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Abstract: The fuzzy logic technique is one of the effective approaches for evaluating flexible and
rigid pavement distress. The process of classifying pavement distress is usually performed by visual
inspection of the pavement surface or using data collected by automated distress measurement
equipment. Fuzzy mathematics provides a convenient tool for incorporating subjective analysis,
uncertainty in pavement condition index, and maintenance-needs assessment, and can greatly
improve consistency and reduce subjectivity in this process. This paper aims to develop a fuzzy
logic-based system of pavement condition index and maintenance-needs evaluation for a pavement
road network by utilizing pavement distress data from the U.S. and Canada. Considering rutting,
fatigue cracking, block cracking, longitudinal cracking, transverse cracking, potholes, patching,
bleeding, and raveling as input variables, the variables were fuzzified into fuzzy subsets. The fuzzy
subsets of the variables were considered to have triangular membership functions. The relationships
between nine pavement distress parameters and PCI were represented by a set of fuzzy rules. The
fuzzy rules relating input variables to the output variable of sediment discharge were laid out
in the IF–THEN format. The commonly used weighted average method was employed for the
defuzzification procedure. The coefficient of determination (R2), root mean squared error (RMSE),
and mean absolute error (MAE) were used as the performance indicator metrics to evaluate the
performance of analytical models.

Keywords: flexible pavements; pavement condition index (PCI); fuzzy inference system (FIS);
pavement distresses

1. Introduction and Related Work

Pavements are considered the primary asset of road infrastructure in many countries.
Pavement performance is measured using three indicators: the present serviceability
rating (PSR), the pavement condition index (PCI), and the international roughness index
(IRI). They are widely used in the development of pavement maintenance programs.
The PCI is one of the most effective approaches to evaluating pavement performance.
Pavement condition evaluation is conducted by visual inspection by personnel trained
for that objective. Many agencies use conventional techniques to predict performance
variables, but there are some drawbacks due to the time, large workforce, and equipment
required to collect data from the field. Moreover, the amount of time needed for data input
and model development is also of concern. Moreover, subjectivity and inconsistency are
significant problems in many highways agencies’ pavement distress evaluation process.

The United States Army Corps of Engineers developed this technique. The PCI is
calculated by visual inspection of a pavement and a numerical value between 0 and 100,
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with 0 representing a failed pavement and 100 representing the best possible conditions [1].
The standard PCI utilizes a scale of seven different classifications (excellent, very good,
good . . . etc., to failed) to show different situations within the rankings, as demonstrated
in Figure 1. Shahin and Walther [2] proposed the following method to a procedure for
calculating PCI for flexible pavement:
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Step 1: Determine the severity and extent of each type of distress for a pavement
section. The severity level is expressed using three terms: Minimal, Moderate, and Se-
vere. Depending on the type of distress, the extent is measured in linear, square (metre),
or numbers.

Step 2: Determine the density of pavement distress by:

Density =
Distress area m2

Section area m2 × 100 (1)

Density =
Distress amount in the linear m2

Sample unit area in m2 × 100 (2)

Density =
Number o f potholes

Sample unit area in m2 × 100 (3)

Step 3: Determine deduction points (DP) for each pavement distress type using
deducting value curves.

Step 4: Calculate the total deduction value (TDV) for each section’s distresses.
Step 5: Calculate the corrected deduction value (CDV) to adjust the total deduction

value (TDV).
Step 6: Subtract the CDV from 100 to the calculate PCI for each section.
In recent decades, machine-based surveys have become an essential part of routine

pavement condition evaluation because they provide the technology to collect surface
distresses in a repeatable, detailed, and timely manner. However, the analysis method
needs to be improved for the efficient conversion of these massive amounts of data into
information. Due to advances in computational power, soft computing techniques have
gained favor in pavement engineering in recent decades. The advanced computational and
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widely available resources for soft techniques enable the low-cost storage and handling of
enormous data volumes. Soft computing, such as fuzzy logic and artificial intelligence, has
recently been used in the asphalt pavement to predict and classify pavement conditions.

These approaches are adaptable and can handle scenarios that engineers find unclear.
Since engineering decisions necessitate a high level of human skill and must also be
consistent, using soft computing in these situations is a good option for pavement engineers.

Numerous researchers have used new statistical and computational procedures to
analyze and assess pavement condition and recommend the most appropriate maintenance
activity. Ahmed et al. [4] applied a multiple linear regression technique to develop the PCI.

