

〈 p̂〉 f − 〈 p̂〉i
]

WV-correction
= −2 g/σ2

P
h̄K
2

Varp = −g h̄K
Varp

VarP
(29)

using the definition VarP = σ2
P. Note that K > 0 since the neutron impinges on the system

(initially at rest) along the x-axis “from the left” and thus the momentum transfer h̄K on the
scatterer is positive, h̄K > 0. This result contains the variances of both quantum participants
(i.e., neutron and scatterer) in the collisional process. Moreover, Equation (29) constitutes
the main result of our derivation.

5.1. Physical Significance of the Main Result Equation (29)

We make now the following crucial observations:
(I) This concise theoretical result predicts the vanishing of the correction term caused

by the WV-TSVF theory when considering the limiting case of a perfect plane wave neutron
beam, where the variance of momentum (Varp) equals zero. This outcome is highly
satisfactory as it accurately reproduces the conventional results found in textbooks [11,12].
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(II) Additionally, if the scatterer is composed of quantum objects with well-defined
positions, the uncertainty principle dictates that the variance of their momenta becomes
infinite, denoted as 1/VarP → 0. Consequently, the correction term (29) disappears. Thus,
this limit also aligns with the expected outcomes according to conventional theory [11,12].

Moreover, these observations yield the following noteworthy conclusions:
(III) Specifically for the mentioned hydrogenous materials, which exhibit an unusual

deficiency in momentum transfer from the neutron to the impacted hydrogen atom, the
coupling factor g in the model Hamiltonian (23) must be positive (g > 0). It is important
to note that there is no inherent restriction on g being positive beforehand. This finding
introduces a novel quantum characteristic associated with the overall dynamics of neutron–
matter interactions, as uncovered by the WV-TSVF theory.

(IV) The preceding effect of momentum-transfer deficit and the intensity-deficit effect
are presented below; both are absent in the above limiting or idealized cases I and II which
are crucial for the validity of the conventional theory [11,12].

In summary, the above results provide new insights into the consequences following
from the nature of quantum beams (here: neutron beam) and also further evidence of
the novel character of WV-TSVF theory. The new experimental field of applicability of
WV-TSVF (i.e., neutron scattering) may be pointed out.

5.2. Momentum-Transfer Deficit in INS from H2 Molecules in C-Nanotubes

In this subsection, we examine an incoherent (and inelastic) neutron-scattering (INS)
experiment in order to illustrate the preceding theoretical findings. The theoretical basis
and experimental method of INS are thoroughly explained in the textbook [23].

The experiment of Olsen et al. [42] focuses on INS involving individual hydrogen
molecules adsorbed in carbon nanotubes. The measurements were conducted at the Oak
Ridge National Laboratory’s new generation spallation neutron source (SNS) in the United
States. Detailed information about the experiment and a comprehensive data analysis can
be found in the original publication [42]. The primary outcomes of this INS experiment are
depicted in Figure 1.

Figure 1 illustrates the primary outcomes of the INS experiment. In the realm of
WV-TSVF theory, it is crucial to emphasize that achieving the post-selected state of H
(or H2) is easily accomplished by orienting the axis of the C-nanotube in relation to the
momentum transfer. This can be observed in the following two extreme scenarios:

(1) When the C-nanotube axis is perpendicular to K, the trapped H (or H2) experiences
a strong potential due to the repulsive nature of the C-nanotube wall.

(2) When the C-nanotube axis is parallel to K, the trapped H (or H2) encounters a
weak potential since it is only lightly adsorbed on the C-nanotube wall. As a result, it can
undergo translational motion.

Evidently, the INS experimental results in scenario (2), specifically regarding the roto-
translation motion of H2, exhibit a significant WV-correction. This correction deviates
from the conventionally expected momentum transfer value and is even apparent upon
visual examination.

