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Abstract: Structural health monitoring systems have been employed throughout history to assess the
structural responses of bridges to both natural and man-made hazards. Continuous monitoring of
the integrity and analysis of the dynamic characteristics of bridges offers a solution to the limitations
of visual inspection approaches and is of paramount importance for ensuring long-term safety.
This review article provides a thorough, straightforward examination of the complete process for
performing operational modal analysis on bridges, covering everything from data collection and
preprocessing to the application of numerous modal identification techniques in both the time and
frequency domains. It also incorporates advanced methods to address and overcome challenges
encountered in previous approaches. The paper is distinguished by its thorough examination of
various methodologies, highlighting their specific advantages and disadvantages, and providing
concrete illustrations of their implementation in practical settings.

Keywords: operational modal analysis (OMA); bridge monitoring; structural health monitoring
(SHM); damage detection; dynamic analysis; modal identification techniques; artificial intelligence
(AI); machine learning

1. Introduction

Infrastructures have undergone continuous improvement over time due to their critical
functions and societal significance. Building, maintaining, monitoring, and reconstructing
the structures have posed challenges to technicians [1]. Throughout history, a fundamental
concern has been the pursuit of more effective safety measurements. It became increasingly
crucial to identify, evaluate, and address potential risks, degradation, or collapse as the
structures age and deteriorate and to thoroughly assess the financial and logistical aspects
of rectifying structural deficiencies [2,3].

Continuous monitoring of bridge health, particularly in areas prone to natural disasters
such as Japan [4], has led to the development of bridge management systems (BMSs), the
integration of bridge monitoring within a centralized framework [5–9]. Increasing safety,
reducing redundant costs, and enhancing management efficiency can be achieved through
the implementation of BMSs.

Traditional bridge monitoring methods are based on physical inspections, which
inherently possess limitations. They are time-consuming, laborious, and potentially unreli-
able [10]. Moreover, any delayed action or neglect of maintenance might lead to consid-
erable future costs, specifically for structures with special importance [11]. To overcome
these shortcomings, bridge structural health monitoring (BSHM) techniques have been
employed, using both static and dynamic approaches. Dynamic monitoring has gained
significant attention thanks to advancements in data acquisition technology, the increased
accessibility of sensors, cost efficiency, and ease of installation. Additionally, concerns
regarding data storage and sensor longevity have been mitigated by technological progress.
Improvements in signal processing and data manipulation methods have also contributed.
Through the use of sensing technologies, data acquisition systems, and analysis techniques,
structural responses can be monitored, anomalies can be detected, and health statuses can
be assessed through dynamic analysis.
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Moreover, recently, due to the emergence and integration of advanced technologies,
specifically machine learning (ML) methods [12], BSHM has undergone an evolution.
Data collection, analysis, and visualization have been made easier, leading to a significant
improvement in monitoring capabilities, accuracy, and efficiency. Bridge monitoring is
expected to continue evolving, as these technologies are advanced, enabling more proactive
and sustainable approaches to bridge maintenance and management.

Damage is regarded as a systematic alteration from an initial state that adversely
affects the system’s behavior. Bridge damage is often categorized in a vertical hierarchy
that must be correctly followed to reach a precise estimation [12]. The most commonly
used strategy was proposed by Rytter [13].

As illustrated in Figure 1, structural damage can be classified into five stages, each
associated with a question. It begins with estimating the presence, advances to determining
the location, type, and severity of the damage, and ultimately predicting the susceptible
zone in the structure that is likely to be affected. These steps exhibit a significant interdepen-
dence; for instance, an erroneous procedure in determining the presence or localization of
structural damage may result in imprecise quantification of damage severity, consequently
leading to inaccurate prognostication [13].

To follow the hierarchy represented in Figure 1, the bridge’s structural behavior should
be first assessed through static or dynamic approaches. From a static point of view, the
focus is on assessing the bridge’s structural stability and load capacity. In this regard, to
determine any potential weaknesses or anomalies, parameters such as strain, displacement,
and stress distribution are measured. However, incorporating such hierarchical approaches
within the context of dynamic analysis allows us not only to evaluate the structural dynamic
behavior under varying loads and conditions, but also to identify and assess any potential
damage that may occur during the bridge’s operational lifespan.
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Similar to its static counterpart, dynamic analysis of structures is categorized into
short- and long-term evaluations. Short-term assessment involves analyzing structural
behavior during or after specific events, such as earthquakes, load testing of bridges,
ambient responses to live loads, etc. On the other hand, long-term evaluation is an ongoing,
periodic process that entails continuously observing and assessing the structural behavior
of a bridge. This aims to identify any deviations or deterioration that may necessitate
maintenance or repair, typically involving a combination of data collection, analysis, and
reporting [14].

Figure 2 depicts an overview of the procedural stages required for dynamic BSHM.
The initial phase involves determining the appropriate number and types of sensors for
capturing relevant data. Decisions are made regarding the strategic placement of the sen-
sors to ensure reliable and precise results. Once the sensors are in place, data collection
commences, involving the continuous recording of information related to the structural
behavior, including vibration, strain, temperature, and other. Subsequently, the collected
data undergoes processing and transformation into a usable format. In the following
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step, analytical methods such as signal processing and statistical techniques are applied
to comprehend the structure’s dynamic behavior by determining dynamic parameters.
Information management encompasses the storage, organization, and clear presentation of
the analyzed data to facilitate decision-making. In the structural health examination step,
the computed dynamic parameters are employed to determine the potential damage type,
pinpoint its location, and assess severity. This involves comparing the current dynamic
behavior with the initial state of the structure to identify any deviations. In the decision-
making stage, informed decisions are made regarding the structural health, necessitating
assessments of whether maintenance, repair, or further investigation is necessary. If struc-
tural deficiencies are identified, examination and repair procedures are implemented to
address any detected damage, ensuring structural safety and longevity [12].

Infrastructures 2023, 8, x FOR PEER REVIEW 3 of 37 
 

behavior, including vibration, strain, temperature, and other. Subsequently, the collected 
data undergoes processing and transformation into a usable format. In the following step, 
analytical methods such as signal processing and statistical techniques are applied to com-
prehend the structure’s dynamic behavior by determining dynamic parameters. Infor-
mation management encompasses the storage, organization, and clear presentation of the 
analyzed data to facilitate decision-making. In the structural health examination step, the 
computed dynamic parameters are employed to determine the potential damage type, 
pinpoint its location, and assess severity. This involves comparing the current dynamic 
behavior with the initial state of the structure to identify any deviations. In the decision-
making stage, informed decisions are made regarding the structural health, necessitating 
assessments of whether maintenance, repair, or further investigation is necessary. If struc-
tural deficiencies are identified, examination and repair procedures are implemented to 
address any detected damage, ensuring structural safety and longevity [12]. 

St
ar

t

En
d

Choosing the quantity and 
positions of the sensors Data transformation Information management Deciding process 

Data gathering Organization and 
analyzation of information

Structural health 
examination

Process of examination and 
repairment  

Figure 2. Overview of the structural dynamic monitoring steps [12]. 

Figure 3 is the schematic representation illustrating the constituent parts of the pre-
sent review paper. It provides a comprehensive overview of operational modal analysis 
(OMA), encompassing the entire process from acquiring structural data to their utilization 
in BSHM applications. The paper starts by discussing the instrumentation and data acqui-
sition system (Section 2), followed by a data preprocessing step, which involves the elim-
ination of undesired frequencies and artifacts, as well as discussing synchronization (Sec-
tion 3). Section 4 focuses on modal identification techniques in time and frequency do-
mains, while Section 5 describes postprocessing methods, using identified modal param-
eters to detect any potential damage over time. Finally, Sections 6–8 explore advanced 
techniques aimed at improving and compensating for the limitations of previous meth-
ods, thereby advancing capabilities in bridge health assessment. 

This review paper provides a comprehensive overview of the entire process involved 
in performing OMA on bridges. It encompasses various steps, including data acquisition 
and preprocessing, the application of diverse modal identification techniques in both time 
and frequency domains, and postprocessing. Additionally, advanced methodologies are 
integrated to address and overcome limitations observed in earlier approaches. The paper 
provides information about each methodology, emphasizing their specific merits and lim-
itations, and offers concrete examples of their implementation in real-world scenarios. 
What distinguishes this paper is its extensive coverage of research in the field, making it 
one of the most thorough literature reviews available. 

Figure 2. Overview of the structural dynamic monitoring steps [12].

Figure 3 is the schematic representation illustrating the constituent parts of the present
review paper. It provides a comprehensive overview of operational modal analysis (OMA),
encompassing the entire process from acquiring structural data to their utilization in BSHM
applications. The paper starts by discussing the instrumentation and data acquisition
system (Section 2), followed by a data preprocessing step, which involves the elimination
of undesired frequencies and artifacts, as well as discussing synchronization (Section 3).
Section 4 focuses on modal identification techniques in time and frequency domains, while
Section 5 describes postprocessing methods, using identified modal parameters to detect
any potential damage over time. Finally, Sections 6–8 explore advanced techniques aimed
at improving and compensating for the limitations of previous methods, thereby advancing
capabilities in bridge health assessment.