Several studies examined pavement performance in terms of common distresses such
as rutting and fatigue and methods for predicting pavement performance. For exam-
ple, Mousa et al. used multi-layer elastic analysis software (KENLAYER) to predict the
performance of constructed pavement with a base layer consisting of reclaimed asphalt
pavement (RAP)/virgin aggregate blends, taking into account the horizontal tensile strain
at the bottom of the AC layer and the vertical resilient strain at critical locations within
the pavement system [5]. They calculated the total pavement rutting and fatigue cracking
using the critical strains computed by the multi-layer elastic analysis and the performance
models and transfer functions from the mechanistic-empirical pavement design guide.

Ali et al. [6] proposed a procedure for evaluating the pavement performance of 19 roads
in St. John’s, Newfoundland, Canada, where the pavement condition index (PCI) and
international roughness index (IRI) were the main indicators in the characterization of
the overall pavement performance of asphalt pavement. Sagheer et al. [7] developed a
knowledge-based technique for pavement distress categorization using logic programming
and the Prolog language to assess distresses in flexible pavements.

Relatively few studies have been conducted in recent years to predict the PCI of flexible
pavements using machine learning approaches [8,9]. Few studies have been conducted to
predict the PCI value based on artificial intelligence methods [10–12].

In the research of Imam et al. [13], IRI was the pavement condition indicator for
predicting PCI using gene expression programming.

Piryonesi and El-Diraby [14] conducted a study to measure the accuracy of algorithms
in predicting two of the most popular performance indicators, IRI and PCI, which use
machine learning techniques to indicate asphalt pavement distress.

In 1965, Zadeh proposed the fuzzy set theory. Zadeh’s development of this approach
was primarily to offer efficient solutions to complex problems. A model can incorporate
quantitative (qualitative) and qualitative (quantitative) data with the fuzzy logic technique.
Since its inception, fuzzy set theory has been applied to various fields, including civil
engineering and others [15].

Moazami et al. [16] implemented the fuzzy logic for pavement maintenance and
rehabilitation. Mahmood and Mahmood et al. [17,18] applied fuzzy logic theory for PCI
models. In addition, Karashahin and Terzi [19] and Jeong et al. [20] used fuzzy logic
technique to evaluate pavement performance and prediction models of pavement distress.
All researchers mentioned above agreed that fuzzy modelling can handle a large number of
pavement sections and provides more precise results than other soft computing techniques
such as multiple linear regression, artificial neural networks, or other analytical processes.

The assessment of the influence of pavement distress variables on any pavement sec-
tion at an individual level and prioritization for maintenance and rehabilitation (M&R) is a
challenging task, particularly due to the difference in opinion of decision-makers. Therefore,
it is desirable to devise a rating mechanism or condition indicator that would represent
qualitative and quantitative measurements capturing the condition of the pavements. In
the present study, the researchers try to present a model to estimate PCI values based on a
fuzzy inference system (FIS). The FIS model predicts the PCI based on pavement distress.
The FIS models were based on data collected from the long-term pavement performance
(LTPP) dataset.
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1.1. Fuzzy Logic Approach

Several artificial intelligence technologies, including fuzzy logic and genetic algo-
rithms, can predict various situations [21]. Zadeh introduced fuzzy theory in 1965 with the
perception of uncertainty and certainty, and it has numerous applications [22–24]. In the
field of engineering, the fuzzy approach can be used to evaluate uncertain problems [25]. In
recent decades, fuzzy logic has been widely used in electronic machines, such as washing
machines, microwave ovens, and industrial process control [26]. Fuzzy logic set method
is one of the accurate mathematical methods for modelling and simulating incomplete
knowledge [27].

An approach to modelling based on fuzzy logic is more in line with the way humans
think and demonstrates the ability to deal with ambiguity, subjectivity, and uncertainty.
Fuzzy logic imparts mathematical knowledge and expertise to less-experienced engineers
based on membership degree rather than on crisp membership of the classical binary
logic. Researchers in pavement performance classification have frequently employed this
technique. Figure 1 depicts the components of the fuzzy inference system.