To the best of our knowledge, no first-principles conventional (quantum or classical)
theoretical explanation of this effect existed until now.
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       momentum 
    transfer 
deficit  

-rotation 

Figure 1. INS results from H2 in carbon (C) nanotubes, adapted from data shown in Figure 1 of
Ref. [42] at T = 23 Kelvin (schematic). The broad intensity band—also called “roto-recoil” (white–
blue ribbon)—is due to the translational motion of the recoiling H2 molecules This starts at the
first rotational excitation of H2, centered at Erot ≈ 14.7 meV and Krot ≈ 2.7 Å−1 (blue ellipsoid), in
agreement with conventional theory. In clear contrast, the data analysis of [42] provides a fit (red
parabola; full thick line) to the roto-recoil data, which exhibits a striking momentum-transfer deficit
of the recoiling H2 molecule along the C-nanotube axis, schematically shown with the large double
arrow. The experimental data are consistent with a fictitious (or effective) mass of a translating H2

being only 0.64 a.m.u. This is in contrast with the conventional theory which predicts the red thin
dashed parabola, i.e., the recoil parabola of H2 having mass equal to 2 a.m.u. See [42] for full details
of data analysis and further experimental data. (This Figure is reproduced from Ref. [40].)

6. Intensity Deficit in Neutron Compton Scattering from H-Containing Materials

In this section, we consider exclusively the experimental method of neutron Compton
scattering (NCS) and in particular an effect known as intensity deficit in the scattering
from protons of H-containing materials. Here, it will be of crucial importance to take into
account the value of some NCS characteristic parameters, i.e., the collisional time window
and the energy and momentum transfers involved.

6.1. Characteristic Parameters of NCS

In the context of NCS, which applies so-called epithermal neutrons, the achieved
momentum and energy transfers are large, i.e.,

∆E ≈ 1− 100 eV and |K| ∼ 20− 200 Å
−1

(30)

As a consequence, here the so-called Impulse Approximation (IA) applies [24,25]. Moreover,
the time scale—often called “scattering time”, τsc—characterizing the neutron–proton
scattering dynamics is very short [24], i.e., about

τsc ∼ 100− 1000 as (31)

(as: attosecond, 10−18 s). These physical parameters are provided at the eVS-Vesuvio
instrument of the ISIS facility, Rutherford Appleton Laboratory, UK. These parameters are
related as described by the theoretical result of IA [24,25]

τsc |K| 〈v0〉 ≈ 1 (32)
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In this formula, 〈v0〉 is the root-mean-square velocity of the nucleus (here, proton) before
collision, which of course depends on the system (material) under investigation. h̄K is the
momentum transfer as already defined in the previous sections. Furthermore, it holds that
τsc equals the t-width of the intermediate correlation function F(K, t) (see Section 2) [24,25].

In the IA, the scattering is assumed to be essentially incoherent, essentially meaning
that each neutron scatters from a single nucleus—a single proton, in our case. Indeed,
experimental determination of the energy transfer associated with the measured H-recoil
peak shows that the mass of the struck H atom of the benzene sample (see below) is equal
to 1 a.m.u. (atomic mass unit)—i.e., the neutron collides with a single proton.

For these reasons, the NCS method is applied to explore single-particle properties, and
especially the momentum distribution of an atom in its initial state. Furthermore, this is
supposed to reflect structural details of the Born–Oppenheimer potential VBO surrounding
the struck atom before collision [24].

The original motivation to establish the NCS experimental method was the possibility
to measure the momentum distributions n(p) of He atoms in the normal liquid state of
helium, and also in its superfluid state [24,25]; see the original proposal by Hohenberg and
Platzman [26].

6.2. WV-TSVF Interpretation of the Intensity-Deficit Effect

A surprisingly straightforward consequence based on the preceding theoretical deriva-
tions predicts, from first principles, the so-called intensity-deficit effect for hydrogen, ear-
lier observed in several neutron Compton scattering (NCS) experiments from various
H-containing materials; see [43–47] and papers cited therein.

