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Abstract: The monitoring and maintenance of existing civil infrastructure has recently received
worldwide attention. Several structural health monitoring methods have been developed, including
time-, frequency-, and time–frequency domain methods of modal identification and damage detection
to estimate the structural and modal parameters of large-scale structures. However, there are
several implementation challenges of these modal identification methods, depending on the size
of the structures, measurement noise, number of available sensors, and their operational loads. In
this paper, two modal identification methods, Second-Order Blind Identification (SOBI) and Time-
Varying Filtering Empirical Mode Decomposition (TVF-EMD), are evaluated and compared for
large-scale structures including a footbridge and a wind turbine blade with a wide range of dynamic
characteristics. The results show that TVF-EMD results in better accuracy in modal identification
compared to SOBI for both structures. However, when the number of sensors is equal to or more
than the number of target modes of the structure, SOBI results in better computational efficiencies
compared to TVF-EMD.

Keywords: structural health monitoring; modal identification; SOBI; time-varying filtering empirical
mode decomposition; EMD

1. Introduction

Large-scale civil infrastructures such as bridges and wind turbines are subjected to
various external loads such as earthquakes, wind, traffic, and other environmental excita-
tion during service life, resulting in rapid aging and structural deterioration [1,2]. In recent
decades, Structural Health Monitoring (SHM) has attained significant interest to the infras-
tructure owners, structural engineers, and decision-makers as it provides powerful tools
for the diagnosis and prognosis of as-is structural conditions [3]. Vibration-based modal
identification methods utilize acceleration measurements to detect the physical and modal
parameters that can be used for the identification and localization of damage [4,5]. How-
ever, there are several implementation challenges for these modal identification methods in
different large-scale real-life structures such as bridges and wind turbines, depending on
their overall dimensions, support conditions, measurement noise, number of available sen-
sors, and operational loads [6,7]. This paper evaluates the performance of vibration-based
SHM techniques in two full-scale structures subjected to these challenges.

Large-span bridges [8,9] and offshore wind turbines [10–12] caught worldwide atten-
tion recently. Bridges play a vital role in transportation infrastructure, which affects the
economic growth and prosperity of a nation. A recent American infrastructure report card
(2021) indicated that one-third of America’s infrastructure is at risk of significant deteriora-
tion, with about 240,000 bridges being at least 50 years old [13]. Similar to bridges, wind
turbines are essential civil infrastructure for developing renewable wind energy, which has
continuous resources with net-zero environmental impact [14,15]. However, the structural
maintenance and rehabilitation of wind turbines are expensive; for example, the cost of
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repairing and constructing a blade varies between $30,000–200,000 USD [16]. Therefore, the
SHM of wind turbines and bridges remains an essential consideration to various infrastruc-
ture owners, consulting firms, and government agencies worldwide. These condition-based
health assessments enable them to develop a timely and optimum maintenance schedule,
which is economical compared to replacing expensive structures [17].

Different failures can happen in blades, towers, and foundations of wind turbines.
However, failure and damage to the blades are more common [18,19]. Due to limited
accessibility and remote installation, very little research has been conducted to evaluate
full-scale wind turbine systems [20]. Several numerical studies [21,22] and small-scale
laboratory experiments [16,23] were conducted to diagnose wind turbines at both system
and component levels. For instance, eight accelerometers were put on the tower of a wind
turbine to assess its behavior during the construction and service life of the turbine [24].
Ou et al. (2021) monitored a laboratory-scale blade using accelerometers, temperature
sensors, humidity sensors, and strain gauges under different operating conditions and
external excitations.

Similar to wind turbines, the performance of bridges can be affected by external
dynamic loads such as wind, earthquakes, and traffic loads. Moreover, environmental
conditions, including temperature, humidity, and corrosive situations, can cause significant
damage and cracks in different elements of bridges during their service life [25]. Bridge
damage includes cracks in concrete elements, displacement and vibration that is more
than the acceptable range, connections failure, welds failure, corrosion in foundations
and piles, and even failure of elements such as piers. On the other hand, as bridges are
more slender than other civil structures, they experience a higher range of vibration due
to ambient and man-made excitations, making them more susceptible to damage [26]. A
lot of research focused on vibration-based bridge health monitoring methods to assess the
safety of these structures [27,28]. However, optimal sensor placement, limited availability
of sensors, inaccessibility, and measurement noise pose several challenges in this field,
which has caught significant attention in recent years [29,30]. This emphasizes the need for
an increasing number of real-life validations of the infrastructure monitoring technology
and damage detection techniques.

Structural damage results in changes in the modal properties of the structure, such
as natural frequencies, damping ratios, and mode shapes [31,32]. Although modal identi-
fication techniques rely on measurements, such as strain, displacement and acceleration,
monitoring and obtaining these measurements from full-scale structures still poses sig-
nificant challenges [33]. Moreover, the measured data are often noisy, which affects the
accuracy of modal identification [34]. There has been significant development of various
modal identification methods that can resolve the SHM challenges of bridge and wind
turbines using time-domain (TD), frequency-domain (FD), and time–frequency domain
(TFD) methods [35]. The TD and FD techniques can be applied for stationary and linear
signals; however, complex excitations are non-stationary in nature [36]. Hence, the TFD
methods have been developed as a new field in SHM [37,38]. Moreover, TFD methods are
more robust and faster than other TD methods, such as Stochastic Subspace Identification
(SSI) [39]. For example, SSI requires model order selection and stabilization diagrams,
which require significant user intervention [39].

There are several TFD methods, such as Wavelet Transform [40], Empirical Wavelet
Transform, Hilbert Huang Transform [41], Empirical Mode Decomposition (EMD) [42,43],
and Time-Varying Filtering Empirical Mode Decomposition (TVF-EMD) [44]. Unlike
Wavelet Transform methods, EMD is one of the popular SHM techniques as it is free of any
basis function and undertakes decomposition based on a local characteristic of the data
of a single-channel measurement. Mixed multicomponent signals can be decomposed by
the EMD method into Intrinsic Mode Functions (IMFs). TVF-EMD is one of the variants of
EMD, which is free of mode-mixing [45]. Blind Source Separation (BSS) [46] and Second-
Order Blind Identification (SOBI) [47,48], which are TD methods, can recover individual
modal response components from the measurements. Unlike other modal identification
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methods such as SSI, SOBI or TVF-EMD does not require user-intensive steps, including
stabilization diagrams and model order selection. Both SOBI and TVF-EMD methods have
been used in the literature to assess laboratory-scale models of buildings, bridges, and a
few small-scale full-scale structures [47,49]. However, more studies are necessary for the
identification of closely-spaced frequencies of a wide range of large structures. Therefore,
in this paper, both of these output-only modal identification methods (i.e., TVF-EMD and
SOBI) have been implemented into two full-scale structures, including a bridge and wind
turbine, with a broad range of frequency characteristics.