1.2. Fuzzy Rule-Based System

A fuzzy inference rule-based system is among the most common techniques used to
solve classification problems. Fuzzy inference is a process that interprets the values in the
independent variables and assigns values to the output variables based on user-defined
rules. Initially, this method’s advantages are that intelligence is expressed in the form of
IF–THEN laws, making the reasoning process understandable in human terms. Meanwhile,
it would have the ability to take linguistic information from human analysts and combine it
with numerical data. Lastly, it can approximate complex nonlinear functions with a simple
method. Figure 2 presented the diagram of a fuzzy Inference system.
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Figure 2. Schematic diagram of a fuzzy inference system.

2. Research Objective

This paper focuses mainly on developing a pavement condition index (PCI) model that
correspond to an effective maintenance strategy using field data, based on fuzzy inference
systems (FIS) technique.
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Methodology and Data Collection

Table 1 illustrates the input variables used in the PCI models and the ranges of variables
for two datasets (120) and (150) sections from the LTPP dataset to create the fuzzy logic. The
effect of pavement distresses is considered for each distress. There are nine different types
of distress in these sections, including rutting, fatigue cracking, block cracking, longitudinal
cracking, transverse cracking, patching, potholes, bleeding, and raveling. Table 1 presents
the descriptive statistics for 120 and 150 sections of the measured deterioration. Figure 3
shows structure of the fuzzy logic approach to the PCI.

Table 1. Descriptive statistics for 120 and 150 sections of the measured deterioration.

Parameters Unit Min
Statistic

Maxi
Statistic

Mean
Statistic

Mean
Std. Error

Std
Statistic

PCI - 5.00 100.00 59.07 2.78 32.34
Rutting (mm) 0.0 135.9 23.6 3.1 37.7

Fatigue Cracking (m2) 0.00 377.90 38.59 6.58 76.48
Block Cracking (m2) 0.00 557.60 5.80 4.30 50.01

Longitudinal Cracking (m2) 0.00 325.60 66.88 7.77 90.29
Transverse Cracking (m2) 0.00 192.30 30.63 3.74 43.50

Patching (m2) 0.00 45.80 1.52 0.67 7.73
Potholes (Number) 0.00 0.00 0.00 0.00 0.00
Bleeding (m2) 0.00 350.80 18.95 6.12 70.32
Ravelling (m2) 0.00 564.30 44.98 10.62 122.05
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3. Fuzzy Inference System (FIS) and Membership Function

The inference process transforms fuzzy input values into fuzzy output values. An IF–
THEN rule that includes an antecedent and a consequence is known as a fuzzy rule. Rules
are defined in linguistic terms and consider linguistic variables of both inputs and outputs.
The membership functions for input and output variables functions are then decided.
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All input variables have three membership functions, which are classified as Minimal,
Moderate, and Severe. Similarly, the output variables have seven membership functions
for FPCI, classified as Failed, Very Poor, Poor, Fair, Good, Very Good, and Excellent, as
explained in Figure 1. In this method, for each input and output FPCI, the x-axis reflects
the distress density, while the y-axis is a membership function varying between 0 and 1,
where ‘0’ indicates no statistical relationship and ‘1’ indicates a strong relationship [28].

4. Mathematical Development
4.1. Model Formulation

The research study presents a model estimating the fuzzy pavement condition index
(FPCI) based on the magnitude of the different distress values considered. To develop a
fuzzy-based pavement serviceability model, initially incorporated the pavement densities
measured to ASTM D6433-18 [29]. Eventually, the fuzzy inference system software MAT-
LAB 2020b was then used to design a fuzzy inference system from the LTPP data. Further,
a methodology based on a case study to evaluate road pavements using soft computing
techniques has been proposed. These methods aim to research the tolerance to ambiguity,
approximation, and imprecision involved in collecting and extracting data and finding so-
lutions to real-world problems that are difficult to model in an unpredictable environment.

4.2. Data Pre-Processing and Fuzzification

After extracting and revising data from the LTPP data set, the fuzzy model is prepared
with nine independent parameters of distress types. Nine independent variables as input
and one dependent variable as output FPCI are considered for the fuzzy modelling study.

Fuzzification is the process of converting numerical values to a linguistic fuzzy set
using a membership function. The MF is a mathematical formula for dealing with fuzziness.

