
Citation: Valkonen, A.; Glisic, B.

Structural Health Monitoring-Based

Bridge Lifecycle Extension: Survival

Analysis and Monte Carlo-Based

Quantification of Value of

Information. Infrastructures 2023, 8,

158. https://doi.org/10.3390/

infrastructures8110158

Academic Editor: Kay Smarsly

Received: 21 August 2023

Revised: 3 November 2023

Accepted: 3 November 2023

Published: 5 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

infrastructures

Article

Structural Health Monitoring-Based Bridge Lifecycle Extension:
Survival Analysis and Monte Carlo-Based Quantification of
Value of Information
Antti Valkonen * and Branko Glisic

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA;
bglisic@princeton.edu
* Correspondence: valkonen@princeton.edu

Abstract: A key goal of structural health monitoring (SHM) systems applied to infrastructure is to im-
prove asset management. SHM systems yield benefits by providing information that allows improved
asset management decisions. Often, improvement is measured in monetary terms, whereby lower
expenses are sought. The value of information (VoI) is often evaluated through the quantification
of the incremental benefit, resulting from the information provided by the SHM system. The VoI
can be considered as having two components: value derived from the improved operation of the
infrastructure and value derived from increased useful life. This work focuses on the latter source
of value in the context of concrete decks in US highway bridges. To estimate the lifecycle extension
potential and the connected VoI, we need to simulate bridge deck condition degradation over time to
support a discounted cash flow analysis of bridge replacement cost. We accomplish this by utilizing
a neural network-based survival analysis combined with Monte Carlo simulation. We present a
case study using the developed methods. We have chosen to study the southbound portion of the
bridge on the US Highway 202, located in Wayne, NJ. The selected bridge is a representative concrete
highway overpass, the type of which there are large numbers in the US. The case study demonstrates
the applicability of the methods developed for the general evaluation of the VoI obtained via SHM.
The results are encouraging for the widespread use of SHM for lifecycle extension purposes; the
potential value in such applications is large.

Keywords: SHM; value of information; time value of money; Monte Carlo simulation

1. Introduction

Structural health monitoring (SHM) is an overarching term for methods and techniques
used to gain accurate, in-time information about the condition and performance of civil
engineering structures. In contemporary use, the term SHM almost exclusively refers to
the use of sensor measurements in combination with digital signal processing methods
to monitor the condition of structures. In this work, we will demarcate between SHM
and simple measurements of structural condition, where, as the name monitoring suggests,
in SHM, the goal is to understand the development of structural condition over time, as
opposed to a single measurement. SHM systems have been deployed into multiple different
types of structures, from pipelines and dams to high-rise buildings and bridges.

In this paper, we show that collecting data about structures’ physical condition can
generate significant savings in the replacement cost of said structures. These savings are a
part of SHM systems’ value of information (VoI). The value is derived from postponing
the replacement of structures, which will generate savings from avoiding the opportunity
cost of having to commit funds for the replacement project prematurely. We combine a
neural network-based deterioration model with Monte Carlo simulation to estimate what
is the value potential of postponing replacement and present a case study of using this
methodology to analyze the potential VoI of an existing structure.
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To limit the scope of this work, we will exclusively consider SHM systems in bridges.
Our work is intended to be of general nature, and bridges are chosen as an example of
SHM application. They are a particularly good example due to their long lifecycles and
importance to transportation systems. Bridges are a uniquely important application of
SHM due to their role as significant bottlenecks in road networks. A well-functioning
road network enables the efficient transportation of goods and people around a region
and is of critical importance to both safety and the economy. A large number of bridges
in the US highway system are considerably old [1]. This makes the maintenance of aging
bridges a key aspect of road network asset management. Often, improvement in this area
is interpreted as lowering operating and maintenance costs. The importance of improving
asset management practices is driven by fiscal reasons. The historical gap between realized
infrastructure investment and the necessary levels of investment creates fiscal challenges;
see, for example, discussions over the US federal budget [2]. Optimization of the utilization
of existing infrastructure is needed to make the most of the tight funding [3]. Data-based
infrastructure maintenance approaches are a key enabling technology for a more effective
utilization of infrastructure.