This review paper provides a comprehensive overview of the entire process involved
in performing OMA on bridges. It encompasses various steps, including data acquisition
and preprocessing, the application of diverse modal identification techniques in both
time and frequency domains, and postprocessing. Additionally, advanced methodologies
are integrated to address and overcome limitations observed in earlier approaches. The
paper provides information about each methodology, emphasizing their specific merits and
limitations, and offers concrete examples of their implementation in real-world scenarios.
What distinguishes this paper is its extensive coverage of research in the field, making it
one of the most thorough literature reviews available.
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Figure 4 illustrates the contributing papers that were used in the compilation of this
review article based on their publication years, 1990 to 2023. The depicted growth in
the publications over the recent years can be attributed to several factors, such as the
advancements in data acquisition technology, which enhance the applicability and accuracy
of OMA on bridges. The increased accessibility of sensors, coupled with improvements
in cost efficiency and ease of installation, has further fueled this. Moreover, technological
progress has addressed concerns related to data storage and sensor longevity, contributing
to a more robust and sustainable OMA framework. Additionally, the evolution of signal
processing methods has significantly correlated to the positive trends observed in the graph.
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2. Instrumentation

To evaluate the dynamic behavior of structures, instrumentation plays a vital role
in gathering data. It comprises a network of sensors that capture data through a data
acquisition component [15]. They can be collected by strategically positioning sensors along
the bridge, including strain gauges (SGs) [16], displacement [17], velocity transducers [18],
and accelerometers [19]. On the other hand, understanding the impact of environmental
changes on bridge behavior necessitates the adoption of environmental sensors such as
temperature [20], humidity [21], etc.

The primary step in planning dynamic measurements involves selecting the precise
location and direction of the sensors and determining the total number of measurements.
This choice can rely on experience or be based on computational simulations, utilizing
finite element models (FEMs). Alternatively, it may be based on predictions of the dynamic
response derived from simple beam, plate, or shell theories. Regardless of the measurement
type, each transducer should possess sufficient sensitivity to detect the expected operating
signals. In cases where transducers must be placed in noisy areas with poorly understood
sources of vibration, or when the test is expensive or impractical to repeat, it may be
necessary to use redundant adjacent transducers with different sensitivities. This precaution
ensures the achievement of the desired test data even if some transducers fail. Additionally,
an important consideration is to maintain a sufficiently large channel count to provide a
suitable background for robust identification processes [14].

Sensing systems are divided into two categories: wired and wireless. In terms of data
transition, wired sensors employ physical cables [22], while wireless sensors rely on radio
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frequencies or Bluetooth [23]. Although wireless sensing systems offer numerous advan-
tages over their wired counterparts, including easy installation, flexibility for relocation,
remote monitoring, and cost efficiency, they also encounter a distinct set of challenges.
Wireless sensors utilize batteries as their power source. The limited energy supply from
batteries poses a constraint for wireless transmissions. Moreover, wireless data transmis-
sion exhibits lower reliability compared to wired systems, resulting in relatively lower data
transfer rates for wireless systems. Moreover, in wireless systems, synchronizing the data
recorded by various channels is more intricate compared to cable-based systems that em-
ploy a central system clock housed at the data server [24]. To overcome transmission delays
and propagation [25], various techniques, such as time-stamp estimation and correlation
functions, are employed, which will be discussed later in this paper.

2.1. Accelerometers

An accelerometer is used to measure linear acceleration, from monitoring seismic
activity to detecting system freefall. In OMA, the dynamic response is mainly recorded via
accelerometers, which are mainly classified into these types: piezoelectric [26], piezoresis-
tive [27], and microelectromechanical system (MEMS) accelerometers [28,29]. As a result of
technological advancements in MEMS accelerometers, their application has proliferated.
MEMSs are an appropriate alternative to other accelerometers due to their low power
consumption, high sensitivity, affordability, and sufficient sampling frequency.

2.2. Data Acquisition (DAQ)

Before dynamic analysis techniques can be used to evaluate recorded data, the ana-
logue signals generated by sensors must be converted into digital form using analogue-to-
digital converters (ADCs). The performance of the ADC is generally determined by the
number of bits available in its internal processor [14]. The market offers a variety of data
acquisition systems, each distinguished by their own attributes, configurations, and pricing
levels. Selecting appropriate DAQ systems becomes complex when factors beyond budget
constraints come into play.

3. Preprocessing of the Data

To improve data quality, raw data must undergo preprocessing to eliminate noise and
artifacts before extracting dynamic characteristics. Filtering techniques, such as low-pass,
high-pass, bandpass, or decimation, are employed to eliminate undesired frequencies,
thereby increasing the signal-to-noise ratio by enhancing the frequency range of interest.
Additionally, a detrending filter is used to remove or reduce the impact of low-frequency
trends or drifts in the data. Furthermore, external interference and errors in measure-
ment may cause artifacts in data acquisition. In this regard, techniques such as signal
interpolation, outlier detection, and data smoothing are employed [24].

On the other hand, while dealing with multiple sensors, to achieve accurate dynamic
characteristics, specifically mode shapes [30], precise data alignment and synchronization
are necessary. When dealing with wireless and wired sensing systems, several factors
should be considered. The recorded data from wired sensors can be directly managed
and synchronized due to their physically cabled connection to a centralized DAQ system,
providing precise timing. In contrast, achieving synchronization for data recorded by
multiple sensors is intricate in wireless connections, due to their inherent nature. Con-
sequently, time-stamp estimation and cross-correlation functions are utilized to evaluate
propagation and adjust the transmission delays [31,32]. Nevertheless, it is important to
highlight that when utilizing the timing synchronization function (TSF), which depends on
a dedicated timer managed by the network access point (i.e., the router) for time-stamp
estimation, a slight timing error of one millisecond may arise during the data alignment
process. This minor misalignment is unlikely to result in significant complications in the
modal identification results.
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4. Dynamic Analysis of the Bridge

To evaluate the long-term structural behavior of the bridge, dynamic characteristics,
including natural frequencies, mode shapes, and damping ratios, are monitored over time.
This procedure involves the application of modal identification methods, as explained in
Section 4.1.

4.1. Modal Identification Methods

Experimental modal analysis (EMA) and operational modal analysis (OMA) are two
widely employed approaches for modal identification. The application of EMA [33–35]
includes applying controlled input excitations with predetermined force magnitudes at
specified frequencies, which yields the advantage of mitigating undesired sources of noise
in the recorded structural responses. Moreover, applied loading can be adjusted to align
with the specific testing criteria. With regard to bridges, vibration excitation can be achieved
through eccentric rotating mass vibrators or an impulsive shaker [35]. On the other hand,
OMA [36–44], also known as output-only modal analysis, ambient modal identification,
or in-operation modal analysis, relies on vibration data collected while the structure is
under its operational state. OMA becomes practical when the structure’s size prohibits
artificial excitation or when the system cannot undergo a complete interruption in operation.
OMA relies only on response data since the excitation sources are not known. One of the
advantages of OMA over prior methods is its independence from input excitation. This
makes it valuable when the structure is subjected to random excitation from the ambient
environment, such as occurs with bridges. Furthermore, OMA can be used for real-time
monitoring of a structure while it is in use. In addition, bridges, towers, and high-rise
buildings that pose accessibility or cost challenges can be monitored with OMA [14].

There are other non-destructive tests (NDTs) in addition to visual inspection that have
been used for bridge inspection, such as ultrasonic testing (UT), radiographic testing (RT),
magnetic particle testing (MPT), eddy current testing (ECT), etc. [45,46]. OMA offers several
advantages over other NDT methods, including its ability to provide a comprehensive
assessment by identifying both the overall dynamic characteristics of the entire structure
and specific localized issues. Its non-intrusive and non-destructive nature is crucial for
preventing damage or disturbance to the bridge’s natural vibration modes. Moreover, its
real-time data acquisition capabilities enable the detection of structural damage at an early
stage, before it becomes visible or causes significant problems. OMA is also cost-effective
and enhances safety in the inspection process.

In modal identification, a significant challenge lies in the demand for computational
power and efficiency. This is more obvious when processing hundreds of output data
points at the same time. OMA emerged as an important topic in the late 1980s, especially
along with the evolution of computational technologies [47]. Considerable progress in
OMA has been made since the early 1990s [24].

Two main techniques are used for modal analysis in OMA: the frequency domain
and the time domain. In the time domain, the emphasis is on observing the structural
reaction over a period of time, revealing short-term behaviors and temporal phenomena.
On the other hand, in the frequency domain, time-domain data is translated into frequency
components using techniques such as Fourier transform, which allows natural frequencies,
mode shapes, and damping ratios to be identified [24].