Membership functions are used in the fuzzification and defuzzification steps of a
fuzzy inference system to map the crisp values to fuzzy linguistic terms and vice versa. In
the proposed system, the crisp values are fuzzified into three degrees: Minimal, Moderate,
and Severe. The level to which each input is considered Minimal, Moderate, and Severe,
is computed using the membership functions. The simplest and sufficient function to
represent severity, density, and weighting factors is triangular fuzzy numbers (TFNs).
Equations (4)–(8) explain the concept of TFN:

µ(x) = 0; x < l (4)

µ(x) =
x− l
m− l

; l < x < m (5)

µ(x) = 1; x = 1 (6)

µ(x) =
u− x
u−m

; m < x < u (7)

µ(x) = 0; x > u (8)

where µ(x) is the membership function, l and u are the lower and upper domains, re-
spectively, and m is the value to which its corresponding membership measure is equal
to 1.

The fuzzy method provides convenient tools to combine subjective analysis and
uncertainty in international roughness index, pavement condition index, and maintenance-
needs evaluation.

The two most common types of fuzzy rules are Takagi–Sugeno and Mamdani [30].
Known also as “Sugeno”, the Takagi–Sugeno type of fuzzy rules is more widely used than
the other type, as it clearly defines output in the rules as being a function of all the input
variables. The Takagi–Sugeno fuzzy rules may be formulated as:

IF x1 is M1 and x2 is M2 and x3 is M3 THEN u1 = f (x1, x2, x3), u12 = g (x1, x2, x3) where:
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x1, x2, x3: input parameters, u1, u2: outputs, M1, M2, M3: fuzzy sets; f (x) and g (x)
indicate any type of function.

In the proposed FIS, triangular membership function is selected to fuzz the crisp
values of input variables, and various numbers of membership functions (MF) are specified
for each input and output variable described in Table 2.

Table 2. Distress types and number of membership functions to evaluate the PCI.

Distress of Type Category Number of MF Description

Rutting Input 3 Extremely important
Fatigue Cracking Input 3 Relatively important
Block Cracking Input 3 Relatively important

Longitudinal Cracking Input 3 Important
Transverse Cracking Input 3 Important

Patching Input 3 Moderately important
Potholes Input 3 Moderately important
Ravelling Input 3 Relatively important
Bleeding Input 3 Relatively important

PCI Output 7 Extremely important

4.3. Fuzzy Rule Generation

Generating the rules is a significant challenge in FIS throughout the second phase of
this work because it is complicated to generate all rules concerning all previous combina-
tions. The classification model’s generation rules described here are difficult and complex,
as they consist of nine inputs and one output. Table 3 presents rule-based FIS for FPCI.

Table 3. Rule base formed for FIS for FPCI.

Rule No.

Distress Type (Input)
FPCI

(Output)Rutting Fatigue
Cracking

Block
Cracking

Longitudinal
Cracking

Trans
Cracking Patching Potholes Bleeding Ravelling

1 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Excellent
2 Minimal Minimal Minimal Moderate Minimal Minimal Minimal Minimal Minimal Excellent
3 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Moderate Very Good
4 Minimal Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Good
5 Minimal Severe Minimal Moderate Minimal Minimal Minimal Minimal Minimal Good
6 Minimal Moderate Minimal Minimal Severe Minimal Minimal Minimal Minimal Good
7 Minimal Moderate Minimal Minimal Minimal Minimal Minimal Minimal Minimal Good
8 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Moderate Good
9 Minimal Moderate Minimal Moderate Severe Minimal Minimal Moderate Minimal Good

10 Minimal Moderate Minimal Moderate Minimal Minimal Minimal Minimal Severe Fair
11 Minimal Minimal Minimal Moderate Moderate Minimal Minimal Minimal Minimal Fair
12 Moderate Severe Minimal Minimal Minimal Minimal Minimal Moderate Minimal Fair
13 Moderate Minimal Minimal Minimal Minimal Minimal Minimal Minimal Severe Poor
14 Minimal Severe Minimal Minimal Moderate Minimal Minimal Minimal Minimal Poor
15 Moderate Moderate Minimal Minimal Minimal Moderate Minimal Minimal Minimal Poor
16 Minimal Minimal Minimal Moderate Severe Minimal Minimal Minimal Minimal Poor
17 Minimal Minimal Minimal Moderate Moderate Minimal Minimal Minimal Minimal Very Poor
18 Moderate Moderate Minimal Minimal Moderate Minimal Minimal Moderate Minimal Very Poor
19 Moderate Moderate Minimal Moderate Severe Minimal Minimal Moderate Moderate Very Poor
20 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Minimal Severe Very Poor
21 Minimal Severe Minimal Severe Severe Minimal Minimal Moderate Minimal Very Poor
22 Moderate Moderate Minimal Moderate Moderate Minimal Minimal Minimal Moderate Very Poor
23 Minimal Minimal Minimal Severe Severe Minimal Minimal Minimal Minimal Very Poor
24 Minimal Moderate Minimal Minimal Moderate Minimal Minimal Minimal Minimal Failed
25 Moderate Severe Minimal Moderate Severe Minimal Minimal Minimal Minimal Failed
26 Severe Moderate Minimal Moderate Severe Minimal Minimal Minimal Minimal Failed
27 Severe Severe Minimal Moderate Moderate Minimal Minimal Moderate Minimal Failed