SHM allows moving from traditional maintenance and inspection approaches into a
predictive approach, where data and lifecycle modeling are used to optimize operations
and maintenance decisions. Even though SHM is an important technology in modern
asset management, a proliferation of industrial applications is yet to be seen. SHM is still
mainly a research endeavor, not an integral part of day-to-day infrastructure management
practice [4,5]. Peter Cawley identifies the lack of proven and well-understood business
cases as a key reason hindering SHM application [5]. This means that the lack of systematic
valuation methods for SHM is withholding the field. Without methods for computing the
value of SHM, it is difficult to justify SHM project costs. As SHM is primarily a tool for
asset management, its value needs to be measured through the added value it provides for
asset management. The increased information about structural conditions generated by the
SHM system can be imagined as generating value for asset owners from various avenues,
for example, the operations could be improved, or maybe the structure can be built more
efficiently. This value generated by an increased understanding of the state of structures
is called value of information (VoI). The VoI problem in SHM has gathered significant
attention in the research community in the last decade and turned into a subfield of the
broader SHM literature, with its own special editions in SHM journals and conference
sessions [6–10]. We contribute to the SHM VoI literature by showing that the potential to
extend remaining useful life (RUL) is a large component of bridge SHM VoI.

2. Materials and Methods
2.1. Value of SHM Information

A key goal of SHM system use infrastructure is to improve asset management [11].
SHM systems yield benefits by providing information that allows improved asset man-
agement decisions. Often, improvement is measured in monetary terms, whereby lower
expenses are sought. Value of information (VoI) is a quantification of the incremental
benefit, e.g., cost saving, resulting from the action taken based on information provided by
the SHM system. In the case of infrastructure, the total VoI is composed of two components:
the value derived from improved operation and the value derived from increased useful
life. The scope of this work focuses on the latter. VoI is defined as the difference between
the net present value of the expected operational expenses and replacement/refurbishment
expenses when the asset is operated without utilizing SHM and the expected present value
of the same expenses when SHM is utilized—assuming that the use of SHM decreases
expenses. In case of lifecycle extension, the cost savings are derived from time value of
money. We will discuss this mechanism in detail below.

The general idea is that infrastructure management is a series of decision problems
performed under uncertainty. The quantification of VoI is based on studying the effect of
SHM information on the decision analysis. We would like to note that quantifying the VoI



Infrastructures 2023, 8, 158 3 of 18

is dependent on the characteristics of the decision-makers as shown in earlier work by one
of the authors [12–14]. In the case that the existence of SHM information affects the optimal
decisions, the VoI can be defined as the difference between the utility obtained based on an
optimal strategy where the information is used, and the utility based on an optimal strategy
where the information is not used [15]. The total VoI is composed of two components: the
value derived from improved operation (here, we include risk reduction based on SHM in
“improved operations”), and the value derived from increased useful life. The scope of this
work is limited to the latter.

VoI can be evaluated as the difference between the net present value of the expected
operational expenses and replacement/refurbishment expenses when the asset is operated
without utilizing SHM and the expected present value of the same expenses when SHM
is utilized—assuming the use of SHM decreases expenses. In case of lifecycle extension,
the cost savings are derived from time value of money. We will discuss this mechanism in
detail below.

Structural health monitoring systems can be used to extend the service life of structures,
for example, through an improved estimation of capacity or an improved estimation of
fatigue life [16,17]. Long et al. studied optimal monitoring strategies in the context of
fatigue analysis and showed that service life could be extended based on SHM-aided
decision-making [18]. Because of the time value of money, postponing the replacement is
beneficial from a financial point of view. Thomson shows the effect of the time value of
money by deriving the value of lifecycle extension from the borrowing costs over the funds
needed to replace the bridge [16].

From an economic point of view, borrowing cost is the market price for the cost of
lost opportunity (or, in short, opportunity cost) on other possible investments that are
forgone when funds are used for some specific purpose. The practical embodiments of this
opportunity cost are the interest rate on debt and expected return on equity, two types of
capital used to fund enterprises. Due to the opportunity cost, the timing differences need
to be considered when comparing evaluations of investments occurring at different times.
In financial economics, the value of cash flow adjusted for the effect of timing differences is
given by:

PV =
C

(1 + r)n (1)

where PV is the present value, C is the cash flow (positive or negative, depending on
whether it is a cost or income), r is the discount rate, which is a measure of opportunity
cost such as interest rate, and n is the number of time periods from the present until the
occurrence of the cash flow.

In the context of bridge replacement, the cash flow that we are interested in is the
replacement cost of the bridge. Equation (1) shows that assuming that the cost of capital
and interest rate are positive, the present value of replacement cost is decreased if the
cash outlay (spending for replacement of bridge) is pushed to the future. Postponing
replacement is thus beneficial because it decreases the present value of the replacement
cost, and if the information provided by SHM can be used to postpone bridge replacement,
it creates a value for the bridge owner.