There are several technical challenges to monitoring full-scale structures, which makes
the procedure expensive and time-consuming. Due to accessibility issues and harsh envi-
ronments, the physical instrumentation of these structures remains unsafe and costly. For
example, monitoring wind turbines needs reliable wireless sensors for freezing tempera-
tures and special data acquisition systems [19,33]. Some non-destructive techniques, such
as infrared thermography, were introduced for SHM to overcome accessing problems [50].
However, these methods are not reliable for monitoring all structures, especially in harsh
environments, as they are dependent on environmental conditions such as low temper-
atures [19]. On the other hand, to monitor full-scale structures requires using numerous
and various equipment for a long period of time to obtain comprehensive data. For ex-
ample, Queensferry bridge was monitored using nearly 2000 different types of sensors for
3 years [51]. Moreover, five long-span, cable-supported bridges in Hong Kong, including
Tsing Ma, Kap Shui Mun, Ting Kau, Western Corridor, and Stonecutters, were monitored
by ~1700 sensors for each bridge. Therefore, another challenge in monitoring these huge
structures is designing a complicated SHM system, a detailed sensing network, and an
instrumentation strategy to acquire and collect the required data continuously [33]. Hence,
a lot of research has been undertaken on the placement of sensors to optimize the measure-
ment and monitoring strategy to estimate the valuable and critical dynamic properties of
the structures [6,29].

The development of monitoring systems and sensors causes an tremendous increase
in measuring data [19]. Although collecting more and more data is beneficial for compre-
hensive condition-based health assessments and confident decision-making, it results in the
“big data” problem in SHM. The big data problem can be defined by three aspects, including
volume, velocity, and variety. Regarding the volume characteristic, the most significant
technical challenges remain the collection, transmission, and analysis of the data. Therefore,
a new field of research regarding the value of information and information analysis in Civil
Engineering has been developed. These studies aim to develop approaches for reliable and
low-cost sensor placement and health monitoring of the structures [52–54]. In addition, the
big data problem refers to the complexity (velocity and variety aspects) of datasets, which
needs a new generation of data-processing equipment for coding, analyzing, visualizing,
and filtering the data. Moreover, a considerable level of noise inevitably will exist in field
measurements due to environmental conditions that affect the accuracy of SHM. Hence,
high-accuracy filtering systems and equipment with a low-level of error are necessary [19].
Several researchers focus more on noise effects and lots of filters to minimize the effects of
noise [55,56].

There are limited full-scale studies to demonstrate the performance of TVF-EMD
and SOBI and compare their relative merits in real-life applications. Considering the
abovementioned challenges of blind modal identification, this paper explores two full-scale
structures, including a footbridge [57] and a wind turbine blade [58], as two valuable case
studies to validate and compare the accuracy of a TD and TFD method. Therefore, this
paper results in a better understanding of the performance and accuracy of these modal
identification methods using two full-scale case studies. The paper is organized as follows.
The modal identification methods are discussed in Section 2, and the case study structures
are explained in Section 3. The results of the structural condition assessments are presented
in Section 4, followed by key conclusions in Section 5.
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2. Modal Identification Methods

In this paper, two different modal identification techniques, including SOBI (i.e.,
a TD method) and TVF-EMD (i.e., a TFD method), are evaluated and compared. The
methodologies of these techniques are briefly described below.

2.1. Second-Order Blind Identification Method

Blind source separation estimates the hidden sources of a suite of multicomponent
signals using their second-order or higher-order statistics. In particular, SOBI can analyze
signals with different spectral contents by utilizing the temporal structure of the sources
for a better separation of the signals [59]. This method is one of the most potent modal
identification methods, even if the measurements are noisy. SOBI estimates the autocor-
relation functions of both the sources and the noise in the subsequent stage. Hence, the
calculation of noise variance before the extraction of source signals is not needed. Therefore,
the accuracy of the method is independent of the noise distribution [48].

SOBI is advantageous over other system identification methods as it requires only
output data to estimate modal parameters, which makes SOBI especially great for existing
structures where input data may not be known. The SOBI formulation begins with the
basic equation of motion [59]:

[M]
{ ..

x(t)
}
+ [C]

{ .
x(t)

}
+ [K]{x(t)} = {F(t)} (1)

where [M], [C], [K] is the mass, damping, and stiffness matrix; {x(t)} is the displacement
vector; and {F(t)} is the force vector.

The solution to the equation of motion may be written as a summation of several
vibration modes in matrix form:

{x(n)} = [A]{s(n)} (2)

where {x(n)} is the measurement matrix components of x, [A] is the modal transformation
matrix, and {s(n)} is the matrix of the corresponding modal components.

To find [A], two covariance matrices at time 0 and p are diagonalized [59]:

[Rx(0)] = E[{x(n)}{x(n)}T ] = [A][Rs(0)][A]T (3)

[Rx(p)] = E[{x(n)}{x(n− p)}T ] = [A][Rs(p)][A]T (4)

where [Rs(p)] = E[{s(n)}{s(n− p)}T ] = [I]. First, the responses are whitened, which
removes any correlation two responses may have had:

[Rx(0)] = E[{x(n)}{x(n)}T ] = [Vx][λx][Vx]
T (5)

where [Vx] is the eigenvector matrix and [λx] is the eigenvalue matrix. The whitened signals
are computed using the following expression [60]:

{x(n)} = [λx]
−1/2[Vx]

T{x(n)} = [Q]{x(n)} (6)

where [Q] is the whitening matrix.