To show this, it suffices to refer to the preceding general WV-theoretical result,
Equation (18), stated here again for convenience:

Φi → Φ f = e−igAw M̂Φi (33)

Namely, for the case of an imaginary and negative, Aw = −i|Im[Aw]|, we obtain

Φi → Φ f = e−g|Im[Aw ]|M̂Φi (34)

The exponential factor, which now is a real negative number, reduces the norm of the
pointer-state wavefunction,

||Φ f || < ||Φi|| (35)

In other terms, here the time evolution is non-unitary.
Now, in our case (see below) we are interested in the scattering intensity from protons

(or H). On physical ground, it is obvious that 〈Φ f |Φ f 〉 is proportional to the scattering
intensity (IH) as measured by the pointer:

〈Φ f |Φ f 〉 ∝ IH (36)

Finding (35) is sometimes criticized as being an artifact of the post-selection and not a
true quantum dynamical effect, due to the fact that here the pointer operator p̂ commutes
with the interaction Hamiltonian Hint. However, it must be emphasized that there is no
arbitrariness or any “improper approximation” involved in the preceding derivation of
the imaginary weak value Xw and the associated non-unitary evolution Equation (34).
In this context, note also that the choice of the final state of the system (i.e., a displaced
Gaussian in momentum space) is common in theoretical investigations. Moreover, the fact
that here Xw has a vanishing real part implies that the associated pointer’s position remains
invariant, i.e.,

〈x̂〉 f = 〈x̂〉i
This is fully consistent with the impulsive, δ-like, nature of Hint. In simple terms, the hit
system has no time to change its position just after the interaction is turned off.
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6.3. Experiment: H-Intensity Deficit in NCS from Liquid Benzene

In short, the experimental NCS procedure is as follows. From a measured time-of-
flight (TOF) spectrum with an individual detector, the data analysis routine determines the
relevant peak areas AX or intensities IX (where X = H, C, Nb) from the measured partial
differential cross-section d2σ/dωdΩ; see Section 2. Thus, one determines by standard
numerical analysis the ratio

Rexp ≡
IH
IX

(37)

Standard NCS theory [24] predicts that the expected value Rconv of this ratio is

Rconv =
NHσH
NXσX

. (38)

NX is the number density of atom X and σX is the tabulated cross-section of the nucleus of X.
Here we are interested in the ratio IH/IC for benzene—which is achieved by the data

analysis after subtraction of the “overlapping” Nb-peak of the metallic nyobium container
(see Figure 2A). Surprisingly, the experimental results presented below (and many others,
too) exhibit a striking intensity deviation, i.e.,

(IH/IC)exp ≈ 0.75 (IH/IC)conv (39)

This effect has found no conventional interpretation thus far.

A B 

intensity  

deficit 

Figure 2. Experimental NCS results obtained from liquid benzene (C6H6). (A) Two time-of-flight
(TOF) spectra measured on a liquid sample of C6H6 within a niobium (Nb) container, at a temperature
of 295 K. The solid lines depict the fitted TOF spectra. The peaks’ positions are calculated based on
conventional theory. The C- and Nb-recoil peaks overlap at a scattering angle of θ = 65◦. However, at
θ = 132◦, the maxima of these two peaks are clearly distinguishable, enabling accurate determination
of their intensities. (B) Ratios of neutron cross-sections (equivalent to intensities’ ratios) for H and
C obtained experimentally at various scattering angles (detector positions). The error bars solely
represent counting statistics. The vertical line at 14.7 signifies the ratio σH/σC derived from the
tabulated cross-section values for H and C. In clear contrast, the experimentally observed values of
IH/IC are approximately 20–30% smaller than the anticipated values based on conventional theory;
see [45] for details. (Data taken from [45].)

Assuming approximately that the heavier C atoms behave “conventionally”, we may
attribute this effect to the H atoms (i.e., the protons) and speak of the H-intensity deficit effect.

Parenthetically, some accompanying NCS measurements on deuterated benzene
(C6D6) were performed, which showed a considerably smaller (although discernible)
D-intensity deficit relative to the C-intensity. Moreover, similar electron Compton-like
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scattering (ECS) experiments from H2 and D2 in the gas phase reveal an intensity-deficit
effect, too [46].

