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Abstract: Maintaining drinking water quality is considered important in building sustainable cities
and societies. On the other hand, water insecurity is an obstacle to achieving sustainable development
goals based on the issues of threatening human health and well-being and global peace. One of the
dangers threatening water sources is cyanide contamination due to industrial wastewater leakage
or sabotage. The present study investigates and provides potential strategies to remove cyanide
contamination by chlorination. In this regard, the main novelty is to propose a sustainable decision
support system for the dirking water system in a case study in Iran. First, three scenarios have been
defined with low ([CN−] = 2.5 mg L−1), medium ([CN−] = 5 mg L−1), and high ([CN−] = 7.5 mg L−1)
levels of contamination. Then, the optimal chlorine dosage has been suggested as 2.9 mg L−1,
4.7 mg L−1, and 6.1 mg L−1, respectively, for these three scenarios. In the next step, the residual
cyanide was modelled with mathematical approaches, which revealed that the Gaussian distribution
has the best performance accordingly. The main methodology was developing a hybrid approach
based on the Gaussian model and the genetic algorithm. The outcomes of statistical evaluations
illustrated that both injected chlorine and initial cyanide load have the greatest effects on residual
cyanide ions. Finally, the proposed hybrid algorithm is characterized by the multilayer perceptron
algorithm, which can forecast residual cyanide anion with a regression coefficient greater than 0.99 as
a soft sensor. The output can demonstrate a strong positive relationship between residual cyanide-
(RCN−) and injected chlorine. The main finding is that the proposed sustainable decision support
system with our hybrid algorithm improves the resiliency levels of the considered drinking water
system against cyanide treatments.

Keywords: chlorine; cyanide; genetic algorithm; drinking water; sustainable development goals

1. Introduction

Access to clean, safe, and sufficient water is a critical aspect of achieving sustainable
cities, urban resilience concepts, and human rights [1]. However, population growth and
the rapid pace of urbanisation and industrialization, as a barrier to these concepts, have led
to the pollution of water resources [2]. Likewise, the risks of old infrastructure in megacities,
such as problems with concrete sewer pipes in traffic loads, are possibly more dangerous
than other features, which can present a high risk for the health of water and wastewater
infrastructures. The mentioned emerging phenomenon in megacities threatens water
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facilities more than in the past [3]. The lack of drinking water resources and recent climate
changes with droughts globally are the main motivations for research on the sustainable
dirking water systems considering all risks for the pollution of water resources such as
cyanide [4,5]. Such facts also highlight the role of resiliency in the quality of drinking
water systems [6].

The opposite concept of water insecurity is water security, which UNESCO defines
as “the capacity of a population to safeguard sustainable access to adequate quantities of
acceptable quality water for sustaining livelihoods, human well-being, and socio-economic
development, for ensuring protection against water-borne pollution and water-related
disasters and preserving ecosystems in a climate of peace and political stability”

(UNESCO in 2012 available at: https://www.unesco.org/en accessed on 8 May 2022).
Therefore, to ensure long-term human security and sustainable development, it is essential
to address water security challenges in two aspects, namely quality and accessibility [7].

There are several important sources of surface water pollutants [8]. Industrial wastew-
ater can be considered one of the most important sources due to the high concentration of
pollutants and their diversity [9]. However, wastewater treatment can be costly, especially
in developing countries that are technologically inferior [10,11]. This has caused 80% of
the world’s industrial wastewater to be dumped into the environment without proper
treatment, making industrial wastewater a threat to water security and human health
(UN-Water in 2015 available at: https://www.unwater.org/publications/world-water-
development-report-2015/ and WWAP in 2012 available at: https://www.unwater.org/
publications/managing-water-uncertainty-risk/ accessed on 8 May 2022). Studies revealed
that some industrial wastewaters need special attention due to highly toxic substances, and
leakage of the least amount of these compounds into drinking water systems can pose a
severe threat to human health [12,13]. Based on these studies, unsafe drinking water is one
of the major causes of death globally. As shown in Figure 1, unsafe drinking water is one of
the leading risk factors for death from 1990 to 2019. Moreover, the lack of access to safe
water is a major risk factor for some other causes of death, such as infectious diseases.
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Therefore, in order to increase water security, maintain the health of consumers, and
protect water resources, in addition to proper industrial wastewater treatment, it is neces-
sary to take measures to increase the tolerance of water systems against any possible leakage
of industrial wastewater [14,15]. Figure 2 shows the relation between maintaining water
quality and Sustainable Development Goals (SDGs) and concepts such as sustainability
and infrastructure resiliency.
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Figure 2. The relation between SDGs and maintaining drinking water quality [16–19].

Threats concerning water quality are divided into physical, chemical, and biological.
Studies show that the damage caused by the last two cases is far more severe [20]. In-
dustrial wastewater contains several toxic contaminants, such as pesticides, heavy metals,
and pharmaceuticals. Among these pollutants, cyanide is one of the most dangerous
chemical contaminants that pollutes water sources worldwide [21,22]. Cyanide reacts with
several other chemical elements and forms hundreds of different compounds, some of
which can be very toxic, and even very low concentrations of them could cause serious
health problems [23].

Although there are several natural sources of cyanide in nature, the primary source of
cyanide in water resources is industrial wastewater [24]. Besides, as a lethal contaminant,
cyanide is a critical criterion in maintaining water safety [25]. Affordability, ease of access,
immediate impact, effectiveness even at low concentrations ([CN−] > 70 µg L−1), no
physical traces (like color, odor, or turbidity), and the possibility of contamination by
industries, such as metal plating, makes cyanide a potential terroristic threat [26].