4.2. Frequency Domain Analysis

The frequency domain offers a wider range of applications compared to time-domain
techniques, primarily due to the inherent stability of structural characteristics in this
domain [14]. While in the time domain, the focus is on free responses that manifest
throughout the entire considered time duration; in the frequency domain, each mode
exhibits prominence within a limited frequency band, leading to the presence of a “natural
modal decomposition”. This decomposition emerges from the consideration of distinct
frequency bands where individual modes exert dominance [24].
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There are three main modal identification methods in the frequency domain for BSHM:
peak picking (PP), frequency domain decomposition (FDD), and enhanced frequency
domain decomposition (EFDD).

4.2.1. Peak Picking (PP)

PP stands as the first OMA technique that enabled the evaluation of structural behav-
ior using frequency spectra [48–53]. In this method, the identification process of natural
frequencies is based on detecting the peaks within the power spectrum plot. This method
is practical when structural modes are well separated and damping is minimal. While
the employment of the method is straightforward, it may yield misleading results when
closely spaced modes occur [54]. However, during the modal analysis considering real
and complex structures such as a bridge, closely spaced modes are invariably present [55].
To address this limitation, a frequency domain technique known as frequency domain
decomposition (FDD) was introduced, which will be described here later. The PP method
was adopted as a modal identification technique for assessing the dynamic characteristics
of the Z24 Bridge, a reinforced concrete bridge in Switzerland, by Peeter et al. [55]. They
evaluated the effectiveness of PP in comparison with other modal analysis techniques used
by participating laboratories. Guo et al. [56] used this method to analyze the dynamic re-
sponses of the Xihoumen Bridge in China under various wind conditions, such as typhoons
and regular winds, and they also compared the PP results with time-domain methods.
Furthermore, Zong et al. [49] employed PP in the dynamic analysis of concrete-filled steel
tubular (CFST) half-through arch bridges to determine the natural frequencies, while Feng
et al. [57] utilized PP for the modal extraction of two instrumented highway bridges. The
application of the PP technique is emphasized in the aforementioned research [58–68].

4.2.2. Frequency Domain Decomposition (FDD)

FDD was introduced as an extension of PP based on singular value decomposition
(SVD) to make the power spectral density (PSD) matrix out of the response spectra matrix.
This method was enhanced by Brinker et al. [69] in 2000, which led to the current FDD
method. FDD is a widely accepted method capable of handling closely spaced modes,
nonlinear systems, and nonstationary signals [14]. It is considered nonparametric since it
does not require previously known mathematical models to identify the modal parameters.
In this method, while natural frequencies are the singular values obtained from the PSD
matrix, mode shapes are estimated using singular vectors [24]. The main drawbacks of
using the FDD method are the accuracy of the natural frequencies, which are limited by
the resolution of the FFT, and its inability to accurately calculate the damping ratio of the
structure. Malekjafarian et al. [70] and Elhattab et al. [71] used FDD to identify the mode
shapes of a bridge from vehicle-induced dynamic response signals. To investigate the
truck effects on the natural frequencies and mode shapes of a post-tensioned concrete box
girder bridge, Akköse et al. [72] employed FDD. Brincker et al. [73] applied FDD as modal
identification, utilizing a spectral density matrix transformed into single-degree-of-freedom
(SDOF) systems, validated by the Great Belt Bridge, Denmark. Another study by Wu et al.
combined FDD with strain mode identification to address damage assessment challenges
in reinforced concrete beams [74]. Research by Alamdari et al. [75] employed FDD for
detecting progressive damage by reducing the dimensionality space. OBrien [76] adapted
short-time FDD for damage detection from slow-moving vehicles and compared simulated
structures with known parameters. In a comparative study, FDD analysis of the ambient
vibration data of the Vasco da Gama Bridge in Portugal was conducted and compared with
the results of PP and SSI by Cunha et al. [77]. Choe et al. [78] assessed a wireless sensor
network-based SHM system’s accuracy through FDD. Weng et al. [79] employed FDD and
SSI for modal frequency extraction from cable–deck interactions. Using an automated FDD
algorithm, another paper developed an OMA tool for easily integrating default estimates
of modal parameters into commercial software packages [80]. FDD was also compared
with a ground-based interferometric radar approach for bridge assessment through natural
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frequency estimation from displacement measurements by Michel et al. [81]. Moreover,
these papers discussed the implementation of the FDD method [82–86].

4.2.3. Enhanced Frequency Domain Decomposition (EFDD)

As mentioned, through the application of the FDD method, natural frequencies and
mode shapes can be accurately identified, even in cases where modes are closely spaced.
However, its significant drawback is the inability to provide estimations for damping
ratios. To overcome this limitation, an improved version of FDD, named enhanced fre-
quency domain decomposition (EFDD) [87], was introduced. EFDD proved more precise
capabilities in the estimation of mode shapes, damping ratios, and natural frequencies
compared to conventional FDD. EFDD identifies the PSD function close to the resonance
peaks [88,89] and converts it to the time domain using inverse discrete Fourier transform
(IDFT). This involves estimating the natural frequencies by counting zero crossings over
time and determining damping ratios through logarithmic decrements from the normal-
ized autocorrelation function [89]. Kasimzade et al. [41] explored the modal parameters
of a steel model bridge using the EFDD method, and the effectiveness of the method was
proven in determining these parameters accurately for BSHM. Jacobsen et al. [89] also
employed EFDD to handle harmonic effects during modal extraction, resulting in more
robust estimates of structural characteristics. Furthermore, in another study, EFDD was
used for stone masonry arch bridge modal identification in Turkey’s northeastern region by
Gonen et al. [90], with a comparative analysis of the strengths and limitations of different
techniques. Moreover, AltuniŞik et al. [91] compared EFDD and SSI, noting close agree-
ment between their results. The referenced papers also mentioned EFDD as the modal
identification method used [92–96].

4.3. Time Domain Analysis

Due to the limitations in the frequency resolution of spectral estimates and leakage
errors in the frequency domain identification approaches, time-domain methods were
subsequently developed. In the time domain, the identification problem is considered
full rank. The fact that all modes are present at any given time can also be considered a
drawback, as it can make the estimation process more complex. The advantage of time
domain identification is that it is easier to acquire bias-free data. This is because the free
decays used are not as sensitive to noise as they are in the frequency domain. Moreover,
time domain methods provide better results when a large frequency range or multiple
number of modes exist in the data [14,97].

The most widely used time domain methods in OMA are random decrement (RD),
Ibrahim time domain (ITD), the eigensystem realization algorithm (ERA), the autoregres-
sive moving average (ARMA), time domain decomposition (TDD), stochastic subspace
identification (SSI), and the natural excitation technique (NExT).

4.3.1. Random Decrement (RD)

RD is an output-only method in the time domain introduced by Cole in 1968 [98],
which focuses on the averaging method [99,100]. In this method, real-time interpretation
is achieved by translating the data time history into a sum of autocorrelation functions
through generalized harmonic analysis of a single-degree-of-freedom system. RD’s method-
ology is demonstrated by a high-speed digital computer to analyze the structural dynamic
response. Within the domain of RD, considerations are given to the effects of finite time,
the filtering of several degrees of freedom, the approach to stability boundaries, nonlin-
ear systems, and structural failure. RD provides an accurate result for damping ratios,
natural frequencies, mean square values, and half-power points of the input [98]. The
application of RD for concrete bridge girder damage location identification using fiber
Bragg grating (FBG) sensors is illustrated in [101]. Furthermore, RD was employed by
Kordestani et al. [102] for BSHM, particularly under the influence of a moving load, which
was validated by experimental examples. Using the Nanjing Yangtze River Bridge in China
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for method verification, He et al. [103] used the RD-based empirical mode decomposition
(EMD) technique for modal identification in vibrational data. Wu et al. [104] introduced a
mode separation technique, followed by the development of a multiple random decrement
method to isolate free vibration responses while excluding excitation effects. The proposed
methodology was applied to ambient velocity measurements from the cables of the Chi-Lu
Bridge in Taiwan. In another study, Kaloop et al. [105] utilized RD to estimate the impulse
response of the tower’s displacement of a bridge using data from a global positioning
system (GPS). These papers also contributed to the utilization of the RD method [106–109].