[Rx(0)] = E[{x(n)}{x(n)}T ] = [I] (7)

[Rx(p)] becomes [Rx(p)] from the whitening process:

[Rx(p)] =
1
N
[

N

∑
n=1
{x(n)}{x(n− p)}T ] = [Q][Rx(p)][Q]T = [Q][A][Rs(p)][A]T [Q]T (8)
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[Rx(p)] is now diagonalized:

[Vx][Rx(p)][Vx]
T = [λx] (9)

Since [λx] has distinct eigenvalues, the mixing matrix is estimated by:[
Â
]
= [Q]−1[Vx] = [Vx][λx]

T [Vx] (10)

Finally, unitary transformation is performed to acquire the modal responses in the
time domain:

{ŝ(n)} =
[
Â
]−1{x(n)} (11)

where {ŝ(n)} is the modal response.

2.2. Time-Varying Filtering Empirical Mode Decomposition Method

EMD is one of the data-driven TFD methods that does not need basic functions and can
analyze non-linear and non-stationary signals [61]. EMD converts the measured data into a
suite of mono-component signals called IMFs. IMFs are identified using a sifting process
that employs a finite number of averaging and interpolation operations. However, the
sifting process often results in a considerable mode mixing in the IMFs. Several adaptations
of EMD were established to address this limitation of EMD. This problem has been solved
by applying a Time-Varying Filtering (TVF) operation [44].

In the TVF-EMD method, a local cutoff filter is used to filter measurement data into
local high-pass and low-pass elements to decompose into a suite of narrowband signals.
In contrast to EMD, TVF-EMD does not require symmetric properties of upper and lower
envelopes and intermittency criteria [61]. In fact, energy-based thresholding is often used
to find out the energy concentration and eliminate the noise components to better delineate
the modal responses. More details about such approaches can be found elsewhere [6]. B-
spline approximation, which is based on developing polynomial splines with time-varying
cutoff frequency, is used to define TVF. IMFs can be estimated in B-spline space, as shown
below [44]

bp
v(t) = ∑+∞

k=−∞ q(k)βp
(

t
v
− k
)

(12)

where q(k) is the B-spline coefficient, and it is expanded by v, which is the step size of the
knot sequence and is used to combine the polynomial components. The q(k) is determined
using the B-spline approximation that minimizes the error. Hence, for a measurement
signal, x(t) and q(k) can be obtained by minimizing the error, as presented below:

δ2
v = ∑+∞

t=−∞(X(t)− {q}↑v ∗Wp
v (t))2 (13)

where {−}↑v is the up-sampling function by v. Wp
v (t) is considered equal to βp(t/v), and

the asterisk shows the convolution operator. Therefore, q(k) can be obtained as:

q(k) = {cp
v ∗ x}↓v(k) (14)

cp
v =

{
({wp

v ∗ wp
v}↓v)−1

}
↑v
∗ wp

v (15)

bp
v = {cp

v ∗ x}↓v ∗ wp
v(t) (16)

where {−}↓v is the down-sampling function by v, and cp
v is the pre-filter discussed in

Equation (15). The autocorrelation function of the modal response is then used to find the
total damping ratio. Autocorrelation is performed using:

R f f (τ) =
∫ ∞

−∞
f (t) f (t− τ)dt (17)
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where f (t) is the modal response, f (t) is the complex conjugate of f (t), and τ is the time
lag. The outline of the case studies employing two real-life examples using two modal
identification methods is illustrated in Figure 1.

Figure 1. The outline of the proposed evaluation of two case studies.

3. Case Studies

In this paper, two full-scale structures, including the Eeklo Pedestrian Bridge and a
wind turbine, are studied. The details of these structures are discussed below.

3.1. Eeklo Pedestrian Bridge

The Eeklo Bridge in Belgium was monitored in 2017 by Van Nimmen et al. (2021), as
shown in Figure 2. They developed a finite element model of the bridge and compared the
numerical and experimental study [57]. This bridge has a length of 96 m and consists of
three spans (the middle span is 42 m and the two other spans are 27 m). Two main steel
beams (1.2 m height), a steel deck (8 mm thickness), and three secondary steel beams were
considered in the cross-section. The bridge was supported with two abutments at each
end, and two piers along the bridge [62]. Twelve modes with frequencies up to 10 Hz and
the corresponding modal damping ratios were identified [57]. Therefore, there is a wide
range of frequencies for the validation of the SOBI and TVF-EMD methods, and for this
reason, the Eeklo Bridge has been chosen as the ideal candidate for the case studies in this
paper. The bridge was monitored under ambient- and pedestrian-induced excitations using
10 tri-axial accelerometers. The measurement grids and the coordinate system are shown in
Figure 3. Ten different tests, including OMA (ambient excitation) and pedestrian excitation,
were considered for the bridge testing. The summary of the test information is presented in
Table 1. The data was collected using a sampling frequency of 100 Hz [57].

Figure 2. Eeklo Bridge [57].
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Figure 3. Top view of the Eeklo Bridge and the coordinate system [57].

Table 1. Monitoring tests of the Eeklo Bridge [57].

Test # Name Duration (sec) Description

A-A OMA_A 900 OMA
A-1 W073_free-1 720 Free walking, 73 persons
A-2 W073_free-2 660 Free walking, 73 persons
A-3 W073_free-3 649 Free walking, 73 persons
A-4 W072_free-4 1860 Free walking, 72 persons
B-B OMA_B 1200 OMA
B-1 W148_free-1 1200 Free walking, 148 persons
B-2 W148_free-2 1200 Free walking, 148 persons
B-3 W148_free-3 950 Free walking, 148 persons
B-4 W148_free-4 300 Free walking, 148 persons

3.2. Wind Turbine

Ou et al. (2021) monitored a blade of a wind turbine model (Sonkyo-Energy-3.5 kW)
under different excitation and environmental conditions. The length and mass of the
Sonkyo-Energy-3.5 kW blade, as shown in Figure 4a,b, are 1.75 m and 5.0 kg, respectively.
The blade was constructed based on a three-layered sandwich model using double-layered
composite material, and more structural details of the model can be found in [58]. One end
of the blade was connected to a steel frame using a fixed connection, and all the setup was
assembled in a climate chamber where both temperature and humidity were controlled.
Various temperatures were considered, varying from−15 ◦C to +40 ◦C, with a step increase
of 5 ◦C to monitor the blade in different conditions. Different types of sensors, including
eight accelerometers, were used to monitor the blade during the tests, and the locations of
the sensors are presented in Figure 4b. Moreover, they developed the finite element model
of the blade based on different scenarios and compared the results with the experimental
results [63].