6.4. Which-Path Information and Impossibility of Neutron Beam Interferences in NCS from Several
Entangled Protons

Earlier [28], a theoretical interpretation of the NCS-intensity-deficit effect was pro-
posed, based on the hypothesis that two (or more) entangled protons may exist in the
characteristic coherence volume of the neutron beam—a few Å3, in the short time-window
of NCS, see relation (31). It was argued that this QE concerns spatial and spin degrees of
freedom, due to the identity of the involved protons [28]. Consequently, the measured
cross-section should be due to scattering by such an entangled protonic system of two
(or more) protons. It was theoretically derived that the assumed QE should reduce the
scattering intensity of the system. This reduction is tantamount to a destructive quantum
interference of the various participating, possible neutron paths. Clearly, this physical
view goes beyond the standard one [24], which considers NCS (or, equivalently, DINS)
essentially as a two-body scattering process.

However, this theoretical proposal appears highly questionable in the light of modern
quantum mechanics, in which the aforementioned phenomenon of impossibility of interfer-
ence in the case of which-path information plays a central role. Indeed, the high energy
transfer (say, e.g., 5–50 eV—which even breaks the chemical C-H bond) on a scattering
proton makes it distinguishable from the other H atoms of the scattering system, indepen-
dently of whether QE effects are present or not. In other terms, this large energy transfer is
equivalent to full which-path information, which rules out the aforementioned proposed
interpretation of the intensity-deficit effect: namely, the path of the scattered neutron is
here fully known, because the scattering proton is easily distinguishable from the non-hit
protons in the aforementioned coherence volume.

To put it differently, the NCS-intensity deficit effect can be attributed to the collision
of a neutron with a single hydrogen atom (which interacts with its environment). That
is, this effect is unrelated to any assumed quantum interference of several neutron paths
originating from different protons. This is in line with the conventional viewpoint that NCS
scattering is incoherent [24,25].

The conceptual similarity to the common quantum two-slit experiment should be
obvious: when we have information about which path a particle (such as a neutron, atom
or photon) takes, this cancels the interference pattern on the screen (i.e., the measurement
device). Moreover, having partial knowledge about the path reduces the visibility of the
interference fringes accordingly; see [13,15–22].

The above remarks are fully in line with Feynman’s statement stressed in the Intro-
duction, which, in the present case, may be rephrased as follows: You may argue, “I don’t
care which specific proton has scattered the neutron”. Perhaps you don’t, but nature knows; and
neutron’s scattering amplitude behaves, in fact, as we just discussed—there isn’t any interference.

7. Discussion

In order to facilitate a bit more the understanding of the preceding results, here we
provide some additional remarks and explanations.

In some cases, the quantum character of the beam particles (i.e., neutrons in the cases
considered above) enforces the need to go “beyond” the conventional scattering theory.
E.g., the neutrons have to be considered as quantum objects with finite coherence length;
the duration of the neutron–nucleus collision has to be specified; the neutron–nucleus
colliding system is an open quantum system, which in general may have a non-unitary
time evolution. These remarks clearly contrast the conventional theory, where (1) the
neutrons are plane waves, (2) the concept of duration of the collision plays no role in
the interpretation of experimental scattering results, (3) the quantum dynamics of the
scattering system (assumed to be isolated) is unitary and (4) where the neutron is described
by c-numbers (and not by operators).
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The novel theory of weak values (WV) and two-state vector formalism (TSVF) in-
troduces a fresh perspective by explicitly considering the quantum nature of the probe
beam. This approach uncovers various counter-intuitive effects that might appear “strange”
or even “wrong” when compared to conventional theory. For example, the momentum-
transfer deficit effect may seem to violate the fundamental laws of energy and momentum
conservation. However, these objections stem from the incorrect (often tacit) assumption
that the scattering particle A is an isolated quantum system. In other words, the quantum
dynamics of the “environment” of A actively participate in the neutron-A scattering process
and thus play an indispensable role in understanding the new WV-TSVF effects mentioned
earlier. Therefore, it is beneficial to highlight the accurate conservation relations in the
following manner:

∆EH+env = −∆En and ∆h̄KH+env = −∆h̄Kn (40)

∆XY represents the change of quantity XY due to the collision. The participating environ-
mental degrees of freedom are indicated by the subscript env; n refers to the neutron and H
refers to the system—here, the (proton of the) struck H atom.