SHM can be used to postpone bridge replacement by allowing for the utilization
of the reserve capacity that many bridges contain, i.e., the reserve capacity beyond the
defined end of their service life [19,20]. This capability of SHM has been recognized in the
literature, and good examples are found in the work by Thomson [16]. Bakht and Mufti
see this potential as significant enough to justify creating a new inspection scheme for
bridges [20]. The idea of using SHM to postpone replacement can be backed by considering
the way bridge structures are assigned structural rating categories from the National
Bridge Inventory (NBI), found in the NBI’s coding guideline [21]. State Departments
of Transportation (DOTs) in the United States are required to maintain records of the
physical conditions of bridges [22]. According to Federal Highway Administration (FHWA)
guidelines, the conditions of bridge components are recorded as Condition Ratings (CRs),
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which have numerical values between 0 and 9 [21]. The collection of the condition ratings
for all applicable bridges in the United States is kept in the National Bridge Inventory [23].
The NBI data are available, beginning from the year 1992, and it represents a uniquely
extensive record of bridge deterioration history. The verbal descriptions corresponding to
the numerical values are presented in Table 1, and further description can be found in [17].

Table 1. Descriptions of NBI condition ratings (see [21]).

Rating Condition Description

9 Excellent Condition
8 Very Good Condition
7 Good Condition
6 Satisfactory Condition
5 Fair Condition
4 Poor Condition
3 Serious Condition
2 Critical Condition
1 “Imminent” Failure Condition
0 Failed Condition—out of service—beyond corrective action

Condition rating level 4 (CR4) is taken as the condition level at the end of service
life [24]. According to Kumar et al. CR4 is the level commonly used to trigger replacement
and rehabilitation actions [25]. The description given in the FHWA guideline for the end-of-
service life condition level is: “POOR CONDITION—advanced section loss, deterioration,
spalling or scour.” This does not indicate imminent failure in any way, and so clearly, even
if the service life is considered depleted, the bridge might still have capacity left. It would
be highly desirable to have the means to utilize this uncertain capacity as it would allow
for the extension of service life.

In contrast, condition rating level 2 (CR2) is described as: “CRITICAL CONDITION—
advanced deterioration of primary structural elements. Fatigue cracks in steel or shear
cracks in concrete may be present or scour may have removed substructure support. Unless
closely monitored it may be necessary to close the bridge until corrective action is taken”.
What is interesting here is the phrase “unless closely monitored, it may be necessary to
close the bridge until corrective action is taken”. Further use of a bridge in this condition
depends on whether it is closely monitored. Many would argue that installing an SHM
system would satisfy the monitoring requirement. Thus, for bridges that have reached
the end of their formal service life, SHM would allow further use. Our interpretation is
that with the monitoring system installed, the bridge could be used until condition rating
level 1 (CR1), “IMMINENT FAILURE CONDITION”, possibly allowing significant lifecycle
extensions, depending on how much reserve capacity the observed bridge has left. In this
work, to be conservative, we assume that a bridge with a monitoring system could be used
until it is downgraded from condition rating level 3 (CR3). The time to reach this provides
a convenient lower bound of the reserve capacity remaining.

Thus, within the scope of this paper, we calculate first the value of an SHM investment
based on the potential of postponing the replacement as outlined above. This provides a
component for the evaluation of the VoI tied to the reserve capacity. In our calculations,
we assume that a non-monitored bridge reaching CR4 will trigger immediate replacement
action (as per Kumar et al. [21]). We denote this strategy, that does not include SHM, by “A”.
In this strategy, a cash outlay would have a present value PVA equal to the replacement
cost of the bridge at CR4. Denoting this by Crep,R4, we have:

PVA = Crep,R4 (2)

Now, according to the discussion given above, we assume that strategy “B” includes
an instrumentation of a bridge with SHM that allows the bridge to remain in use until it
has degraded to CR2. In this case, based on Equation (1), the present value PVB of the
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postponed replacement cost at CR2, Crep,R2 (the “present” being the moment the bridge
reaches CR4) is given with the following expression:

PVB =
Crep,R2

(1 + r)N (3)

where N is the number of years it takes for the bridge deterioration to progress from CR4
to CR2 and r is the discount rate or interest rate used.

There is an important observation regarding Equations (2) and (3): PVA is determin-
istic, while PVB is stochastic. In the case of Strategy A, the replacement is performed
immediately, the present value PVA is fully deterministic, the replacement cost Crep is
known, and the time is zero because we have defined the present as the moment of reach-
ing CR4. The number of years it takes for a bridge to reach CR2 is a result of a stochastic
degradation process, and hence, the present value PVB is a random variable.