Figure 4. Sonkyo Windspot 3.5 kW: (a) the turbine and (b) the sensor locations in the blade [58].
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Two different types of excitations, including white noise and sine sweep signals with
a duration of 120 s, were applied using an electromechanical shaker [58]. The measured
data of the sine sweep signal (frequencies from 1 to 300 Hz) is considered in this case
study. Two groups of damage scenarios were considered in several cases of the monitoring
process, including icing conditions and cracks on the blade. Some lumped masses were
used as the additional ice mass and applied on specific locations of the blade to simulate
the icing conditions. Icing conditions are a common problem for wind turbines, as these
structures are usually constructed in special locations. Moreover, some cuts on the blade
with various lengths and locations in different cases were considered, and the details of
each damage scenario are shown in Table 2. For instance, C+25 refers to the test that is
based on case C in Table 2 with a temperature of +25 ◦C.

Table 2. Details of the controlled tests of the wind turbine blade [58].

Test Label Description

R Healthy State
A Added mass 1 × 44 g
B Added mass 2 × 44 g
C Added mass 3 × 44 g
D Crack 1: L1 = 5 cm
E Crack 1: L1 = 5 cm Crack 2: L2 = 5 cm
F Crack 1: L1 = 5 cm Crack 2: L2 = 5 cm Crack 3: L3 = 5 cm
G Crack 1: L1 = 10 cm Crack 2: L2 = 5 cm Crack 3: L3 = 5 cm
H Crack 1: L1 = 10 cm Crack 2: L2 = 10 cm Crack 3: L3 = 5 cm
I Crack 1: L1 = 10 cm Crack 2: L2 = 10 cm Crack 3: L3 = 10 cm
J Crack 1: L1 = 15 cm Crack 2: L2 = 10 cm Crack 3: L3 = 10 cm
K Crack 1: L1 = 15 cm Crack 2: L2 = 15 cm Crack 3: L3 = 10 cm
L Crack 1: L1 = 15 cm Crack 2: L2 = 15 cm Crack 3: L3 = 15 cm

4. System Identification

The selected structures, as shown in Section 3, are analyzed using SOBI and TVF-EMD,
and the identified modal parameters are presented below.

4.1. Results Obtained from the Eeklo Pedestrian Bridge

Before discussing the results of SOBI and TVF-EMD, the time-domain signal of the
structure of test #A-2 is presented in Figure 5.

Figure 5. Time-domain signal of Eeklo Pedestrian Bridge for test #A-2.
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4.1.1. SOBI Method

Van Nimmen et al. (2021) identified the first 12 modal frequencies of the Eeklo Bridge
using experimental tests, as well as conducted FE simulations. Fourier spectra from the
raw data of a few typical tests are presented in Figure 6, which can be compared with the
modal frequencies of the bridge in Table 3. As shown, just modes 1.69, 2.97, and 6.42 Hz
have enough energy in all cases to be identified, and these modal frequencies have good
agreement with the identified modal frequencies by Van Nimmen et al. (2021). The data
of all ten tests conducted on the bridge have been analyzed by the SOBI technique, where
data from all the sensors have been considered for analysis. For instance, the output of the
mode identification of the A-1 test using SOBI is presented in Figure 7. As shown, only four
sources show clear modal responses, and the rest are mode-mixed or repeated. Therefore,
just the modal responses of four frequencies are identified for the A-1 test. The rest of the
modes were not recognized due to insufficient energy in the time-domain data.

Figure 6. Fourier spectra of the middle sensor of the Eeklo Pedestrian Bridge obtained from test #:
(a) A-1; (b) A-2; (c) B-1; (d) B-2.

Table 3. Modal frequencies (Hz) of the Eeklo Pedestrian Bridge using SOBI.

Mode #

Test # 1 2 3 4 5 6 7 8 9 10 11 12

FE [57] 1.69 2.97 3.21 3.44 5.68 5.74 6.01 6.42 6.98 7.44 9.64 9.89

SSI [57] 1.71 2.99 3.25 3.46 5.77 5.82 6.04 6.47 6.98 7.44 9.64 9.89

A-A 1.69 2.97 5.74 6.42

A-1 1.69 2.95 5.65 6.52

A-2 1.67 5.67 6.44

A-3 1.67 5.66 6.46

A-4 1.71 5.67 6.41

B-B 1.67 2.97 6.42

B-1 1.66 5.66 6.43

B-2 1.67 5.67 6.47

B-3 1.63 5.69 6.45

B-4 1.66 5.71 6.47 9.56
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Figure 7. Fourier spectra of the modal responses, obtained from SOBI using test #A-1.

One limitation of SOBI is that the maximum number of the identified source compo-
nents remains the number of sensors. Hence, as a total of ten sensors were used, the results
of the SOBI method are limited to ten regardless of the number of modes. Therefore, as the
bridge has 12 modes within 0–10 Hz, mode-mixing has resulted in the identified modal
responses. As summarized in Table 3, SOBI can identify just 3–4 modes out of 12 modes of
the structures using Equation (11). Moreover, comparing different tests in Table 3 confirms
that the type of excitation, including ambient and pedestrian excitations, does not have a
considerable effect on the performance of the SOBI method. For instance, the results of A-A
and A-2 tests have 4 and 3 identified modes, respectively, although these tests are totally
different regarding the type of excitation. It may also be concluded that additional sensors
could have improved the performance of SOBI for such a large-scale structure.

4.1.2. TVF-EMD Method

The TVF-EMD method is explored next for the modal identification of the test bridge.
The damping ratios of the structure corresponding to the IMFs are estimated using the
Auto-Correlation Function (ACF), followed by the exponential fitting. Figure 8 shows
the modal frequencies and the corresponding damping ratio of the middle sensor data
of test #A-2, which was obtained based on Equations (16) and (17). Figure 8a,c,e,g,i,k
are the resulting Fourier spectra of the IMFs of the identified modal frequencies of the
structure. Figure 8b,d,f,h,j,l illustrate the corresponding damping ratios obtained from the
decay curve of their ACF. Table 4 presents the modal frequencies (Hz) of the bridge using
TVF-EMD by considering its middle sensor. As shown, except for test #A-A, at least 6 out
of 12 modes of the structural modes have been identified using this method. Even in some
cases, such as test #A-3, 10 out of 12 modes have been identified, confirming the efficiency
of the TVF-EMD method.
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Figure 8. Fourier spectra and ACF of IMFs extracted from the middle sensor of test #A-2, respectively:
(a,b) IMF1; (c,d) IMF2; (e,f) IMF3; (g,h) IMF4; (i,j) IMF5; (k,l) IMF6.