Here, a note of caution should be introduced. In most experimental situations, the en-
vironment of a quantum system A disturbs its dynamics. Hence, the environment referred
to here could be alternatively called ancilla—as in the theory of quantum computing [6]—
because it plays a constructive role in the dynamics, i.e., preserves the unitarity of the
whole “A + ancilla” system. Note that ancillas are present in the overwhelming majority
of quantum circuits designed to carry out various well-known algorithms in quantum
computers [6].

Additionally, considering these comments, a straightforward corollary arises that is
highly perplexing for conventional theory: the short-time evolution of any elementary
neutron-H scattering process in INS or NCS, where H is a component of a hydrogenous
condensed material (or a molecule), is non-unitary.

In conventional NCS theory, an approximation is made where the complete Hamil-
tonian is replaced “by hand” using intuitive justifications, such as the extremely short
scattering time τsc. Instead of the complete Hamiltonian, one introduces an effective one-
particle Hamiltonian (i.e., that of a H) residing in a Born–Oppenheimer (BO) potential;
cf. [24]. Clearly, the mentioned BO potential plays only a passive role in the microscopic
scattering dynamics, since it has no dynamical variables. This theoretical framework sug-
gests that any dynamical non-unitary process, such as decoherence, is here impossible. This
implies that the validity of various investigations claiming to “directly measure the ab initio
BO potential” should be critically reconsidered.

In our theoretical models concerning neutron scattering (INS and NCS), the interaction
Hamiltonian in Equation (14) involves two distinct quantum systems, namely a neutron
and a proton. The operators p̂ and X̂ within this Hamiltonian pertain to these individual
systems. Consequently, as clarified by Vaidman [48], the concept of WV emerges in
this context due to the interference of an entangled quantum wave and thus it lacks an
equivalent counterpart in classical wave interference or classical physics. This highlights
that WV is a fundamentally quantum concept, rather than an approximation. It is important
to remember that there is no quantum entanglement between a classical system and a
quantum system.

All the preceding derivations and considerations are related to (or based on) the
concept of weak measurement, which usually is not believed to be generally applicable to
“real experiments”. However, it has been shown that weak measurements are universal [49].
In essence, this holds because any projective (strong) measurement can be decomposed
into a sequence of weak measurements, which cause only small changes to the system’s
state. Further analysis showed that this result holds even in the broader case of so-called
generalized measurements [49].

The theoretical results we derived showed that the WV of the coupling system variable
X̂ is purely imaginary, Equation (26). The physical significance of imaginary WVs has
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been analyzed in detail in Ref. [39]. It was argued that the imaginary WV provides direct
information about how the initial state would be unitarily disturbed by the observable
operator. Furthermore, as the imaginary part constitutes a shift in the pointer momentum,
this latter effect is a reflection of the back-action of a measurement on the particle (scatterer).

Moreover, our analysis of the intensity-deficit effect provides a new insight into, or a
new aspect of, the physical meaning of an imaginary WV. Furthermore, note that a positive
imaginary WV, together with a positive coupling g, would theoretically predict an intensity
surplus instead of a deficit. However, as of now, we are not aware of a related experimental
observation in another quantum beam-scattering context.

Here, let us mention some additional references [50–53], which provide further ev-
idence for the predictive power of, and newer physical insights into, the theory of WV
and TSVF.

It should be helpful to emphasize the connection of the above NCS and INS investiga-
tions with the vivid scientific debate about complementarity, which-path experiments and
the uncertainty principle. This is a topic of considerable activity (and controversy) over
the past three decades. In simple terms, the NCS-intensity deficit effect is a “single H atom
effect”, and it has nothing to do with quantum interference of all possible paths of a neutron
originating from many protons of the scattering material. This is due to the fact that the
struck proton (which receives several tens of eVs by the NCS-collision) is distinguishable
from the adjacent non-struck protons. E.g. in the case of the measured H-intensity in NCS
from benzene, only one proton is struck. (This is experimentally proven by the H-peak
position in the measured time-of-flight spectra, as calculated in standard NCS theory). That
is, the struck proton is the scattering “system” A and the remaining five protons, the six
C-nuclei and all the electrons of the molecule constitute the “environment” or ancilla.