Let us define the utility of Strategy A, UA, as the cost of replacing the bridge at CR4,
i.e., without the use of SHM, and the utility of Strategy B, UB, as the cost incurred by
postponing the replacement of the bridge, based on the information provided by SHM, to
when the bridge was downgraded from R4 to CR2. The utility of Strategy B should include
the discounted cost as per Equation (3), but also the cost of implementation of SHM, CSHM.
Note that the utilities, UA and UB, are both negative, since they both reflect costs, as shown
in Equations (4) and (5):

UA = −PVA (4)

UB = −PVB − CSHM (5)

Then, the monetary benefit of the SHM system, i.e., the value of information that it
provides, VoISHM, can be calculated as the difference between the utilities UB and UA, by
combining Equations (2)–(5), as follows:

VoISHM = UB −UA = (−PVB − CSHM)− (−PVA) = Crep,R4 −
Crep,R2

(1 + r)N − CSHM (6)

Let us define present value of SHM, PVSHM, as the difference between the present
values of strategies A and B:

PVSHM = PVA − PVB = VoISHM + CSHM = Crep,R4 −
Crep,R2

(1 + r)N (7)

PVSHM presents an upper bound of how much a bridge owner should be willing to
pay for the implementation of SHM for the purpose of keeping the bridge operational after
the normal service life is reached. In other words, the implementation of SHM is profitable
if VoISHM is positive, which occurs if and only if PVSHM > CSHM. Given that the cost of
implementation of SHM, CSHM, is not known a priori, we focus in this paper on evaluation
of PVSHM instead of VoISHM. In general, once the PVSHM is evaluated, then the study of
viable SHM can be performed for a specific bridge, which is considered out of the scope of
this paper.

To simplify the presentation, we assume that the replacement cost is the same for
both strategies, A and B, i.e., we assume that Crep,R4 = Crep,R2 = Crep. This might be an
unrealistic assumption; however, including the additional complication of the difference in
the costs of replacement would offer very little added benefit in this paper, as the aim of the
paper is to present the overall valuation framework. Any refinements, such as including
the difference in the costs of replacement, can be considered in future work.

It is necessary to note that the quantity presented in Equation (7) is stochastic, i.e., its
values are realized according to some probability distribution. Thus, we take the expected
value of (7) to obtain the expected PVSHM. Taking the expected value of Equations (6) and (7)
provides the expected VoI and PVSHM:
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E[VoISHM] = E[UB −UA] = E[(−PVB − CSHM)]− E[(−PVA)] = E[Crep,R4]− E

[
Crep,R2

(1 + r)N

]
− E[CSHM] (8)

E[PVSHM] = E[PVA]− E[PVB] = E[VoISHM] + E[CSHM] = E[Crep,R4]− E

[
Crep,R2

(1 + r)N

]
(9)

We have outlined the computation of the present value of the benefit which the SHM
system presents to an infrastructure owner in a single realization. As the remaining lifecycle
after reaching condition 4 is random, each realization will have different benefits, and the
value of an SHM system will have some distribution. To uncover this distribution, we
will utilize a Monte Carlo simulation method in conjunction with the degradation rate
distributions discussed earlier.

The steps for computing distributions for the SHM VoI component tied to postponing
replacement is given below:

1. Draw realizations of the degradation process from the distribution of RUL.
2. Compute PVSHM for this realization using the formula presented above. The com-

puted value represents a single simulated sample from the distribution of the SHM
system’s present value.

3. Repeat the process for N times to obtain N samples from the distribution of the VoI.

2.2. Lifecycle Extension: VoI Quantification

To estimate the lifecycle extension potential, we need to simulate bridge deck condition
degradation over time. We utilize a neural network-based survival analysis and Monte
Carlo simulation to quantify the expected VoI component related to lifecycle extension.
We study the VoI in the context of concrete decks in US highway bridges. In this section,
we present a brief overview of the dataset and the model we have used for deterioration
modeling. The discussion given here is a broad overview. The focus of this paper is not on
the details of deterioration modeling, so we chose to be brief.

2.2.1. Dataset Used for Deterioration Modeling

We use a bridge deck dataset created by Fleischhacker et al. [26]. The dataset is a subset
of the NBI dataset, preprocessed for survival analysis purposes. The use of a specialized
dataset is necessary, because without preprocessing, NBI data cannot be used for survival
analysis. Survival analysis requires the dataset to possess information about the amount of
time bridge decks spend in any given CR. The yearly ratings need to be transformed into
TICR values and flags to show if CR decrease is observed, or if the structure had remained
in the same CR until the end of the observation period, which is referred to as censoring.
The dataset consists of observations of time wherein a given bridge deck stays in the same
CR, and characteristics of the bridge that are used as inputs in our deterioration model.
The bridge characteristics used in the deterioration model are presented below in Table 2.
The reader is encouraged to see our previous work for a detailed explanation of how the
dataset was used in our deterioration model. For information about the dataset, the reader
should refer to the original work of Fleischhacker et al. [26].