4.3.2. Ibrahim Time Domain (ITD)

As one of the first methods for modal identification in multiple-output systems, the
ITD method was developed by Ibrahim in 1973 [110–112] for implementation in OMA,
where free decays are obtained from random responses. ITD estimates the structural modal
parameters such as the natural frequencies, damping ratios, and mode shapes from the time
function data via the construction and solving of an eigenvalue problem. The time functions
can be either free decays from the structure, impulse response functions, or pseudo free
decays [113]. To investigate highly coupled systems with severe modal interference, ITD
can identify modes with relatively small contributions to the response [114]. Siringoringo
et al. [115] compared ITD with other time domain methods for analyzing a suspension
bridge’s ambient vibration. Huang [114] utilized ITD to identify vibration frequencies,
mode shapes, and damping ratios of a concrete box girder bridge, noting the strong
correlation between free and ambient vibration tests. The ITD method formed the basis for
extracting dynamic characteristics from a laboratory cable-stayed bridge model, enhancing
its feasibility and practicality, in a study by Liu et al. [116]. Asmussen et al. [117] and
Fujino et al. [118] combined ITD with the RD technique for modal parameter extraction
on the Queensborough Bridge in Canada and the Hakucho Bridge in Japan, respectively,
effectively estimating eigenfrequencies, damping ratios, and mode shapes from ambient
data. Cable-stayed bridge identification was further explored by Wu et al. [119], who
introduced a mode separation technique utilizing ITD for parameter identification. The
application of ITD can also be followed in these papers [120–122].

4.3.3. Eigensystem Realization Algorithm (ERA)

ERA was initially proposed by NASA’s Langley Research Center in 1984, and it
generates a system realization using the time domain response, (multi) input and (multi)
output data. It uses a minimal realization [123], which means that it has the smallest
possible number of states while still representing the input–output relationship of the
actual system. This makes the model more efficient and easier to analyze [115]. It was first
implemented with impulse excitation and then later with ambient vibration data using
NExT. ERA is considered one of the most accurate identification methods for output-only
measurement and has been applied to several types of civil engineering structures under
operational conditions [123,124]. In the study by Qin et al. [125], ERA was applied as the
modal identification of the Tsing Ma Bridge in Hong Kong, using ambient testing data. To
enhance accuracy, techniques such as Chebyshev digital filtering and RD functions were
also employed to reduce noise and transform ambient responses into free vibrations. The
improved ERA incorporated cross-correlation functions, eigenvalue decomposition, and a
Hankel matrix for modal identification, successfully identifying 79 modes with complex
modes due to uneven damping. Furthermore, ERA combined with the modal similarity
index (MSI) and mode energy level (MEL) criteria ensured reliable mode identification in a
paper by Zhang et al. [126]. In addition, the introduction of the modal response contribution
index (MRCI) for ERA by Qu et al. [127] addressed challenges posed by noise and spurious
modes, enhancing accuracy. Moreover, ERA was utilized for damage identification in a
full-scale steel stringer bridge, compared with complex mode indicator function (CMIF)
results [128]. Other research also employed ERA for modal identification [105,129,130].
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4.3.4. Autoregressive Moving Average (ARMA)

ARMA is another modal identification technique in the time domain that has the capa-
bility to predict future values in a time series by utilizing both past values and prediction
errors. According to [131], mathematician Walker introduced the ARMA model in 1931. It
is a developed model of a linear time-invariant system under white noise excitation, which
has an assumption of a stationary measured response. In this model, the coefficient matrix
is derived from a multivariate time series. If the objective is to determine the dynamic
characteristics of the system, this matrix is transformed into a state transition matrix within
a stochastic state space model. This transformation serves as the foundation for extracting
modal parameters. Additionally, in scenarios with multiple input excitations, the vector
ARMA or ARMAV model is implemented [132]. The paper by Chen et al. [133] used ARMA
in modelling the spatial correlation of traffic excitation in bridge structures. The model was
able to capture the frequency-dependent nature of the excitation spectrum density matrix,
which resulted in more accurate estimates of the structural properties. Moreover, Erdoğan
et al. [134] employed ARMA to model the stochastic components of the time series of the
bridge’s movements, capturing the random fluctuations in the data and identifying the
different frequencies that were present. In another case study, to estimate the vibration
modes of the Golden Gate Bridge in the US, ARMA was utilized by Pakzad et al. [135]
to fit a time series to a linear combination of past values and a white noise excitation.
Fang et al. [136] used this identification method to estimate and predict deflection data
of the typical monitoring site of the Masangxi Bridge in China. ARMA was applied to
a concrete-filled steel tube (CFST) arch bridge located in China by Lu et al. [137]. They
investigated the effects of variations in the strength and diameter of the strands on the
reliability assessment of the suspenders. These papers also contributed to the application
of the ARMA method [138–141].

4.3.5. Time Domain Decomposition (TDD)

TDD is based on an approach with a single degree of freedom in the time domain.
This method initially extracts the mode shapes and then identifies the corresponding
natural frequencies. The approach assumes that the solution to the governing equations of
motion can be separated into functions of time only and space only, which leads to a more
efficient and simpler technique. Although TDD needs frequency information for natural
frequency extraction and filter design, the most computationally expensive part of the
method is processing time domain data [142]. Kim et al. [143] proposed a new technique
for extracting modal parameters of a railway bridge using TDD. The technique was tested
on a two-span steel composite girder bridge, which is a typical Korean high-speed railway
bridge system. In another paper, TDD was employed as part of the methodology by
Daniotti et al. [144] for the damping estimation of traffic-induced vibrations on a long-span
suspension bridge. Furthermore, Salokhe et al. [145] applied TDD to the dynamic response
data of a girder bridge to extract modal frequencies. This information was then utilized,
along with visualization and noise reduction techniques, for damage detection, particularly
with the assistance of SVD. Park et al. [146] used TDD for mode shape extraction from
ambient vibration measurements of a cable-stayed bridge. Moreover, Huang et al. [147]
used a simulated finite element model of the Lavic Road Overcrossing Bridge in California,
US, demonstrating how TDD and the methodology can effectively update the structural
properties while accounting for measurement uncertainties.

4.3.6. Stochastic Subspace Identification (SSI)

SSI is another time-domain modal identification method of OMA, developed by Van
Overschee and De Moor in 1991 [148], which enables derivation of a state-space model for
complex dynamic systems under stochastic excitation directly from measured data [149,150].
In contrast to other techniques such as ARMAV, it has less computational complexity. It is
categorized into two algorithms: data-driven SSI (SSI-DATA) and covariance-driven SSI
(SSI-COV). Both are capable of estimating system modal parameters; however, SSI-COV ex-
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cels in providing more accurate estimations of damping ratios compared to SSI-DATA [151].
Nan Jin et al. [152] used the short-time SSI (ST-SSI) framework for estimating bridge frequen-
cies from passing vehicles’ dynamic responses. Yang et al. [153] also utilized SSI to analyze
bridge frequencies with rough road surfaces and multiple vehicles, modifying observability
matrices to isolate the bridge characteristics. Boonyapinyo et al. [154] highlighted the
superior SSI-DATA method for flutter derivative estimation, particularly in certain bridge
configurations. In [155], Brownjohn et al. analyzed the ambient vibration data from the
Humber Bridge in the United Kingdom using SSI, comparing results with other methods
and a previous test from 1985. Furthermore, Li et al. [156] simulated bridge excitation
and validated modal parameters through numerical and experimental means using SSI.
Zhou et al. [157] employed SSI in wind tunnel testing, showing improved modal parameter
identification for the Oujiang Bridge in China. Loh et al. [158] used SSI-COV to analyze a
real-world arch bridge, employing a stabilization diagram for accurate modal parameters.
Wu et al. [159] addressed mode identifiability complexities in cable-stayed bridges under
traffic and wind excitation, setting amplitude thresholds. Moreover, Tran et al. [160] applied
Combined Deterministic SSI alongside other methods for large-scale bridge identification.
The SSI technique finds widespread use in assessing bridge performance through modal
analysis [79,161–172].

4.3.7. Natural Excitation Technique (NExT)

The NExT method is one of the OMA methods that was initially employed by James
et al. [173]. This technique was first used for EMA and then for OMA. NExT uses cross-
spectra of ambient vibration responses to generate impulse response functions (IRFs).
Similarly to other OMA methods, this also requires the structural response caused by
environmental excitation at multiple locations of the structure. Subsequently, using the data
time histories, the correlation function is calculated, which is an important tool for studying
systems subjected to ambient excitation [115]. The NExT method can be considered an OMA
technique when combined with a time-domain multi-input multioutput (MIMO) algorithm,
such as the ERA, the extended Ibrahim time-domain (EITD) method, and the polyreference
complex exponential (PRCE) techniques [47]. Farrar and James provided an in-depth
derivation of the NExT concept in [174]. Yang et al. addressed the challenge of multiple-
channel asynchronous responses in BSHM [175] by enhancing NExT by minimizing phase
slopes and maximizing linear dependencies of modal components, effectively aligning
multiple-channel responses and achieving precise mode shapes. Another study by Kim
et al. [176] employed NExT to identify bridge damping ratios from nonstationary ambient
vibration data. By stationarizing the process, the mean and standard deviation of this
dynamic parameter for the first vertical mode decrease, proposing a technique that reduces
uncertainties in damping identification. Additionally, the NExT method has been utilized
in other papers [177–180].