By comparing Tables 3 and 4, it can be concluded that the TVF-EMD method is
more efficient than the SOBI method for the modal identification of closely-spaced fre-
quency structures, as TVF-EMD results in more identified modal frequencies. As shown
in Tables 3 and 4, ~30% of the modes can be identified using SOBI, regardless of the type
of the tests; however, the TVF-EMD method results in excellent identification accuracy.
Moreover, the efficiency of the TVF-EMD method depends on the type of excitation, in-
cluding ambient and pedestrian excitations, as the performance of this method is different
depending on the excitation cases. On the other hand, the type of excitations does not affect
the performance and accuracy of the SOBI method. The damping ratios of the structure
corresponding to the IMFs are estimated using ACF and Equation (17), followed by the
exponential fitting, and the results are shown in Table 5. As can be seen in some cases,
not only are the estimated damping ratios corresponding to the IMFs almost the same as
the presented damping ratios by Van Nimmen et al. (2021), but also the damping ratios
estimated based on different test data are nearly the same. However, the uncertainties in
damping estimates are prevalent in the presence of closely-spaced modes, which can also
be found in the literature [64].
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Table 4. Modal frequencies (Hz) of the Eeklo Pedestrian Bridge using TVF-EMD based on its mid-
span sensor.

Mode #

Test # 1 2 3 4 5 6 7 8 9 10 11 12

FE [57] 1.69 2.97 3.21 3.44 5.68 5.74 6.01 6.42 6.98 7.44 9.64 9.89

SSI [57] 1.71 2.99 3.25 3.46 5.77 5.82 6.04 6.47 6.98 7.44 9.64 9.89

A-A 1.69 2.97 3.22 3.45 5.66 5.74 6.42 9.89

A-1 1.72 2.95 3.45 5.70 6.48 9.77

A-2 2.91 3.20 3.39 5.98 6.37 6.83

A-3 3.01 3.18 3.49 5.66 5.86 5.93 6.43 6.94 9.61 9.85

A-4 2.99 3.15 3.49 5.72 5.82 6.10 6.43 6.87

B-B 2.97 5.90

B-1 1.67 2.88 3.29 3.59 6.55 7.01 9.86

B-2 1.68 2.95 3.10 3.37 5.47 5.80 5.94 6.43 7.04

B-3 1.64 3.00 3.25 5.45 5.90 6.50 7.19 9.89

B-4 1.64 2.90 3.11 3.57 6.52 7.14

Table 5. Estimated damping ratios (%) of the Eeklo Pedestrian Bridge corresponding to the identified
modal frequencies using TVF-EMD.

Mode Number (j)

Test # 1 2 3 4 5 6 7 8 9 10 11 12

SSI & FE [57] 1.94 0.19 1.45 2.97 0.23 0.16 2.08 0.60 3.38 4.77 0.87 2.50

A-A 1.75 0.77 2.67 1.45 2.15 0.62 0.63 2.65

A-1 2.35 1.55 2.60 3.25 1.65 2.67

A-2 1.59 2.02 2.52 2.48 1.28 2.60

A-3 1.49 2.40 2.71 2.08 2.79 2.69 1.40 3.21 2.67 2.95

A-4 1.58 1.71 2.02 2.47 2.20 2.93 1.65 2.02

B-B 0.19 2.51

B-1 6.90 1.80 3.49 3.20 1.69 1.64 1.16

B-2 11.32 2.99 6.14 5.65 3.48 3.28 2.96 1.72 2.70

B-3 11.31 2.90 5.58 3.39 2.84 1.65 2.57 1.87

B-4 10.61 2.72 5.57 4.86 1.48 2.43

4.2. Results Obtained from the Wind Turbine

The time-domain signal of the wind turbine of test #A-2 is presented in Figure 9.

4.2.1. SOBI Method

Ou et al. (2021) identified the first five modal frequencies of the blade using the SSI
method by considering all eight sensors. The first three modes and the following two modes
are longitudinal and torsional, respectively. As discussed in Section 3, eight accelerometers,
a1 to a8, were used to monitor the blade, and the Fourier spectra of the data collected from
a3 and a8 are shown in Figure 10, which prove the identified modal frequencies by Ou et al.
(2021). The output of SOBI applied on different types of tests, which were calculated based
on Equation (11)—including healthy state (R+25), added mass damage scenario (C+25),
and cracked blade damage scenario (L+25)—are presented in Figures 11–13, respectively.
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By comparing these figures, it can be mentioned that the accuracy and performance of
the SOBI do not depend on the type of the tests and damage scenarios. For instance, in
Figure 13, the second, third, and fifth modes of the structure are clear; however, the rest of
the components have mixed modes.

Figure 9. Time-domain signal of wind turbine blade extracted from a4 sensor of test #K.

Figure 10. Fourier spectra of the acceleration measurements for cases R+25, C+25, and L+25; (a) a3;
(b) a8.
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Figure 11. Fourier spectra of SOBI results obtained from R+25 test conducted on the wind turbine blade.

Figure 12. Fourier spectra of SOBI results applied on the C+25 test conducted on the wind turbine blade.

The first five identified modal frequencies of the blade using SSI are presented in
Table 6. Moreover, the data from all cases, including health state and damage scenarios
at a temperature of +25 ◦C (added masses and cracks), are analyzed using SOBI, which
is shown in Table 6. As illustrated, the SOBI method can identify 40–80% of the modes
of the wind turbine blade throughout the different tests. Moreover, by comparing one of
the modes of the structure in different tests in Table 6, for example, the third mode of the
structure, the more added mass and cracks, the smaller modal frequency. Regardless of the
type of tests and damage scenarios, almost, in most cases, 60% of the modes are identified,
which is more accurate than the results of the SOBI method applied on the Eeklo Pedestrian
Bridge. As shown in Table 3, SOBI could identify nearly 30% of the modes of the Eeklo
Pedestrian Bridge regardless of the type of excitation and conditions.
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Figure 13. Fourier spectra of SOBI results obtained from the L+25 test conducted on the wind
turbine blade.

Table 6. Identified modal frequencies (Hz) of the wind turbine blade at +25 ◦C using the SOBI method.