2.2.2. Computational Approach: Survival Analysis

We utilize a neural network-based survival analysis to model bridge deck condition
degradation—this results in the distribution of the time a deck spends in any given condi-
tion rating. The goal of our degradation modeling approach here is to create an estimate of
the distribution of the time it takes for a given bridge deck to degrade from CR4 to CR2, the
difference between the conventional end-of-service life and the service life that could be
realized by utilizing SHM systems. Survival analysis is a field of statistics concerned with
modeling time-to-event. Typical examples of survival analysis are analyzing time-to-failure
in reliability engineering [27], important events in human life (marriage, childbirth) [28],
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and mortality in life sciences [29]. We utilize survival analysis to generate distributions for
TICRs (Time-In-Condition-Rating). These distributions can then be used as inputs for MC.

Table 2. Description of covariates and their range of values. Modified from [26].

Description of Covariate Abbreviation Range of Values

Average Daily Truck Traffic ADTT [0.56595]

Climatic Region ClimaticRegion

“Region 2—very hot”;
“Region 3—hot”;
“Region 4—average”;
“Region 5—cold “;
“Region 6—very cold”;
“Region 7—extremely cold”;
“Region 8—subarctic”;
“Region 9—average marine”;
“Region 10—hot marine”.

Condition Rating CR CR3, CR4, CR5, CR6, CR7, CR8, CR9.

Deck Protection Type DeckProt

“None”;
“Epoxy-coated reinforcing”;
“Galvanized reinforcing”;
“Other coated reinforcing”.
“Cathodic protection”;
“Polymer impregnated”;
“Internally sealed”;
“Unknown”;
“Other”.

Deck Type DeckType “Concrete cast-in-place”;
“Concrete precast panels”.

Distance to Sea Water SeaDist “Sea Less than 3 km Away”;
“Sea More Than 3 km Away”.

Functional Classification (NBI Item 26) FunctClass “Rural”;
“Urban”.

Maintenance Responsibility MaintResp

“State highway agency”;
“County highway agency”;
“Town/township highway agency”,
“City/municipal highway agency”,
“Private (other than railroad)”;
“State toll authority”.

Structural Type StructType

“Concrete-simple span”;
“Concrete-continuous”;
“Steel-simple span”;
“Steel-continuous”;
“Prestressed concrete-simple span”;
“Prestressed concrete-continuous”.

The goal of bridge survival analysis is to derive survival curves that describe an indi-
vidual bridge’s probability of staying (we adopt the usual practice in survival analysis and
refer to staying in the same condition rating as surviving) in a given condition rating over
time. If f (t) is the probability density function (PDF) of the survival TICR, and F(t) is the
corresponding cumulative distribution function (CDF), the survival function is given by:

S(t) = 1− F(t). (10)

The graph of this function is known as the survival curve [30].
We generate the survival curves using a neural network model designed for this pur-

pose in our earlier work. The model is built on top of a Python library “nnet-survival” [31].
Figure 1 shows the architecture of our neural network. The input variables used are the
bridge deck characteristics presented in Table 2. The categorical variables are transformed
into binary inputs. The total number of input variables after this operation is: 43 binary
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input variables and one numeric input variable. The basic principle of this architecture is
that we treat categorical variables and the numerical variable ADTT separately, whereby
these two “pipelines” have separate hidden layers, until the output layer where these two
“pipelines” are combined and the outputs (hazard function values) are computed. We
encourage readers to consult one of the author’s dissertation for details [32].
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Figure 1. NN architecture to model hazard function for bridge deck survival analysis.

2.2.3. Computational Approach: Monte Carlo Simulation

The survival functions generated by the NN model provide us with the distribution
of TICR. We utilize Monte Carlo simulation to sample these distributions and aggregate
them to predictions of the reserve capacity. We use the inversion method to draw samples
from the distributions given by the survival curves. This method is necessary because the
distributions that our model generates based on the data do not fall under any general fam-
ily of probability distributions for which a random number generator would be available.
With the inversion method, it is possible to sample any probability distribution as long
as a uniform random number generator and the means to invert the cumulative density
function of the distribution of interest are available [33].

The inversion method is based on the following mathematical reasoning [34]. Let U
be a uniform [0.1] continuous random variable, and we want Y to be a discrete random
variable, which we want to sample that has the probability mass function P

{
Y = yj

}
= pj,

j = 0, 1, . . . , ∑ pj = 1 and a cumulative distribution function:

P{Y ≤ y) = FY(y) = ∑
yj≤ y

pj (11)

Then, if we define:

Y = Φ(U) =



y0 I f U < p0
y1 I f p0 ≤ U < p0 + p1

...

yj I f
j−1
∑

i=0
pi ≤ U <

j
∑

i=0
pi

...