5. Damage Detection Using Modal Parameters

The objective of this phase is to determine whether damage is actually present in a
structure. The algorithms used in this step are of two types: a model-driven approach
and a data-driven approach. While the first includes an iterative process of numerical
model updating, the other method directly compares the derived dynamic characteris-
tics. To quantify and detect damage, damage-sensitive features (DSFs) are quantifiable
parameters derived from sensor data. DSFs depend on alterations in dynamic responses
such as shifting natural frequencies, mode shapes, strain levels, damping properties, and
modifying energy dissipation [181,182]. They are based on dynamic features such as
natural frequencies, mode shapes, modal beam curvatures, modal flexibilities, and modal
strain energy.
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5.1. Changes to the Natural Frequencies

As one of the common methods, analyzing the temporal evolution of natural frequen-
cies in structures, such as bridges, is a tool for damage detection, which results from changes
in stiffness and mass. The extent of these alterations depends on the location, severity, and
types of damage, as well as the sensitivity of the instrumentation used for data collection.
Early work by Adams et al. [183] in the late 1970s introduced the concept of identifying
damage through shifts in natural frequencies, later expanded by Crawly & Adams and
Salawu in 1979 [184,185]. In another study, the investigation of alterations in natural fre-
quencies was undertaken to anticipate prestressing losses in both concrete post-tensioned
girder bridges and steel post-tensioned bridges. In particular, employing the fundamental
frequency is not suggested for concrete girder bridges experiencing minor cracking and
for steel girder bridges with tendon deviators spanning their lengths. Conversely, the use
of the fundamental frequency is endorsed for evaluating their flexural stiffness [186,187].
Messina et al. proposed the damage location assurance criterion (DLAC) and the multiple
damage location assurance criterion (MDLAC) while considering the alteration in the
natural frequencies [188], which were used to locate predefined damage locations using
10 to 12 modes. Nevertheless, in this case, spurious locations could also arise. As another
approach, the single damage indicator (SDI), developed by Kim et al. [189], detects cracks
and quantifies their severity by assessing frequency changes. Complex structures pose
challenges in localizing damage using modal frequencies [190,191], although regular ge-
ometries can employ this method effectively, requiring damaged and undamaged states
and an appropriate number of frequencies [192,193]. From another perspective, minor
damage has a limited effect on larger structures’ natural frequencies, making this method
less efficient [191]. Additionally, natural frequencies can change in the same way if damage
occurs at two symmetrical locations in the same structure [193]. Comparable alterations can
emerge from mass changes or environmental factors. To address environmental effects on
natural frequencies, techniques such as principal component analysis (PCA) [194], Kalman
filters [195], and the Mahalanobis squared distance [196] are employed to mitigate the
influence of environmental factors on measured frequencies.

5.2. Changes to the Mode Shapes

Compared to natural frequencies, mode shapes are less influenced by environmental
factors, and provide spatial insights for damage localization purposes [13]. Various tech-
niques have emerged over time, including the modal assurance criterion (MAC), developed
by Allemang and Brown [197] in 1982, which utilizes eigenvector orthogonality to identify
alterations in mode shapes [198,199]. Later, Kim et al. [200] developed the coordinate
modal assurance criterion (COMAC), using modal node displacement for damage detec-
tion and localization. Salawu and Williams [201] evaluated the application of MAC and
COMAC, and reported their effectiveness, although spurious damage indications were also
observed. However, COMAC often results in errors in the deterioration detection of beam
structures, which was observed by Salgado et al. [202], with scaling and polarity errors.
Putting aside this limitation, the application of COMAC remains diverse in engineering
fields, which leads to its integration with other approaches in addition to civil engineering
fields [203,204]. The efficiency of COMAC is based on the correct identification of relevant
modes contributing to correlation. With regard to this concern, Hunt et al. [205], in 1992,
proposed the enhanced coordinate modal assurance criterion (ECOMAC). ECOMAC im-
proves upon COMAC with the computation of the mean deviations of modal amplitudes
of each node to enhance the accuracy and reliability of damage detection [182,206].

5.3. Modal Curvature Method (MCM)

In 1991, the MCM was proposed by Pandey et al. [207] with the aim of exploring
the second derivative of modal curvatures for deeper mode shape monitoring using the
curvature–flexural stiffness correlation. Through the increase in the values of modal curva-
ture, this method detects the reduction in stiffness by comparing damaged and undamaged
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states. Ho and Ewins [208] developed the MCM by improving abnormal curvature change
differentiation. Despite the advantages of using this method, it faces some limitations.
Numerous sensors and modes are demanded for a precise higher mode definition [209],
and curvature estimation from vibration data will contain errors by a central difference
approximation, which will also be exacerbated via high-frequency noise [210]. Although
increasing the number of samples results in noise mitigation, truncation errors may also
occur [211]. Furthermore, the comparison of the MCM with strain measurements reveals
inherent errors [212], discouraging sole reliance on the MCM for damage identification.
The integration of the MCM with other DSF parameters such as frequencies can enhance
the accuracy of damage detection and localization, as proved by Capecchi et al. [213],
who combined MCM with sparse sensor layouts for improved damage sensitivity in an
arch bridge. Later, mode shape curvature squared (MSCS) was suggested by Wahab and
De Roeck [214], exploring practical applications of modal curvature and the curvature
damage factor (CDF), leveraging the Z24 bridge analysis involving simulated and real
data [182,206].

5.4. Modal Strain Energy (MSE)

MSE, integral to various modal-based DSFs, is exemplified by the damage index
method (DIM) [215]. The energy stored while a structure undergoes deformation is called
the modal strain energy. The DIM approach is based on Bernoulli–Euler beam theory
to detect the damage by monitoring the reductions in modal strain, which represent the
diminished energy storage capacity. Moreover, MSE facilitated a quantitative assessment
of the damage extent, i.e., enabling a crack size estimation. An investigation by Kim
et al. [216] containing an FE beam model showed the superiority of MSE over frequency-
based damage indicators. Additionally, the research by Yam et al. [217] proved similarities
in displacement modes and strain modes. One of the shortcomings of MSE is that while
strain modes are highly sensitive to local-scale structural changes, higher modes are less
effective at detecting damage. Additionally, similarly to the challenges of implementing
MCM, the DIM’s reliance on modal curvatures presents the same limitations, including the
need for central difference approximation. Notably, the DIM involves the acquisition of
continuous strain values through curve fitting between sensor locations, a procedure that
may inadvertently obscure local damage [182,209].

5.5. Modal Flexibility Method (MFM)

The MFM was first proposed in 1994 by Pandey and Biswas [218] and subsequently
applied to bridge structures by Toksoy and Aktan [219]. It is based on the inverse relation-
ship between stiffness and flexibility matrices, offering a brief representation of structural
behavior with fewer modes in comparison to the stiffness matrices. This feature increases
the damage sensitivity of the method, especially in easily extractable lower modes, as
demonstrated by Wang et al. [220]. By integrating the modal curvature method with the
MFM, Zhang and Aktan [221] extended the method’s damage sensitivity. Furthermore,
using an experimental test, Lu et al. [222] evaluated the implementation of modal flex-
ibility with the flexibility curvature of a beam. Although it increased the sensitivity to
local damage, challenges in pinpointing flexibility peaks under multiple damage scenarios
arise [182].

5.6. DSFs Application

Several studies have focused on assessing a bridge’s structural health to estimate the
severity and location of damage using different DSFs. Talebinejad et al. [223] applied the
ECOMAC, DIM, MCM, and MFM on a cable-stayed bridge, subjected to varying noise
and excitation levels. It was demonstrated that the contamination of noises hindered
damage sensitivity, allowing only significant damage events to be detected. Ndambi
et al. [224] evaluated reinforced concrete beams, testing frequencies, using the MFM,
MAC, COMAC, and DIM in a laboratory setting. Both the COMAC and DIM methods
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excelled in localizing the damage but struggled to accurately quantify incremental damage
progression. In another study, to estimate the mode shapes, using the MCM and MFM,
Cruz and Salgado [225] used a composite bridge simulation model with vibration data.
All applied DSFs were successful in detecting and localizing the damage under no noise
contamination. However, under the contamination of noise, the performance of the
mentioned DSFs decreased noticeably. With regard to the real data, in higher modes
of the structure, clear changes were observed, but not for the lower modes, even in the
presence of severe damage. According to Cruz and Salgado, among all utilized DSFs,
the MCM and MFM showed the highest levels of detection and localization capabilities.
Moreover, Fan and Qiao [226] demonstrated the prior findings in their paper by assessing
the frequencies, mode shapes, MCM, and DIM. They confirmed that in higher modes,
the applied DSFs, particularly modal curvature-based parameters, are more sensitive to
damage than lower modes. They also found that the performance of all damage features
decreased when noise was added. It can be concluded from the mentioned investigations
that the application of DSFs presents varying performance and is susceptible to noise,
posing limitations in real-world applications due to assumptions of a linear stationary
structural vibration response, a concern for nonstationary vehicle-induced excitations
on damaged bridges. Putting aside these limitations, DSFs can still be useful for the
assessment of structures with regular geometry, especially when used in conjunction with
other methods [182].