4.4. Defuzzification Methods

The overall result of the inference process is a fuzzy certainty value indicating the
PCI in each of the seven categories (Failed, Very Poor, Poor, Fair, Good, Very Good, and
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Excellent). The final outcome must be defuzzified to obtain crisp results. This is the aim
of the defuzzification component of the fuzzy logic, which performs the defuzzification
based on the membership function of the output variable. This implies that PCI will be in
the range [0, 100], with 100 being the best possible value and 0 the worst [28]. In this study,
four methods will be used for defuzzification, as follows.

1. Centroid method

Sugeno developed this widely used technique. A centroid defuzzification method can
be expressed as follows [31]:

ZC =

∫
µA(Z)Zdx∫
µA(Z)dx

(9)

where ZC is the crisp output, µA(Z) is the aggregated membership function, and Z is the
output variable.

2. Bisector Method

Essentially, a bisector is a vertical line dividing an area into two equal zone subregions.
Sometimes it coincides with the centroid line, but not always. A bisector defuzzification
method can be expressed as follows:

ZB =
∫ β

ZB

µA(Z)dx (10)

where ZB is the crisp output.

3. Largest of Maximum

Largest of maximum takes the largest amongst all z that belong to [Z1, Z2] as the crisp
value called ZLom.

4. Smallest of Maximum

This selects the smallest output with the maximum membership function as the crisp
value ZSom. In other words, in Smallest of Maximum chooses the smallest among all z that
belong to [Z1, Z2].

4.5. Evaluation of Model’s Performance

To evaluate the performance of the fuzzy logic PCI model and measurement values,
the following three statistical criteria were selected [32]:

R2 = 1− ∑i (ti − oi)
2

∑i (oi)
2 (11)

RMSE =

√
∑i (ti − oi)

2

n
(12)

MAE =
1
n

n

∑
i
|ti − oi| (13)

oi = actual value observation i; ti = predicted value of observation I; and n = number
of observations.

5. Results and Discussions

The system was tested for two section data sets after generating membership functions
and rules by calculating the performance of the FIS. Three Statistical Measures (R2, RMSE,
and (MAE) were used as the performance indicator metrics in evaluating the performance
FPCI of analytical models. Four defuzzification methods (Centroid, Bisector, Som, and
Lom) to calculate FPCI.
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5.1. Fuzzy Inference Systems’ Configurations for 120 Sections

Table 4 presents the level agreement of the FPCI values for 120 sections. Figure 4
presents the relation between the observed and fuzzified FPCI for four defuzzified methods
of analyses for 120 sections.

Table 4. Assessment various fuzzy inference systems’ configurations for 120 sections.

Inference Number of Sections Defuzzification
Statistical Measures

R2 RMSE MAE

Mamdani
(Triangular) 120

Centroid 97.3 5.28 4.617
Bisector 96.3 5.916 5.367

Lom 95.4 8.096 6.185
Som 95.8 6.696 5.567
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According to Table 4, several conclusions can be drawn:

• Centroid method: The R2 value was 97.3%, while the RMSE and MAE values were
5.28% and 4.617%.

• Bisector method: The R2 value was 96.3%, while the RMSE and MAE values were
5.916% and 5.367%.

• Lom method: The R2 value was 95.4%, while the RMSE and MAE values were 8.096%
and 6.185%.

• Som method: The R2 value was 95.8%, while the RMSE and MAE values were 6.696%
and 5.567%.

• The results showed the Centroid method gives a more accurate result (R2 = 97.3%,
RMSE = 5.28%, and MAE = 4.617%) compared to other techniques.