Mode #

Test # 1 2 3 4 5

SSI [58] 13.41 47.03 117.45 135.60 207.99

R - 49.19 118.13 137.38 213.57

A - 49.18 - 137.04 -

B 13.74 48.85 - - 211.47

C 13.71 48.86 118.47 - 209.57

D - 49.03 117.59 137.13 213.35

E - 48.80 117.37 - 211.87

F 13.89 - 117.39 - 210.64

G - 47.96 117.49 135.57 209.59

H - 48.16 116.76 - 207.68

I 14.68 46.36 - - -

J 14.06 - 116.44 131.54 -

K 12.62 - 116.11 - 201.13

L - 43.34 115.47 - -

The reason for this considerable variation in the performance of the SOBI method
could be due to the difference in the number of sensors used to monitor the structures. For
the Eeklo Pedestrian Bridge, 10 sensors have been used to identify 12 modes. However,
eight sensors have been considered to identify just five modes of the wind turbine blade.
As mentioned, the limitation of the SOBI technique is that the maximum number of the
identified source components will be the number of sensors. From this, it can be concluded
that the SOBI method is more efficient when the number of channels is more than the
number of modes that should be identified. Moreover, the SSI method used in [58] requires
an intensive stabilization diagram and model order selection. This tedious process is not
required in either SOBI or TVF-EMD, which is the advantage of these methods over SSI.

To assess the effects of the blade temperature on the results and performance of
the SOBI method for modal identification, the results of test R at different temperatures,
varying from −15 ◦C to +40 ◦C and considering a step of 5 ◦C, have been analyzed and the
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identified frequencies are presented in Figure 14. As shown, as the temperature increases,
the frequency of the mode decreases linearly. By comparing the results of different modes,
the frequencies of the fifth and second modes decrease by 0.24 Hz and 0.05 Hz per unit
temperature (◦C), respectively. Hence, changing the temperature does not equally affect the
identified frequencies of the different modes. For instance, if the frequency of the modes of
the wind turbine blade is less than 100 Hz, the effect of temperature is negligible.

Figure 14. Identified modal frequencies of the wind turbine blade for the test R at different tempera-
tures using the SOBI method.

4.2.2. TVF-EMD Method

The TVF-EMD method has been used for a similar analysis of the wind turbine blade
data. Moreover, the damping ratios of the structure corresponding to the IMFs are estimated
using ACF followed by the exponential fitting using Equation (17). For example, modal
frequencies and the corresponding damping ratios of the test# K and B are presented in
Figures 15 and 16. Figures 15a,c,e,g and 16a,c,e are the Fourier spectra of the IMFs of
the identified modal frequencies of the structure using the TVF-EMD method. As shown,
four IMFs in Figure 15 and three IMFs in Figure 16 present four and three modes out
of five modes of the structure, respectively. Figures 15b,d,f,h and 16b,d,f illustrate the
corresponding damping ratios obtained from the decay curve of their ACF. As shown,
based on the data of test K, modes 2, 3, 4, and 5 have been identified. Also, according to the
data of test# B, modes 1, 2, and 4 have been identified.

The modal identification results using the a4 sensor at the middle of the blade at
+25 ◦C are shown in Table 7. From this, it can be concluded that the TVF-EMD method
can identify 40–80% of the modes of the blade in different cases. In most cases, at least
three modes out of five modes (i.e., 60% of the modes) have been identified. By comparing
Tables 6 and 7, it can be noted that the accuracy of both SOBI and TVF-EMD are almost the
same. In most cases, both methods identified 60% of the modal frequencies of the wind
turbine blade. On the other hand, TVF-EMD had a better performance than SOBI for modal
identification of the Eeklo Pedestrian Bridge, as discussed in Tables 3 and 4. The reason for
this difference can be the shortage of channels and sensors in the modal identification of
the bridge (10 sensors versus 12 modes). From this, it can be concluded that if the number
of sensors is less than the number of target modes of the structure, TVF-EMD will have
better performance and higher accuracy than the SOBI method.

On the other hand, when the number of sensors is equal to or more than the number
of modes of the structure, TVF-EMD and SOBI will have almost the same performance. In
these cases, the SOBI method will be the better choice, as this analysis takes less time than
the TVF-EMD method. The average run-time of both methods in different cases of the case
studies is presented in Table 8. The MATLAB codes were run by a computer with a Core-i7
CPU. As shown, the run-time of TVF-EMD is 287-times (average) more than the run-time
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of the SOBI method, which proves the advantage of SOBI in this regard. The damping
ratios of the structure corresponding to the IMFs are estimated using ACF followed by the
exponential fitting, and the results are shown in Table 9. The damping ratios estimated
based on different test data are almost the same. For example, the damping ratio of the
third mode is around 3% in different tests.

Figure 15. Fourier spectra and ACF of IMFs extracted from a4 sensor of test #K conducted on the
wind turbine blade; (a,b) IMF1; (c,d) IMF2; (e,f) IMF3; (g,h) IMF4.

Figure 16. Fourier spectra and ACF of IMFs extracted from a4 sensor of test #B conducted on the
wind turbine blade; (a,b) IMF1; (c,d) IMF2; (e,f) IMF3.
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Table 7. Identified modal frequencies (Hz) of the wind turbine blade at +25 ◦C using TVF-EMD by
considering a4.

Mode #

Test # 1 2 3 4 5

SSI [58] 13.41 47.03 117.45 135.60 207.99

R - 49.42 - 156.52 215.35

A - 49.25 - 147.51 214.44

B 13.97 49.09 - 155.18 -

C 14.23 - - 167.93 215.10

D - 49.34 - - 203.27

E - 49.00 - 159.35 209.01

F 14.68 52.25 113.85 - -

G - 47.42 103.26 149.76 210.60

H - 49.25 95.60 152.85 206.69

I - 44.67 - 153.85 205.44

J - 47.00 - 151.85 210.60

K - 46.25 102.18 139.15 206.35

L 15.34 - - 143.10 -

Table 8. The average run-time of the methods in both case studies.

Run Time (min)

Case Study TVF-EMD SOBI

Eeklo Pedestrian Bridge 38.20 0.13

Wind turbine blade 29.40 0.10

Table 9. Estimated damping ratios of the wind turbine blade corresponding to the identified modal
frequencies by the TVF-EMD method.