5.7. Shortcomings of the Preceding Methods and the Solution

The challenge in assessing the structural health of bridges is to distinguish be-
tween normal and abnormal changes in their dynamic properties over time. Abnormal
changes result from deviations in material properties, such as loss of stiffness, which is
indicative of damage. In contrast, normal variations in the data are primarily caused
by environmental and operational factors. It is important to recognize that these factors
can affect the accuracy of the results when using the DSFs mentioned and should not
cause false alarms in the monitoring system. External conditions such as changes in
temperature and humidity or traffic loads can determine variations in stiffness, which
in turn affect the dynamic characteristics of the bridge. Temperature fluctuations cause
daily frequency shifts of approximately 5% and seasonal shifts of 10% [227–229]. As
mentioned, the frequency alterations derived from fluctuations in temperature pose a
challenge in distinguishing them from structural damage [230,231]. The study by Farrar
et al. [232] revealed that this can mask the actual damage in gradually deteriorated
bridge girders. Although a decrease in the natural frequencies, caused by the reduction
in the stiffness, is expected while damage occurs, the observed results were different.
Instead, in the initial damage scenarios, caused by the laboratory temperature, the fre-
quencies initially increased before decreasing. Moisture impact can even make it worse,
having revealed nonlinear modal frequency distributions for the Z-24 Bridge during
freezing temperatures due to frozen moisture in the structure, according to studies by
Peeters and De Roeck [227]. With operational conditions contributing over 5% of fluc-
tuations [233], operational variability, more than environmental factors, impacts daily
frequency fluctuations [234]. In 2001, Kim et al. [235] found that the natural frequency
variations induced by traffic are negligible for medium- to long-span bridges, while
they significantly affect shorter-span bridges, as reported in 2012 [236]. As an additional
factor that affects the welded connections during their operation, fatigue-induced stress
cycles can be considered. Orthotropic steel decks, with complex geometry and subjected
to stochastic traffic loads, exhibit complex stress fields. Alcover et al. [237] determined
a linear relationship between stress cycles for orthotropic steel deck joints and traffic
volume, specifically rib-to-deck welded joints. Song and Ding [238] also worked on
the correlations between stress amplitudes and ambient temperatures due to material
property changes caused by temperature variations.
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In conclusion, the effects of environmental and operational factors on the application
of DSFs for structural damage detection are challenging and inevitable. To increase the
accuracy and reliability of the previously mentioned damage detection process, the dom-
inant effects of these variables should be mitigated as much as possible. In this regard,
Sohn [239] and Xia et al. [240] explored the application of data normalization techniques to
address these limitations. It should be noted that these techniques consider scenarios with
both environmental or operational data (implementing regression models) and without
(employing pattern recognition methods). The goal is to mitigate the effect of external
factors, normalize the data, and improve the reliability and precision of damage estimation
and detection processes [182].

6. Regression Models

In real-world applications, developing complex models to reduce the impact of ex-
ternal factors on the data is often impractical. Therefore, instead of delving deep into the
physics of the problem, it is advisable to rely on it as a black-box model. These models
have their parameters fine-tuned using extensive datasets, allowing the establishment of
relationships between potential influencing factors and dynamic characteristics, which can
be accomplished with the implementation of regression analysis. This statistical technique
is employed to establish a connection between dependent and independent (predictor)
variables to gain insight into how each predictor (model inputs) influences the dependent
variable (model output). For instance, when creating regression models to understand
the influence of temperature on natural frequencies, it is crucial to construct one for each
frequency. This comprehensive approach involves considering a wide range of variations,
including data from both summer and winter periods [241]. This was demonstrated by
Peeters et al. [242], who employed linear regression analysis, particularly the ARX model
(autoregressive (AR) model with exogenous input) to remove the temperature effect of the
identified vibration frequencies from a bridge in Leuven, Belgium. Due to their capabilities
in modelling the shift changes in frequency due to below-zero temperatures, multilinear
regression models can be employed as a suitable option. A regression error value of approx-
imately 5% is generally used to reduce the effect of erroneous data [243]. In another study
conducted by Sohn et al. [244], the recorded data from the Alamosa Canyon Bridge in the
US was used to construct a model which characterized the alterations in eigenfrequencies
caused by fluctuating temperatures. The model was then utilized to establish confidence
intervals for the frequencies corresponding to a new temperature profile. However, in
complex data scenarios, advanced regression techniques, including polynomial, ridge,
lasso, elastic net, Bayesian, support vector regression (SVR), decision tree, random forest
(RF), and gradient boosting regression, are used, which enable the analysis of the complex
environmental and operational factors, exemplified by the polynomial regression method
used by Ding and Li [245] when mapping the modal frequency variability in long-span
suspension bridges. Moreover, Hassan et al. [246] employed multiple regression for bridge
health prediction, while Mangalathu et al. [247] employed lasso regression to identify seis-
mic demand models for bridges. A Bayesian vibration-based approach was proposed by
Kim et al. [248] for long-term BSHM, and a study by Laory et al. [249] developed regression
trees, neural networks, and support vector regression models for analyzing the Tamar
Suspension Bridge in the UK.

7. Pattern Recognition (PR)

Farrar et al. [232], in 1994, defined PR as a method to highlight the changes in the
frequency response functions measured using cracked (damaged) and uncracked (undam-
aged) bridges. PR in BSHM involves applying methods such as statistical (SPR) [250],
machine learning, time–frequency analysis, and data mining [251,252]. Differentiating
between patterned or structural changes in the intact and damaged state under operational
and environmental variations is the primary objective of the SPR paradigm. Its process can
be outlined as consisting of four stages: assessing operational performance, collecting data,



Infrastructures 2023, 8, 172 17 of 36

extracting and generating features, and using statistical models for feature classification.
Establishing rigid boundaries between these stages can be challenging. It is crucial to
recognize that several important processes come into play within the data acquisition,
feature extraction, and statistical modelling aspects of the SPR, including data normal-
ization, data cleansing, data fusion, and data compression [253]. The first one involves
separating sensor reading variations induced by real damage from those caused by varying
operational and environmental conditions, effectively addressing data contamination with
external factors. Data cleansing is the practice of selectively choosing data for inclusion
or exclusion from the feature selection process. Data fusion, however, combines informa-
tion from multiple sensors to increase damage detection accuracy. Finally, the last one
focuses on reducing the data dimensions or the features extracted from the data. The
goal is to facilitate the efficiency of the storage, and improve the statistical quantification
of parameters [251]. Figueiredo et al. [251] emphasized implementing SPR and ML to
enhance the performance and safety of bridges. Furthermore, while using statistical pattern
recognition, Hu et al. [254] conducted vibration-based SHM on a prestressed concrete box
girder bridge. In another paper, Haritos et al. [255] investigated the application of statistical
pattern recognition and system identification for BSHM, suggesting a combined approach
for comprehensive damage assessment. Datteo et al. [256] focused on employing statistical
pattern recognition and PCA to reduce the complexity in the analysis of vibration data,
exemplified through the G. Meazza stadium in Milan, Italy. Cheung et al. [257] also used
pattern recognition in field tests while noting localization challenges and the importance of
signal conditioning.

8. Machine Learning (ML)

BSHM systems employ ML to compare two states. It works with constructing a
model to extract specific characteristics from the desired dataset with the training and
testing stages. As an ideal condition, the used database should be the representation of
the complete array of structural excitations. Furthermore, employing signal processing
methods such as noise filtering and data normalization can directly contribute to the
generation of a highly calibrated dataset. ML finds it application for BSHM in damage
detection of sensor-detected data [258].

Figure 5 illustrates the workflow needed to develop an ML model for SHM. The
process begins with an excitation step, where the structure undergoes any type of stimuli.
Subsequently, data acquisition captures relevant information from the structure’s response.
The acquired data then undergoes normalization to standardize its scale and facilitate
consistent analysis. Following normalization, data cleaning eliminates any noise or outliers.
The process then involves data compression through dimensionality reduction techniques
to streamline information while retaining its crucial features. Feature extraction identifies
and highlights essential characteristics in the data, contributing to the subsequent stage of
data fusion, where multiple data sources are integrated for a comprehensive understanding.
The final stage, pattern recognition, employs ML algorithms to detect and interpret patterns
in the fused data, ultimately enabling effective structural health monitoring [259].
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Through the implementation for the case studies, ML approaches have demonstrated
their capability in addressing the following issues with regard to BSHM [261]:

• They can effectively describe physically complex correlations;
• Automatic detection and compensation of sensor faults are achievable;
• Trained models can be transferred to other structures/problems with similar boundary

conditions;
• The separation of factors affecting specific structural behaviors is facilitated;
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• Future structural behavior can be estimated based on previously predicted values.