• The results showed the Lom method gives the lowest accurate result (R2 = 95.4%,
RMSE = 8.096%, and MAE = 6.185%) compared to other techniques.

5.2. Fuzzy Inference Systems’ Configurations for 150 Sections

Table 5 presents the level agreement of the (FPCI) values for 150 sections. Figure 5
presents the relation between the observed and fuzzified FPCI for four defuzzified methods
of analyses for 150 sections.
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Table 5. Assessment various fuzzy inference systems’ configurations for 150 sections.

Inference Number of Sections Defuzzification
Statistical Measures

R2 RMSE MAE

Mamdani
(Triangular) 150

Centroid 98.3 4.957 4.243
Bisector 96.9 5.499 5.347

Lom 98.2 5.042 4.487
Som 97.6 5.465 4.92

According to Table 5, several conclusions can be drawn:

• Centroid method: The R2 value was 98.3%, while the RMSE and MAE values were
4.957% and 4.243%.

• Bisector method: The R2 value was 96.9%, while the RMSE and MAE values were
5.499% and 5.347%.

• Lom method: The R2 value was 98.2%, while the RMSE and MAE values were 5.042%
and 4.487%.

• Som method: The R2 value was 97.6%, while the RMSE and MAE values were 5.465%
and 4.92%.

• The results showed the Centroid method gives a more accurate result (R2 = 98.3%,
RMSE = 4.957%, and MAE = 4.243%) compared to other techniques.

• The results showed the Bisector method gives the lowest accurate result (R2 = 96.9%,
RMSE = 5.449%, and MAE = 5.347%) compared to other techniques.

5.3. Sensitivity Analysis

The effect of input parameters on the efficiency of the fuzzy pavement categorization
system in the computation of output parameters (FPCI) is investigated using a sensitivity
analysis. The FPCI models were created through several steps. The first step was the fuzzy
partition generation for inputs and outputs for the 120 and 150 road sections of pavement.
The second step was the generation of fuzzy rules from numerical data. The third step
was the FPCI and FIRI model development of a pavement classification model, using
nine variables as FIS inputs: rutting, fatigue, block, longitudinal, and transverse cracking,
patching and potholes, bleeding, and ravelling. The results of the sensitivity analysis are
shown in Table 6 and Figure 6.

Table 6. Sensitivity analysis of input variables on prediction for FPCI.

Independent
Variable

R2

120 Sections 150 Sections

Rutting 45.1 46.5
Fatigue 27.9 28.4

Block Cracking 0. 1 0. 2
Longitudinal Cracking 26.6 26.6

Transverse Cracking 35.5 39.9
Patching 5.1 0.6
Potholes - -
Bleeding 9.6 7.2
Ravelling 6.5 7.1

The effect of input parameters on the efficiency of the fuzzy pavement categorization
system in the computation of output parameters (FPCI) was investigated using a sensitivity
analysis. The sensitivity analysis was performed by creating the FIS model and analyzing
the influence of each input while cancelling the effects of other inputs.
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Table 6 summarizes a sensitivity analysis to determine the effects of input variables
on the efficacy of models in the PCI evaluation. R2 is used as the index to evaluate the
correlation strength between independent and dependent input variables.

Figure 6 presents the sensitivity analysis for FPCI, and this analysis showed that rutting
and transverse cracking were the most significant impacts on FPCI fuzzified classification
compared to other distress types. Fatigue cracking and longitudinal cracking have some
effects on the prediction model. In contrast patching, bleeding, and ravelling have minor
impacts on the FPCI model.

5.4. Comparison and Validation of the Models

To validate the developed models in this paper, all models were evaluated by compar-
ing four defuzzified methods and two data sets based on pavement distress, as shown in
Table 7.

Table 7. Comparison of the fuzzy inference systems’ configurations for 120 and 150 sections.

Inference Number of Sections Defuzzification
Statistical Measures Improvement (%)

R2 RMSE MAE R2 RMSE MAE

Mamdani
(Triangular)

120

Centroid 97.3 5.28 4.617 - - -
Bisector 96.3 5.916 5.367 - - -

Lom 95.4 8.096 6.185 - - -
Som 95.8 6.696 5.567 - - -

150

Centroid 98.3 4.957 4.243 +1.03 +6.12 +8.10
Bisector 96.9 5.499 5.347 +0.62 +7.01 +0.372

Lom 98.2 5.042 4.487 +2.85 +37.72 +27.45
Som 97.6 5.465 4.92 +1.84 +18.38 +11.6

The performance of the 120 sections of fuzzy inference systems’ configurations was
compared with the performance of the 150 fuzzy inference systems’ configurations to eval-
uate the accuracy of the models in predicting pavement performance based on pavement
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distress parameters. R2, RMSE, and MAE values were used to measure and compare the
performance of the models. Table 7 compares the fuzzy inference systems’ configurations
for 120 and 150 sections.