Mode #

Test Label (+25 ◦C) 1 2 3 4 5

R - 3.49 - 0.74 1.00

A - 3.10 - 1.11 0.39

B 3.21 2.81 - 2.79 -

C 2.11 - - 1.08 1.68

D - 3.24 - - 2.52

E - 1.21 - 2.21 1.34

F 3.13 2.89 2.84 - -

G - 3.53 3.78 7.82 1.08

H - 1.11 3.02 0.52 0.78

I - 3.01 - 1.41 1.52

J - 2.18 - 1.13 1.46

K - 2.91 3.98 1.98 1.12

L 1.25 - - 0.72 -
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5. Conclusions

A comprehensive study has been implemented to validate the accuracy of TD and
TFD modal identification methods, SOBI and TVF-EMD, and compare their performance.
These techniques have been applied to analyze the structural monitoring data of two full-
scale structures, the Eeklo Pedestrian Bridge and Sonkyo wind turbine blade, subjected to
different excitations and damage scenarios. The outputs of each method for different cases
and tests have been presented and compared. The following conclusions can be drawn:

1. SOBI has identified 25–33% of the modes of the Eeklo Pedestrian Bridge and 40–80%
(60% in most cases) of the modes of the wind turbine blade in different cases. The
reason for this considerable variation could be due to the difference in the number of
channels used to monitor the structures. For the Eeklo Pedestrian Bridge, 10 sensors
have been used to identify 12 modes. However, eight sensors have been considered
to identify five modes of the wind turbine blade. Since the limitation of the SOBI
technique is that the maximum number of the identified source components will
be the number of sensors, the accuracy of the SOBI method is improved when the
number of channels is more than the number of target modes. On the other hand, the
TVF-EMD method could identify 50–83% of the Eeklo Bridge modes and 40–80% of
the wind turbine blade modes in different cases. Hence, the accuracy of this method
does not depend on the type of structure, the number of channels, and the number of
modes of the structure.

2. If the number of sensors is less than the number of modes of the structure, TVF-EMD
will have better performance and higher accuracy than the SOBI method.

3. When the number of sensors is equal to or more than the number of modes of the
structure, TVF-EMD and SOBI have almost the same performance. In these cases,
the SOBI method will be the better choice, as this analysis takes less time than the
TVF-EMD method. In all tests of these case studies, SOBI takes less than one minute;
however, TVF-EMD takes 34 min on average, which is considerably more than the
run-time of SOBI.

4. The performance of the SOBI method is independent of the type of excitation, includ-
ing ambient- and pedestrian-induced excitations, and the type of damage scenarios.
It could identify almost the same percentage of the modes in different tests conducted
on the structures. On the other hand, the type of damage scenario and excitations
affect the TVF-EMD accuracy considerably.

5. As the temperature increases, the frequency of the modes decreases linearly. Moreover,
the effects of temperature on the modes with higher frequencies are more than the
modes with lower frequencies.

6. The estimated damping ratios using ACF corresponding to the IMFs identified by
TVF-EMD method have a good agreement with the damping ratios of the structure.
Also, the damping ratios estimated based on different test data are almost the same.
Therefore, the different excitation and damage scenarios do not affect the estimated
damping ratios.

Author Contributions: Conceptualization, A.A. and A.S.; investigation, A.A.; writing—original draft
preparation, A.A.; writing—review and editing, A.S.; supervision, A.S.; funding acquisition, A.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the corresponding author’s Discovery and Alliance grant
provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Infrastructures 2022, 7, 98 20 of 22

References
1. Momeni, H.; Ebrahimkhanlou, A. High-dimensional data analytics in structural health monitoring and non-destructive evaluation:

A review paper. Smart Mater. Struct. 2022, 31, 043001. [CrossRef]
2. Su, J.; Xia, Y.; Weng, S. Review on field monitoring of high-rise structures. Struct. Control Health Monit. 2020, 27, e2629. [CrossRef]
3. Sony, S.; Laventure, S.; Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring.

Struct. Control Health Monit. 2019, 26, e2321. [CrossRef]
4. Eshkevari, S.S.; Matarazzo, T.J.; Pakzad, S.N. Bridge modal identification using acceleration measurements within moving

vehicles. Mech. Syst. Signal Process. 2020, 141, 106733. [CrossRef]
5. Hou, R.; Xia, Y. Review on the new development of vibration-based damage identification for civil engineering structures:

2010–2019. J. Sound Vib. 2021, 491, 115741. [CrossRef]
6. Singh, P.; Keyvanlou, M.; Sadhu, A. An improved time-varying empirical mode decomposition for structural condition assessment

using limited sensors. Eng. Struct. 2021, 232, 111882. [CrossRef]
7. Tang, T.; Yang, D.-H.; Wang, L.; Zhang, J.-R.; Yi, T.-H. Design and application of structural health monitoring system in long-span

cable-membrane structure. Earthq. Eng. Eng. Vib. 2019, 18, 461–474. [CrossRef]
8. Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S. Review of bridge structural health monitoring aided by big data and

artificial intelligence: From condition assessment to damage detection. J. Struct. Eng. 2020, 146, 04020073. [CrossRef]
9. Zhang, L.; Qiu, G.; Chen, Z. Structural health monitoring methods of cables in cable-stayed bridge: A review. Measurement 2021,

168, 108343. [CrossRef]
10. Yang, R.; He, Y.; Zhang, H. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renew.

Sustain. Energy Rev. 2016, 60, 1225–1250. [CrossRef]
11. Chandrasekhar, K.; Stevanovic, N.; Cross, E.J.; Dervilis, N.; Worden, K. Damage detection in operational wind turbine blades

using a new approach based on machine learning. Renew. Energy 2021, 168, 1249–1264. [CrossRef]
12. Beale, C.; Niezrecki, C.; Inalpolat, M. An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage

detection from wind turbine blades. Mech. Syst. Signal Process. 2020, 142, 106754. [CrossRef]
13. ASCE. A Comprehensive Assessment of America’s Infrastructure—Report Card; American Society of Civil Engineers (ASCE): Reston,

VA, USA, 2021.
14. Lian, J.; Cai, O.; Dong, X.; Jiang, Q.; Zhao, Y. Health monitoring and safety evaluation of the offshore wind turbine structure: A

review and discussion of future development. Sustainability 2019, 11, 494. [CrossRef]
15. Martinez-Luengo, M.; Kolios, A.; Wang, L. Structural health monitoring of offshore wind turbines: A review through the Statistical

Pattern Recognition Paradigm. Renew. Sustain. Energy Rev. 2016, 64, 91–105. [CrossRef]
16. McGugan, M.; Mishnaevsky, L. Damage mechanism based approach to the structural health monitoring of wind turbine blades.