To conclude these discussions about NCS quantum dynamics and in the spirit of Feyn-
man’s quotation (see the Introduction), we can state that “nature knows”, and therefore
there is no interference between the amplitudes of the six potential n-H scattering trajec-
tories from C6H6 to the H-recoil peak shown in Figure 2A. Hence, the above-considered
surprising NCS effect appears to have a true quantum dynamical origin based on the
open-system quantum dynamics of specific few-body interactions. These involve the struck
system (proton or H), which is coupled with its quantum environment (or ancilla), and the
impinging quantum particle, i.e., the neutron.

8. Conclusions

Since the preceding discussion section is rather long and considers diverse issues, let
us conclude by pointing out the main findings and results of the paper.

We provided theoretical and experimental evidence that certain assumptions of the
conventional neutron-scattering theory cannot explain the experimental INS and NCS
results considered above. Certain questionable assumptions of conventional theory have
been discussed in considerable detail. Among these are:

(1) The plane-waves approximation for the neutron beam;
(2) The missing concept of scattering time by the interpretation of experimental results;
(3) The assumptions that the scattering system is an isolated quantum system and that

the short-time neutron-particle scattering dynamics is unitary;
(4) The dynamical observables (operators) of the neutron beam are “replaced” by

c-numbers.
The latter also implies that QE between a neutron and the scatterer (i.e., protons, in

the discussed experiments) does not exist in conventional theory.
The novel quantum-theoretical approach of WV and TSVF overcomes these weak-

nesses (1–4) and makes a novel approach to quantum beam scattering possible. This
theoretical formalism provides a theoretical interpretation of both the momentum-deficit
and the intensity-deficit effects “from first principles” and on equal footing.

The presented discussions of the considered INS and NCS processes demonstrated that
the scatterers (i.e., protons, in the examples) cannot be considered as isolated systems. That
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is, their interactions with the environment must be taken into account by the formulation
of the basic energy- and momentum-conservation laws; see Equation (40). In simple
terms, discarding the environment would lead to the wrong conclusion that these basic
conservation laws could be violated in the experiments under consideration.

The presented theoretical analysis also makes contact with the widely used concept of
(effective) Born–Oppenheimer potential, VBO, which also appears in NCS investigations;
cf. [24]. Also, it holds here that no dynamical quantities (operators) are associated with the
environmental particles participating to the VBO. One may say that the BO potential is a
static concept, rather than a dynamical one.

In the presented theoretical derivations and discussions, the fundamental concept
of which-path information [13,15–22] (also called which-way information, or welcher Weg
detection in [15]) plays a crucial role. This concept is very well known in the field of
quantum optics, but not in neutron-scattering theory. The basic physics of this concept is
already stressed, in a slightly different wording, in the textbook [14] by Feynman, which
we repeatedly cited above in various appropriated places (e.g., in the Introduction and
the Discussion sections). Furthermore, it plays a decisive role in the critical analysis of the
NCS-theoretical model of the intensity-deficit effect presented in Section 6.4.

Finally, here we may stress the novelty of the derived main WV-theoretical results,
Equations (29) and (34), which provide, for the first time, a unified theoretical interpretation
of the momentum-transfer deficit observed with INS and the intensity-deficit effect ob-
served with NCS. Among various limiting cases (see Section 5.1), this result demonstrates
an important point: in the limit of the plane-waves approximation for the neutron beam,
the momentum-transfer deficit of INS disappears and thus the corresponding predictions
of conventional theory concerning momentum transfer are re-derived. This result provides
further evidence for the experimental relevance and predictive power of the novel theory
of WV and TSVF; see Section 4 and references cited therein.
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Abbreviations
The following abbreviations are used in this manuscript:

a.m.u. Atomic Mass Unit
BO Born-Oppenheimer (approximation)
eV Electron Volt
IA Impulse Approximation, also known as plane-wave IA (PWIA)
INS Inelastic Incoherent Neutron Scattering, also known as IINS
meV Milli-Electron Volt
NCS Neutron Compton Scattering, also known as DINS
QE Quantum Entanglement
TSVF Two-State Vector Formalism
WV Weak Value
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