# (12)
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Or, presented using the CDF:

X = Φ(U) =



y0 I f U < FY(y0)
y1 I f FY(y0) ≤ U < FY(y1)

...
yj I f FY

(
yj−1

)
≤ U < FY

(
yj
)

...

(13)

Then, for 0 < a < b < 1, P{a < U < b} = pj, and from this, it follows that:

P
{

X = xj
}
= P

{
j−1

∑
i=0

pi ≤ U <
j

∑
i=0

pi

}
= pj (14)

and we see that X and Y have the same distribution.
Using the inversion method, it is straightforward to draw samples from TICR distri-

butions based on our NN model. The model provides us with survival functions, which,
according to Equation (1), are defined as:

S(t) = 1− F(t).

Using this, we can represent the cumulative distribution function as:

F(t) = 1− S(t). (15)

Then, combining this with Equation (13), we obtain the transformation needed to
draw samples from the TICR distribution:

TICR = Φ(U) =



t0 I f U < 1− S(t0)
t1 I f 1− S(t0) ≤ U < 1− S(t1)

...
tj I f 1− S

(
tj−1

)
≤ U < 1− S

(
tj
)

...

.
(16)

Using this, we can draw samples of TICR in a given condition rating. Since we are
interested in the transition through CRs 4 and 3, we need a way to aggregate the TICRs in
these states. To accomplish this, we assume that the TICR is independent of the history. In
practice, this means that the distribution of TICR in CR3 is not affected by the realization of
TICR in CR4. With this assumption, we can simply aggregate the TICR realizations on CR3
and CR4 by adding them. Following the procedure presented, we obtain the output of the
Monte Carlo simulations, which is the excess RUL as defined earlier in Section 2.1.

3. Results

To explore the VoI achievable in SHM systems deployed to extend the RUL of concrete
bridge decks and demonstrate the application of the developed methodology, we present a
case study. The bridge we have chosen to study is the southbound portion of the bridge
on US Highway 202, located in Wayne, NJ. We chose this bridge because it was part of
a significant international SHM research project, and hence, the SHM literature contains
information on this bridge; moreover, it is well-known for many members of the research
community. In addition, it is a representative concrete highway overpass, the type of which
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there are in large numbers in the US. Because of this, we expect findings on this bridge to
be somewhat applicable to a larger population.

3.1. Survival Curve Estimation

We obtain the information necessary to estimate survival curve from FHWA’s NBI web
portal [35]. Basic information on the bridge along with the parameter values are presented
below in Tables 3 and 4.

Table 3. Basic information on the case study bridge.

NBI Structure Number 1618150
Location Wayne Township, NJ, USA
Route US202
Year Built 1983
Deck Area, sq. ft. 52,937.7
Latitude, 40.91485
Longitude −74.26529

Table 4. Model parameter values for the case study bridge.

Description of Covariate Abbreviation Range of Values

Average Daily Truck Traffic (recording
period used to calculate the average:
year 2020)

ADTT 3335

Climatic Region ClimaticRegion “Region 5-cold “;
Deck Condition Rating (Current) CR CR6
Deck Protection Type DeckProt “Epoxy-coated reinforcing”;
Deck Type DeckType “Concrete cast-in-place”;
Distance to Sea Water SeaDist “Sea More Than 3 km Away”
Functional Classification (NBI Item 26) FunctClass “Urban”
Maintenance Responsibility MaintResp “State highway agency”;
Structural Type StructType “Steel-simple span”

We input these parameters to our survival analysis model and generate survival curves
for both CR3 and CR4. The resulting survival curves are visualized below in Figure 2.
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Upon inspecting the survival curves, we can see that the curves do not reach zero, and
there is an inflection point at TICR = 18. We believe that this is generated by the span of
the database, the maximum TICR which we have data from is 22, so there is an artificial
upper limit on the observations. In addition, from our studies of the data, we know that the
bridges tend to spend a longer time before downgrading on the lower condition ratings—
an artifact we assume to be caused by some unknown characteristic of the rating and
maintenance process. One explanation offered in the literature is that maintenance actions
slow down the deterioration rate in the lower condition ratings [36]. We believe these
two issues together serve to create circumstances where our model is unable to generate
meaningful survival probabilities in the higher TICR values for the lower condition ratings.