According to Table 7, several conclusions can be drawn:

• Centroid method: The results of the statistical measures of 150 sections were im-
proved by 1.03%, 6.12%, and 8.10% compared to 120 sections for R2, RMSE, and MAE,
respectively.

• Bisector method: The results of the statistical measures of 150 sections were improved
by 0.62%, 7.01%, and 0.372% compared to 120 sections for R2, RMSE, and MAE,
respectively.

• Lom method: The results of the statistical measures of 150 sections were improved by
2.85%,37.72%, and 27.45% compared to 120 sections for R2, RMSE, and MAE, respectively.

• Som method: The results of the statistical measures of 150 sections were improved by
1.84%,18.38%, and 11.6% compared to 120 sections for R2, RMSE, and MAE, respectively.

• The results show the Centroid method of 150 sections gave a more accurate result
(R2 = 98.3%, RMSE = 4.957%, and MAE = 4.243%) compared to other techniques.

The results show the Lom method of 120 sections gives the lowest accurate result
(R2 = 95.4%, RMSE = 8.096%, and MAE = 6.185%) compared to other techniques.

Despite the slight improvement in the accuracy of models, the accuracy grade im-
proved as the number of sections increased (with an increase of only 30 sections).

6. Conclusions

This study presented the development of a new and simplified section classification
model for asphalt pavement. The nine types of the density of pavement distress—rutting,
fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, pot-
holes, bleeding, and ravelling—were considered FIS inputs. In contrast, the calculation of
FPCI was considered as the FIS output. As a result, the fuzzy pavement classification FPCI
was more accurate than the observed (PCI). The importance of assessing crack severity
during road condition assessments is that its over- or underestimation severely affects pave-
ment management decisions, leading to inefficient rehabilitation and maintenance funding.

This technique has several important advantages as shown in this study, which
are below.

• This technique has a crucial advantage because it generates rules from large-scale
distress data in a short time, especially when robust distress data are required, and the
distress classification has become more consistent.

• As the FIS technique uses linguistic variables, this technique enables pavement en-
gineers to identify pavement conditions and enhance decision-making processes,
reduces human involvement in decision-making processes, and provides consistency
to the process.

• Rutting and transverse cracking have the most influence on the FPCI calculation.
Longitudinal cracking and fatigue cracking have some influence on the model, while
patching, bleeding, and ravelling had only minor effects on the FPCI calculation.

• According to the results, the differences between the observed data and results from
fuzzy logic system techniques were acceptable within allowed limits. The results also
indicate that the models became more accurate as the number of road sections increased.
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11. Kırba, Ş.U.; Karaşahin, M. Performance models for hot mix asphalt pavements in urban roads. Constr. Build. Mater. 2016, 116,

281–288. [CrossRef]
12. Piryonesi, S.M.; El-Diraby, T.E. Data analytics in asset management: Cost-effective prediction of the pavement condition index. J.

Infrastruct. Syst. 2020, 26, 04019036. [CrossRef]
13. Piryonesi, S.M.; El-Diraby, T.E. Role of data analytics in infrastructure asset management: Overcoming data size and quality

problems. J. Transp. Eng. Part B. Pavement 2020, 146, 04020022. [CrossRef]
14. Imam, R.; Murad, Y.; Asi, I.; Shatnawi, A. Predicting pavement condition index from international roughness index using gene

expression programming. Innov. Infrastruct. Solut. 2021, 6, 139. [CrossRef]
15. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 38, 656–657. [CrossRef]
16. Moazami, D.; Behbahani, H.; Muniandy, R. Pavement rehabilitation and maintenance prioritization of urban roads using fuzzy

logic. Expert Syst. Appl. 2011, 38, 12869–12879. [CrossRef]
17. Mahmood, M.S. Pavement section classification by using fuzzy rule-based system. In Proceedings of the Research and the

Researcher 4th Annual Research Practice Course Conference, Nottingham, UK, 17 May 2013; pp. 58–63.
18. Mahmood, M.S. Network-Level Maintenance Decisions for Flexible Pavement Using a Soft Computing-Based Framework. Ph.D.