The most commonly used ML techniques used in BSHM are artificial neural networks
(ANNs), support vector machines (SVMs), random forests (RFs), Gaussian processes (GPs),
convolutional neural networks (CNNs), and long short-term memory (LSTM) neural
networks.

8.1. Artificial Neural Network (ANN)

An ANN is a computational network inspired by biological systems that uses basic
concepts of the human brain. These networks can be trained for pattern identification and
information classification that are similar to human cognitive processes [12,262,263]. In
ANNs, information is transmitted between the neurons, which play the communication
roles between layers, determined by their structure and synaptic weights. Input layers are
user-defined, considering elements such as geometries, mechanical/structural properties,
and physical parameters. On the other hand, hidden layers emerge as a consequence of
computations based on the input layers, finally culminating in the generation of output
layers as the final results [264–266]. For BSHM for prediction and anomaly detection,
Kwon et al. [267] combined ANNs with the building information modelling (BIM) method,
which effectively identified element anomalies for maintenance when applied to a field
cable-stayed bridge in Korea. In another study, Huang et al. [268] analyzed effective factors,
investigating ANNs’ effectiveness in predicting bridge deck deterioration. Furthermore,
to tackle the challenges of incomplete and imprecise data, Mehrjoo et al. [269] discussed
the numerical analyses of an ANN-based method for the intensity estimation of damage
in truss bridge joints. Favarelli et al. [270], and Weinsteinet al. [271], Nguyen et al. [272],
and Jayasundara [273], employed ANN-based anomaly detection with bridge vibrational
data, and Xu et al. [274] developed an ANN-based two-step algorithm for vibration-based
damage identification (VBDI) applied on the Crowchild Bridge located in Alberta, Canada.
Eftekhar et al. [275] integrated ANNs with proper orthogonal decomposition (POD) and
subspace-based damage indicators, respectively. Nguyen et al. [276] leveraged ANNs with
residual FRFs and PCA for SHM of a concrete arch beam replica. Tran [277] also provided
a thesis focused on the damage detection accuracy of ANN-based methods.

8.2. Support Vector Machines (SVMs)

SVMs, first developed by Cortes and Vapnik [278] in 1995, are a supervised ML
method that is used in regression and classification, operating within a high-dimensional
space to divide the data into two distinct groups. Using iterative training, this method is
used to enhance the performance by fine-tuning the separation between the data points
and the hyperplane. SVMs excel in dealing with challenges caused by nonlinear and
high-dimensional datasets, even with the limited sampling size. BSHM employs SVMs to
distinguish between normal and abnormal conditions based on annotated data. Through
this capability, structural irregularities can be identified early [12]. Pan et al. [279] and
Alamdari et al. [280] adopted SVMs to distinguish between damaged and undamaged
cases and detect anomalies in dynamic response data. Additionally, Pan et al. [281] used
SVMs in combination with enhanced feature extraction techniques such as the wavelet
transform, the Hilbert–Huang transform (HHT), and the Teager–Huang transform (THT)
for detecting damage in cable-stayed bridges. Navamuel et al. [282] used SVMs in an
SHM alert system to differentiate between undamaged and damaged scenarios based on
modal properties and temperature variations. Kim et al. [283] utilized SVMs for automated
detection, recovery, and isolation of faulty data in OMA using wireless sensor networks
(WSNs) for cable-stayed bridge damping estimation. Gui et al. [284] proposed optimization
algorithm-based SVMs for large-scale structural damage detection, resulting in an improved
damage detection method compared to traditional methods, particularly the one optimized
using a genetic algorithm. These papers also contributed to the utilization of SVMs in their
research [285–288].
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8.3. Random Forest (RF)

Breiman, in 1996 [289], proposed a nonparametric and tree-based ensemble method as
a random forest using multiple decision tree models. To generate each ensemble member,
the RF uses the bagging technique, a method for data collection from multiple training
datasets. Bagging randomly chooses samples from the decision tree space in a consistent
manner. This method is vastly used for both classification and regression purposes and
is among the most frequently utilized ML algorithms [12,290–292]. As a result of its
inherent ability to handle enormous datasets while delivering resilient predictions, this
algorithm gained considerable attention within the domain of BSHM. In their study, Arnold
et al. [293] investigated the application of the RF as an approach for detecting events
and classifying time series in bridge monitoring. Lei et al. [294] used RF algorithms to
evaluate vibration-based seismic damage for regional bridges. The model demonstrated
the prediction performance with over 90% accuracy, identifying critical parameters for
seismic design and disaster prevention. Furthermore, these papers also contributed to the
utilization of the RF in bridge monitoring [295–297].

8.4. Gaussian Processes (GPs)

As explained by Rasmussen and Williams [298], GPs represent a generalized Gaussian
probability distribution. The application of this method aims at data regression and
prediction. It has a stochastic process and is classified into a mean and a covariance
function, often applied for the definition of a priori distribution in Bayesian inference [299].
Indeed, a stochastic process can be defined as the probability distribution of a set of random
variables that are in sync with the input data provided as a group of random variables [300].
Chalouhi et al. [301] used a GP-based ML framework for damage detection by modelling
deck accelerations. Moreover, a simplified treed Gaussian process (TGP) was applied
by Zhang et al. [302] to address the nonstationary behavior in BSHM using motorcycle
accident and Z24 bridge SHM data. Da Silva et al. [303] employed Gaussian process
regression (GPR) applied on a bridge under varying temperatures. Furthermore, O’Connor
et al. [304] developed a cyber-enabled wireless SHM system using GPR for highway bridges.
Moreover, GPs were utilized by Moravej et al. [305] for the calibration of the Bayesian
model and updating.

8.5. Convolutional Neural Network (CNN)

The CNN is a widely used deep learning method known for its advantages, including
shared weights, local connections, and subsampling, and is a promising approach for data
anomaly detection that enables the extraction of valid characteristics from data automati-
cally. Its structure consists of an input layer, a convolutional layer, a pooling layer, and a
fully connected layer. The second layer’s function is the feature extraction from the input
database via a user-defined filter matrix. On the other hand, the pooling layer reduces the
spatial data dimensions, and the fully connected layers perform classification tasks. The
CNN’s performance depends on the balanced training samples. While facing the anomaly
patterns in a complex system, the tuning process might be time-consuming and labori-
ous [12,306,307]. Nguyen et al. [308] used a CNN to detect and localize structural damage
based on changes in modal curvature, exemplified through the Bo Nghi bridge in Vietnam,
as a case study. In another study by Zhang et al. in [306], a CNN was applied to analyze
the acceleration data recorded from a bridge, in combination with the feature extraction ca-
pabilities of statistical features for anomaly detection and classification. Shajihan et al. [309]
employed CNNs to classify SHM data faults from sensors using three-channel input data,
achieving accuracy and recall on an unseen dataset. Moreover, Duan et al. [310] applied
CNNs for damage identification in hanger cables of a tied-arch bridge. Zou et al. [311]
proposed a CNN model by incorporating temporal features from the gated recurrent unit
(GRU) model, demonstrating significant improvement in structural damage identification
compared to other models. Yessoufou et al. [312] used a one-class convolutional neural net-
work (OC-CNN) model capable of detecting bridge damage across various vehicle weights
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and speeds. Chamangard et al. [313] utilized compact one-dimensional (1D) CNNs with
transfer learning to detect damage accurately, even with limited training data, achieving
high accuracy when sufficient data were available. Li et al. [314] combined a CNN with
short- and long-term memory neural networks to detect bolt-nut losses in steel bridges.
Khodabandehlou et al. [315] used a CNN to predict the predefined damage states (includ-
ing extent and location) with accuracy using vibration response data from a reinforced
concrete highway bridge model. Pamuncak et al. [316] applied a CNN to estimate the
structural response in real-world data from the Suramadu bridge monitoring system in
Indonesia. The study by Lee et al. [317] also employed a CNN to achieve 87.3% accuracy
in real-time damage localization for bridges. Furthermore, Teng et al. [318] proposed a
method where a diverse population of bridge structures is created, and a CNN is used to
extract damage features.