This characteristic of the data, if not rectified, would cause severe distortions to the
outcomes, since the survival curve does not reach zero, the inverse transform method of
random number generation will present an overweight to the largest TICR value. This
is caused because all random numbers from the uniform distribution that exceed the
bounds are mapped to the last valid value. To rectify this, we modify the survival curve
by assuming linearity after TICR = 18, which is the location of the inflection point. We
calculate the slope between the TICR = 17 and 18, which are the last valid values according
to our judgment. Since this approach does not necessarily lead to a curve that crosses the
y-axis at an integer value, we add the rule that the first negative value will be set equal to
zero. This way, we obtain meaningful survival curves that end in S = 0. The outcome of this
modification is presented in Figure 3. To finalize this discussion, we want to point out that
proceeding in the way we describe can be considered conservative. We have assumed a
steep decrease in survival probabilities and removed the entire right tail of the distribution,
leaving out many feasible long survival times. This means that the estimates we derive for
the potential value of postponing replacement will be conservative.
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Figure 3. Corrected survival curves.

3.2. Monte Carlo Simulation of RUL Distribution

Now that we have estimated the survival curves for our bridge deck, we can utilize
the inversion method discussed in Section 3.3 to draw realizations of the remaining useful
life. Figure 4 shows a histogram of the simulated RUL realizations when 10,000 outcomes
are drawn.
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Figure 4. Histogram of RUL simulation outcomes.

Inspecting the histogram, we see that the distribution has two major peaks, one around
23 years and the other at 36 years. The bimodality is a consequence of the way the RUL
prediction is computed as the sum of the TICR in CR3 and CR4. Both distributions are
skewed toward larger TICR values, so their sum will result in two peaks. Figures 5 and 6
below show the histograms of the realizations drawn for TICR for CR3 and CR4.
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3.3. Calculation of RUL Extension VoI

Now that we have simulated distributions of the remaining useful life, we can esti-
mate the value that could be realized by being able to utilize this portion of the bridge
deck’s lifecycle. We will accomplish this by applying Equation (4) to the simulated RUL
realizations. The calculation requires two input values in addition to the RUL distribution
simulated above: the discount rate and the replacement cost. The USDOT recommends
using a discount rate of 7% in the benefit–cost analysis of highway projects [37]. We use the
recommended 7% but also conduct a sensitivity analysis. We use values from New Jersey
DOT’s cost estimating guide for the deck replacement cost [38]. The data in Table 5 below
are taken from the guide and shows values for replacement costs in year 2016. According
to the guide, the cost estimates are to be adjusted for inflation using a 3% simple interest
factor. We adjust the prices to the level of 2023, meaning the values in the table need to
be increased by a factor of: (2023− 2016)× 3% = 21%. To obtain an estimate of the total
replacement cost, we multiply the per square values with the deck area of 52,937.7 sqf. The
deck area is sourced from NBI (see Table 1). Table 6 shows the inflation-adjusted values for
the bridge deck replacement item.

Table 5. Construction cost estimates for bridge elements.

Project Category Units Used for
Calculations

Median Cost
per Unit Low Cost Average Cost High Cost

Bridge Deck Replacement Square Foot USD 320 USD 150 USD 380 USD 730
Bridge Superstructure

Replacement Square Foot USD 400 USD 230 USD 530 USD 1300

Bridge Replacement Square Foot USD 1800 USD 750 USD 1900 USD 3500
Culver Replacement Square Foot USD 2700 USD 1300 USD 2300 USD 3300

Table 6. Deck replacement cost adjusted for inflation.

Low Cost Median Cost Average Cost High Cost

Bridge Deck Replacement Cost (Dollars per Square Foot) 181.5 387.2 459.8 883.3
Total Replacement Cost (Millions of Dollars) 9.6 20.5 24.3 46.8
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With this information, we can analyze the value linked to the potential for lifecycle
extension. We substitute the information above to Equation (5), using the recommended
discount rate r = 7%, and compute the result for each of the 10,000 realizations of the
RUL. Table 7 below shows a summary of the results. Figure 7 shows the quartiles and
outliers of the data. These results show that the VoI for an SHM system that would allow
utilizing the entire RUL of a bridge deck could be potentially very large, with an average
VoI of USD 17.9 million, representing 74% of the replacement cost, if replaced immediately.
However, as can be seen from Figure 7, there is considerable variance in the potential VoI,
with the cost assumption dramatically affecting the realizable VoI. In addition, the VoI of
the replacement cost is sensitive to the discount rate assumption. The USDOT guidance
instructs to use the 7% discount rate, but to gain understanding on the effect of these
assumptions on the VoI, we conducted a sensitivity analysis. Figure 8 shows the result
of the sensitivity analysis. Figure 8 clearly shows how the discount rate has a large effect
on the potential VoI in each of the replacement cost scenarios. It is noteworthy that in
case of negative discount rates, the VoI can even be negative, and postponing would be
detrimental. Theoretically, negative discount rates are possible. However, how realistic a
negative discount rate would be in the case of infrastructure projects is not obvious. This
issue is outside the scope of this work, and the entire question of determining discount
rates remains a topic of further research.