Thesis, Highway and Airport Engineering, Nottingham Trent University, Nottingham, UK, 2015.
19. Jeong, H.; Kim, H.; Kim, K.; Kim, H. Prediction of flexible pavement deterioration in relation to climate change using fuzzy logic.

J. Infrastruct. Syst. 2017, 23, 04017008. [CrossRef]
20. Karashahin, M.; Terzi, S. Performance model for asphalt concrete pavement based on the fuzzy logic approach. Transport 2014, 29,

18–27. [CrossRef]
21. Mamdani, E.H. Application of fuzzy algorithms for control of simple dynamic plants. Proc. IEEE 1976, 121, 1585–1588. [CrossRef]
22. Artificial intelligence-based decision support technologies in pavement management. Comput. Aided Civ. Infrastruct. Eng. 2001,

16, 143–157. [CrossRef]
23. Zadeh, L.A. Probability Theory and Fuzzy Logic; Computer Science Division Department of EECS UC: Berkeley, CA, USA, 2003.
24. Zadeh, L.A. Fuzzy sets, information and control. Inf. Technol. 1965, 8, 338–353.
25. Wang, K.; Liu, F. Fuzzy set-based and performance-oriented pavement network optimization system. J. Infrastruct. Syst. 1997, 3,

154–159. [CrossRef]
26. Isik, H.; Arslan, S. The design of ultrasonic therapy device via fuzzy logic. Expert Syst. App 2011, 38, 7342–7348. [CrossRef]
27. Kusan, H.; Aytekin, O.; Ozdemir, I. The use of fuzzy logic in predicting house selling price. Expert Syst. Appl. 2010, 37, 1808–1813.

[CrossRef]
28. Hainin, R.; Reshi, W.F.; Niroumand, H. The Importance of Stone Mastic Asphalt in Construction. Electron. J. Geotech. Eng. 2012,

17, 49–56.

http://doi.org/10.1007/s41062-020-00301-2
http://doi.org/10.1061/JPEODX.0000305
http://doi.org/10.1002/stc.2321
http://doi.org/10.1016/j.conbuildmat.2016.04.118
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
http://doi.org/10.1061/JPEODX.0000175
http://doi.org/10.1007/s41062-021-00504-1
http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.1016/j.eswa.2011.04.079
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000363
http://doi.org/10.3846/16484142.2014.893926
http://doi.org/10.1049/piee.1974.0328
http://doi.org/10.1111/0885-9507.00220
http://doi.org/10.1061/(ASCE)1076-0342(1997)3:4(154)
http://doi.org/10.1016/j.eswa.2010.12.094
http://doi.org/10.1016/j.eswa.2009.07.031


Infrastructures 2022, 7, 91 15 of 15

29. STM International. ASTM D6433-18 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys; STM: West
Conshohocken, PA, USA, 2018. [CrossRef]

30. Mehran, K. Takagi-sugeno fuzzy modeling for process control. Ind. Autom. Robot. Artif. Intell. 2008, 262, 1–31.
31. Sugeno, M. An introductory survey of fuzzy control. Inf. Sci. 1985, 36, 59–83. [CrossRef]
32. Bunce, J.A. Effect of boundary layer conductance on the response of stomata to humidity. Plant Cell Environ. 2000, 8, 55–57.

[CrossRef]

http://doi.org/10.1520/D6433-18
http://doi.org/10.1016/0020-0255(85)90026-X
http://doi.org/10.1111/j.1365-3040.1985.tb01209.x

	Introduction and Related Work 
	Fuzzy Logic Approach 
	Fuzzy Rule-Based System 

	Research Objective 
	Fuzzy Inference System (FIS) and Membership Function 
	Mathematical Development 
	Model Formulation 
	Data Pre-Processing and Fuzzification 
	Fuzzy Rule Generation 
	Defuzzification Methods 
	Evaluation of Model’s Performance 

	Results and Discussions 
	Fuzzy Inference Systems’ Configurations for 120 Sections 
	Fuzzy Inference Systems’ Configurations for 150 Sections 
	Sensitivity Analysis 
	Comparison and Validation of the Models 

	Conclusions 
	References