8.6. Long Short-Term Memory (LSTM) Networks

LSTM networks introduced a new feature over recurrent neural networks (RNNs),
named “gated cells”, by Hochreiter and Schmidhuberin in 1997 [319]. Three distinct gate
mechanisms are incorporated within this method: the input, the output, and the forget
gates, which collectively represent an additional control system for signal flow regulation
into and out of the model to collect crucial features over time. Consequently, it has the
ability to manage information flow via gated cells and is effective in learning complex and
nonlinear relationships between factors such as environmental conditions [320–322]. By
Shin et al. [323], a C-LSTM network integrated with a CNN and LSTM was applied to
identify driving segments on bridges using vibration data, focusing on vibration peaks at
bridge joints for damage detection. Moreover, Yue et al. [324] employed an enhanced Stack-
LSTM-CNN mode in identifying the abnormal temperature-induced deflections in cable-
stayed bridges. Hou et al. [325] proposed a warning framework using LSTM based on the
BIM platform for the early detection of hazardous components with bridge monitoring data.
Furthermore, Yang et al. [326] employed LSTM networks to model multisensory mapping
relationships in SHM, addressing challenges in handling long-term and multidimensional
series data. With respect to analyzing the bridge deflection, Guo et al. [327] used LSTM for
predicting and comparing this parameter, and Duan et al. [328] proposed a novel approach
to reconstruct bridge dynamic displacements using the strain and acceleration data source,
overcoming the limitations of direct measurement techniques. Yue et al. [329] used LSTM
networks to model a digital regression for temperature-induced deflection in cable-stayed
bridge main girders, outperforming linear regression models. Zhao et al. [330] employed
LSTM regression networks for in-service bridge monitoring, mapping temperature-induced
strains, dynamic displacements, and vehicle-induced strains. In another paper, Sharma
et al. [331] assessed the impact of ambient temperature on structures for anomaly detection
while using LSTM networks. In the same way, Wang et al. [332] analyzed deflection and
temperature data from the Chongqing Egongyan Rail Transit Suspension Bridge, China,
using LSTM to detect potential damage signs. To recover the missing structural temperature
data from the Nanjing Dashengguan Yangtze River Bridge in China, Liu et al. [333] applied
LSTM. Zhao et al. [334] employed LSTM networks for the early detection of cracks in
prestressed concrete box girder bridges using live-load strain data. Moreover, while using
bidirectional LSTM (BiLSTM), Lu et al. [335] and Yang et al. [336] contributed to enhancing
the BSHM.

In conclusion, our exploration of various ML models in the context of bridge structural
health monitoring demonstrates a commendable level of precision. The overall low errors,
including mean absolute error (MAE), root mean square error (RMSE), mean squared
error (MSE), etc., across the reviewed literature, attest to the efficacy of ML approaches
in enhancing the accuracy of structural health monitoring. The recommendation for the
application of machine learning models in the dynamic monitoring of bridges is further
underscored by the general trend of favorable outcomes observed in the surveyed papers.
To enhance the reliability and usability of ML models employed in various aspects of BSHM,



Infrastructures 2023, 8, 172 22 of 36

it is crucial to incorporate a considerable volume of data during the model construction
process. Additionally, when developing an ML model for bridges, it is imperative to ensure
its applicability across diverse scenarios. This is essential, as instances have been observed
where the generated model is exclusively suitable for specific real structure scenarios with
particular geometric or physical attributes.

It is also important to note that recent technological advancements and enhance-
ments in various approaches, such as laser scanning (LiDAR) [337], terrestrial laser scan-
ning (TLS) [338–346], unmanned aerial vehicles (UAVs/drones) [347–349], photogramme-
try [350], and ground-penetrating radar (GPR) [341], have significantly facilitated the data
capturing and establishment of a continuous data monitoring system for bridges. These
developments have encouraged researchers and stakeholders to leverage 3D models of
bridges and create their digital twins (DTs). These innovative approaches empower us
to efficiently assess the structural health of bridges, identify potential issues, and plan
maintenance or repairs with minimal disruption. LiDAR, employing laser pulses, generates
a highly precise 3D point cloud that represents the bridge’s geometry, making it suitable for
regional-level assessments. TLS captures detailed 3D images using stationary laser scanners,
creating a point cloud through laser beams emitted in horizontal and vertical planes. UAVs,
equipped with LiDAR sensors or cameras, provide a flexible and cost-effective solution for
monitoring bridges, accessing challenging areas for regular inspections without disrupting
traffic. GPR utilizes electromagnetic waves to image and investigate structures such as
bridges, and photogrammetry involves capturing bridge images from various angles to
create a 3D point cloud, subsequently transformed into a mesh model for comprehensive
bridge monitoring and the development of digital twins.

9. Conclusions

In recent years, OMA has increasingly supplanted EMA due to its advantages and
fewer implementation restrictions, which include the independence from the input exci-
tation (no external source required), applicability during bridge operation, suitability for
monitoring complex structures, cost-effectiveness, real-time monitoring capabilities, and
lack of impact on the structural integrity. This article provides a comprehensive review
of operational modal analysis applied for bridge health monitoring. It covers various
aspects such as instrumentation and data acquisition systems, preprocessing steps includ-
ing filtering techniques, and modal identification techniques explored in both the time
and frequency domains, such as SSI, RD, TDD, ARMA, ERA, NExT, ITD, PP, FDD, EFDD,
postprocessing methods, including deviation in the natural frequencies and mode shapes,
MSE, the MFM, and the MCM. Additionally, advanced techniques like regression models,
pattern recognition, and machine learning methods such as ANN, RF, GP, LSTM, and
CNN are discussed to overcome previous limitations. Each approach is showcased, out-
lining its specific advantages and disadvantages, and practical implementation examples
are provided.

From the authors’ perspective, it is crucial to recognize and follow certain essential
principles to attain accurate and reliable OMA outcomes for BSHM:

• Instrumentation plays a foundational role in OMA. The selection of the sensing system
must align precisely with the specific requirements, and the placement and installation
of the sensors on the bridge should be performed with attention to the expected results.
Achieving accurate modal identification outcomes requires the careful handling of
instrumentation.

• When considering wireless networking as the data acquisition system while employing
multiple sensors on the bridge, it is crucial to ensure the precise synchronization of
data recorded. Even a minor discrepancy in data synchronization can lead to errors in
the identified modal parameters, particularly mode shapes. In such cases, the accuracy
of bridge damage detection can be compromised.

• In terms of achieving optimal reliability, efficiency, precision, and applicability in
various modal identification techniques within the time or frequency domain, the SSI
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method stands out as the preferred approach among researchers in the time domain,
whereas EFDD excels in the frequency domain.

• The effects of environmental and operational factors on the application of DSFs for
bridge damage detection are challenging and inevitable. To increase the accuracy and
reliability of the damage detection process, the dominant effects of these variables
should be mitigated as much as possible.

• To ensure the precision of the results, two key considerations emerge. First, it is
advisable to implement multiple distinct DSF approaches simultaneously, enabling
the localization and assessment of damage severity. Second, employing regression
and pattern recognition techniques can mitigate the influence of environmental and
operational factors on the data.

• Utilizing advanced methods such as machine learning proves precision in achieving
OMA results for BSHM. However, when constructing the mathematical models for
these methods, it is crucial to incorporate a diverse dataset. This ensures that the
resulting model remains applicable across various bridges, accommodating variations
in their geometric and material characteristics.

Looking ahead to the future, thanks to the technological advancements and increased
sensor accessibility, bridge health monitoring systems will continue to progress. From an
instrumentation perspective, wireless monitoring systems will gradually replace their wired
counterparts due to advantages such as ease of installation, flexibility of relocation, remote
monitoring, and cost-effectiveness. In addition, significant advances in signal processing
techniques will improve the quality of input data and optimize data analysis for modal
identification. The integration of state-of-the-art methods, especially those involving AI,
has the potential to further enhance the performance of modal-based DSFs. In addition, the
integration of AI with technologies such as drones, robots, etc., opens up new possibilities
for engineers to bridge SHM systems. Despite significant advances in AI, there remains a
scientific gap in understanding how environmental and operational variations affect the
effectiveness of structural health monitoring using these innovative technologies. While
previous studies have provided valuable insights, further research efforts are recommended
to investigate this issue more comprehensively in the future.

In addition to the previously discussed points, the authors emphasize two crucial
considerations in their perspective. First, while innovative approaches in analytical and sci-
entific methods are proposed and validated through academic endeavors, it is imperative to
ensure that the application of these techniques remains practical and falls within the opera-
tional capacity of technicians in daily practices. It is not sufficient for these advancements to
merely exist in theory; they must be accessible and implementable in real-world scenarios.
Secondly, there exists an ongoing necessity to train technicians comprehensively. Their
understanding and proficiency in utilizing these novel methods for dynamic identification
techniques in civil engineering should be cultivated. This training is essential to bridge the
gap between theoretical knowledge and practical application, ensuring that technicians
are not only aware of these advancements but are also adept at integrating them into their
professional workflows. Consequently, enhancing a well-trained workforce becomes a
critical component in the successful adoption and implementation of these cutting-edge
techniques within the realm of civil engineering.
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