Coatings 2020, 10, 1223. [CrossRef]
17. Chadha, M.; Hu, Z.; Todd, M.D. An alternative quantification of the value of information in structural health monitoring. Struct.

Health Monit. 2021. [CrossRef]
18. Wait, I.; Yang, Z.J.; Chen, G.; Still, B. Wind-induced instabilities and monitoring of wind turbine. Earthq. Eng. Eng. Vib. 2019, 18,

475–485. [CrossRef]
19. Yang, W.; Peng, Z.; Wei, K.; Tian, W. Structural health monitoring of composite wind turbine blades: Challenges, issues and

potential solutions. IET Renew. Power Gener. 2017, 11, 411–416. [CrossRef]
20. Tsiapoki, S.; Bahrami, O.; Häckell, M.W.; Lynch, J.P.; Rolfes, R. Combination of damage feature decisions with adaptive boosting

for improving the detection performance of a structural health monitoring framework: Validation on an operating wind turbine.
Struct. Health Monit. 2021, 20, 637–660. [CrossRef]

21. Li, M.; Kefal, A.; Oterkus, E.; Oterkus, S. Structural health monitoring of an offshore wind turbine tower using iFEM methodology.
Ocean Eng. 2020, 204, 107291. [CrossRef]

22. Nielsen, J.S.; Tcherniak, D.; Ulriksen, M.D. A case study on risk-based maintenance of wind turbine blades with structural health
monitoring. Struct. Infrastruct. Eng. 2021, 17, 302–318. [CrossRef]

23. García, D.; Tcherniak, D. An experimental study on the data-driven structural health monitoring of large wind turbine blades
using a single accelerometer and actuator. Mech. Syst. Signal Process. 2019, 127, 102–119. [CrossRef]

24. Kilic, G.; Unluturk, M.S. Testing of wind turbine towers using wireless sensor network and accelerometer. Renew. Energy 2015, 75,
318–325. [CrossRef]

25. Mei, Q.; Gül, M. A crowdsourcing-based methodology using smartphones for bridge health monitoring. Struct. Health Monit.
2019, 18, 1602–1619. [CrossRef]

26. Sarmadi, H.; Entezami, A.; Salar, M.; De Michele, C. Bridge health monitoring in environmental variability by new clustering and
threshold estimation methods. J. Civ. Struct. Health Monit. 2021, 11, 629–644. [CrossRef]

27. Cahill, P.; Hazra, B.; Karoumi, R.; Mathewson, A.; Pakrashi, V. Vibration energy harvesting based monitoring of an operational
bridge undergoing forced vibration and train passage. Mech. Syst. Signal Process. 2018, 106, 265–283. [CrossRef]

28. Xi, R.; He, Q.; Meng, X. Bridge monitoring using multi-GNSS observations with high cutoff elevations: A case study. Measurement
2021, 168, 108303. [CrossRef]

29. Singh, P.; Sadhu, A. Limited sensor-based bridge condition assessment using vehicle-induced nonstationary measurements.
Structures 2021, 32, 1207–1220. [CrossRef]

http://doi.org/10.1088/1361-665X/ac50f4
http://doi.org/10.1002/stc.2629
http://doi.org/10.1002/stc.2321
http://doi.org/10.1016/j.ymssp.2020.106733
http://doi.org/10.1016/j.jsv.2020.115741
http://doi.org/10.1016/j.engstruct.2021.111882
http://doi.org/10.1007/s11803-019-0484-y
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002535
http://doi.org/10.1016/j.measurement.2020.108343
http://doi.org/10.1016/j.rser.2016.02.026
http://doi.org/10.1016/j.renene.2020.12.119
http://doi.org/10.1016/j.ymssp.2020.106754
http://doi.org/10.3390/su11020494
http://doi.org/10.1016/j.rser.2016.05.085
http://doi.org/10.3390/coatings10121223
http://doi.org/10.1177/14759217211028439
http://doi.org/10.1007/s11803-019-0515-8
http://doi.org/10.1049/iet-rpg.2016.0087
http://doi.org/10.1177/1475921720909379
http://doi.org/10.1016/j.oceaneng.2020.107291
http://doi.org/10.1080/15732479.2020.1743326
http://doi.org/10.1016/j.ymssp.2019.02.062
http://doi.org/10.1016/j.renene.2014.10.010
http://doi.org/10.1177/1475921718815457
http://doi.org/10.1007/s13349-021-00472-1
http://doi.org/10.1016/j.ymssp.2018.01.007
http://doi.org/10.1016/j.measurement.2020.108303
http://doi.org/10.1016/j.istruc.2021.03.091


Infrastructures 2022, 7, 98 21 of 22

30. Wang, X.; Chakraborty, J.; Niederleithinger, E. Noise reduction for improvement of ultrasonic monitoring using coda wave
interferometry on a real bridge. J. Nondestruct. Eval. 2021, 40, 1–14. [CrossRef]

31. Abasi, A.; Harsij, V.; Soraghi, A. Damage detection of 3D structures using nearest neighbor search method. Earthq. Eng. Eng. Vib.
2021, 20, 705–725. [CrossRef]

32. Gillich, G.-R.; Furdui, H.; Wahab, M.A.; Korka, Z.-I. A robust damage detection method based on multi-modal analysis in variable
temperature conditions. Mech. Syst. Signal Process. 2019, 115, 361–379. [CrossRef]

33. Rizzo, P.; Enshaeian, A. Challenges in bridge health monitoring: A review. Sensors 2021, 21, 4336. [CrossRef]
34. Das, S.; Saha, P. Performance of hybrid decomposition algorithm under heavy noise condition for health monitoring of structure.

J. Civ. Struct. Health Monit. 2020, 10, 679–692. [CrossRef]
35. Toh, G.; Park, J. Review of vibration-based structural health monitoring using deep learning. Appl. Sci. 2020, 10, 1680. [CrossRef]
36. Shokravi, H.; Shokravi, H.; Bakhary, N.; Rahimian Koloor, S.S.; Petrů, M. Health monitoring of civil infrastructures by subspace
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