Table 7. Summary of the VoI calculation results.

Low Cost Median Cost Average Cost High Cost

Max VoI (Millions of Dollars) 9.0 19.3 22.9 44.0
Min VoI (Millions of Dollars) 1.2 2.6 3.1 5.9

Average VoI (Millions of Dollars) 8.0 17.1 20.3 39.0

In conclusion, in the right conditions, for an SHM system installed for with the
purpose of extending the RUL of a bridge, the potential payoff is large. Because the bridge
used in our case study is an “ordinary” bridge, meaning that there are large number of
similar bridges in the US highway system, we believe that the potential benefits for the
programmatic deployment of SHM to the entire highway system are large.
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4. Discussion

The large effect of the discount rate is an important observation for two reasons.
First, there is no obvious objective way to decide the discount rate that should be used
in analyzing the benefit of postponing the replacement of the deck. As discussed earlier,
the discount rate presents an opportunity cost related to the benefits of the projects that
could have been performed instead of the bridge deck replacement. How this value
should be decided is a complicated question and is connected to diverse topics such as
the other investment opportunities available, priorities, and funding situation. Since most
infrastructure projects require lending to finance, the cost of this financing, or the interest
rate, is one potential discount rate. Using the financing cost to calculate the SHM system’s
VoI derived from service life extension has been previously analyzed in the literature [16].

Second, when the financing cost is used as the discount rate, it gives rise to significant
timing issues because interest rates change over time. For reference, Figure 9 shows the
historic 30-year borrowing cost for the US government. We see that in the period spanning
from the early 1980s to the present day, the interest rate has varied between ~15% and ~1%.
It is thus clear that the interest rate effect on SHM VoI is large and potentially varies in time.

An interesting characteristic of SHM VoI can be deduced from the two observations
discussed above: the VoI is not dependent only on the technical aspects, such as the bridge
replacement costs and the SHM system characteristics, but also on external socioeconomic
factors in the form of the discount rate. It is worth emphasizing that the effect of the
discount rate is large. The conclusion of this is that, when evaluating whether SHM should
be deployed, and the extent of deployment, a holistic socio-technoeconomic analysis is
necessary. Further, as the borrowing costs that influence discount rates change over time,
the analysis needs to take the timing and current situation broadly into account, including
the interest rate environment.

The analysis we have presented shows impressive results but some discussion of the
drawbacks of the method is necessary. The first concerns the question of the reliability
of the data. The estimation of the RUL distributions that was necessary for the Monte
Carlo simulation is dependent on data from the NBI bridge inspection data. The inspection
process is based on bridge inspectors’ evaluations of the bridge condition and thus creates
a subjective element to the data. This factor adds to the uncertainty of the results and
is difficult to evaluate its impact on the results. Second, we have made the simplifying
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assumption that the time spent in CR4 and CR3 are independent. This assumption could be
a source of inaccuracy for the analysis and should be tested in further research. The third
drawback of our analysis is that we do not have an estimate the degree of the method’s
scalability. As inspection methods and practices improve, more data can be collected
and potentially used in forecasting the RUL. Estimates of the scalability of the methods
presented here are needed to evaluate how well the methods could be utilized if more data
are available.
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Figure 9. Historical 30-year borrowing cost for the US government. Data used to generate the graph
from [39].

5. Conclusions

We have utilized a neural network-based survival analysis in conjunction with Monte
Carlo analysis to show that significant VoI exists in SHM for bridge decks if deployed
with the purpose of extending the RUL. We have shown this to be true using a case study.
Our case study focused on a type of bridge that is very common in the US. Because of the
promising results of our case study, we believe a substantially large value could be realized
if SHM would be programmatically deployed to the entire highway system with the goal
of extending service life. Future research is needed to generalize our results to different
types of bridges and bridge components. We studied the topic in the context of concrete
bridge decks; to understand the potential of RUL extension on the entire bridge population,
a similar analysis is needed for other bridge components, such as the substructures or
superstructures, and different bridge deck types. In addition to extending the analysis
to different bridge types and components, a portfolio analysis over the entire bridge
population would be necessary to estimate the potential of a large-scale SHM deployment.
Because it is not feasible to deploy SHM on every bridge, the portfolio analysis would allow
for maximizing the return on investment of such a program. Finally, we have focused on
the potential benefits gained from SHM implementation. To complete the analysis, the cost
of SHM systems that would allow RUL extensions need to be evaluated, both the initial
project costs and the ongoing operational cost of such systems.
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