Different researchers studied cyanide removal during the water treatment process [27].
For instance, Parga, et al. [28] attempted to treat the cyanide waste solutions by employing
three techniques, including (1) oxidation by chlorine oxide (ClO2) in a gas-sparged hydro
cyclone reactor (GSH) system, (2) ozonation in batch reactors with additional intense shak-
ing (stirred batch reactor), and (3) UV light. The applied methods successfully removed
cyanide, each with different advantageous aspects. In addition, Dash, et al. [29] focused on
the ability of anaerobic microorganisms in the decomposition of cyanide. Such microorgan-
isms would transform the carbon and nitrogen in cyanide into carbonate and ammoniac,
respectively. Another study on the adverse effects of cyanide on human health examined
different treatment procedures for removing cyanide from industrial wastewater [30]. In
this research, the performance of various treatment processes, such as chlorination, biologi-
cal treatment, acid removal, evaporation, ion exchange, oxidation with hydrogen peroxide,
etc., was tested for removing cyanide. Uppal, et al. [31] attempted to remove cyanide
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from water resources using zinc peroxide nanoparticles (ZnO2) along with PVP (polyvinyl
pyrrolidone) stabilizing factor based on the surface adsorption process. This process mainly
depends on the pH, concentration of adsorption material (ZnO2-PVP), contact time, and
cyanide concentration.

More recently, Rasoulzadeh, et al. [32] utilized diatomite magnano composite boosted
with alginate polymer beads (DMBA) as an adsorbent to remove cyanide from water
solution. Moreover, they used the response surface methodology (RSM) to optimize
the adsorption process. Singh and Balomajumder [33] studied the phytoremediation
potential of water hyacinth (Eichhornia crassipes) for cyanide and phenol decontamination
simultaneously and evaluated the effect of pH and contaminant concentration on the
removal. Similarly, Tirado-Muñoz, et al. [34] built a novel rotary photocatalytic reactor,
used TiO2 as the catalyst, and tested the reactor to remove different concentrations of
cyanide varying from 0.05 to 50 ppm. They also optimized the pH and catalyst load in
different conditions.

Studies on intentional or unintentional entry of contaminants into water resources can
be divided into two classes network contaminations and contaminations prior to network.
Among the studies on the safety of water distribution networks, research conducted by
Preis, et al. [35] can be considered. In this study, using non-dominated sorted genetic
algorithm analysis (NSGAII), they attempted to locate sensor placements in the water
distribution network. In recent years, some different ideas about the decontamination of
cyanide from water and wastewater resources have been developed, e.g., the application
of Bacillus subtilis bacteria due to the biodegradation of cyanide in gold mines. Likewise,
all experimental practices are performed in alkaline conditions in the research. While,
all biological detection and measurement were conducted using mass spectrometry tech-
nique [36]. In addition, in the other research, Li, et al. [37] presented a novel electrochemical
precipitation system for the decontamination of cyanide by Zn based electrodes. In the
study, all effective features, such as current density, type of electrodes, amperage, etc.,
are appraised. Meanwhile, the utilization of X-ray photoelectron spectrometer applies
all detections. Verma, et al. [38] presented a catalyst-based system for decontaminating
cyanide from wastewater resources. In the research, the main focus of the treatment ap-
proach was related to the kinetic behavior of the catalyst. Another study undertaken by
Pan, et al. [39] developed the utilization of GO/TiO2/ZSM-5 as a photocatalytic oxidation
catchment. Moreover, in their research, some process characterization is performed using
XPS instrumentation.

The present research aims to determine the optimal doses of injected chlorine to
remove cyanide contamination. For this purpose, the following contributions have been
made through this study:

1. Experimental practices due to the evaluation of cyanide interactions with injected
chlorine in the water treatment plant.

2. Predicting the residual cyanide with mathematical computations and finding the best
regression model.

3. Optimizing the proposed model for residual cyanide with the application of a Genetic
Algorithm (GA).

4. Implementation of machine learning (ML) computations as an artificial intelligence
technique for soft sensor design in the water treatment plant.

5. Perform a SDGs assessment analysis.

The proposed decision support system (DSS) contains monitoring, prediction, and
control sections and in the present research, all of them are satisfied by experimental efforts,
machine learning computations, and sensitivity analysis, respectively (Figure 3). It goes
without saying that there are different methods due to monitoring cyanide ions in water
samples, such as spectroscopy, colorimetry, fluorometry, and chromatography [40]. As
such, in the present research, spectroscopy is utilized because of the available equipment
and validity of the method. Due to water quality control and prediction, machine learning
is applied as a soft sensor [41].
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By another point of view, according to Figure 3, it can be seen that in the suggested
DSS of the present research, first, the data are provided by sampling and gathering the
archive data. Then, the mentioned databank is applied for the implementation of the
monitoring system. In the monitoring system as well, with data validation, calibration, and
categorization, the feed of the prediction stage is obtained. In the prediction system with
the application of three different machine learning computations, the value of RCN as a
cost function of the investigation is estimated by some water quality features. Finally, the
achieved values are examined by thresholds and the control system is executed.

Having a conclusion from the literature review, the main novelty of the present study is
related to the combination of the GA-regression model and machine learning computations
which have been applied to the prediction of cyanides in interaction with chlorine as a
smart control system for water treatment plants.

In the following, Section 2 describes the regents and methodology of the present study
in detail. Then, Section 3 presents a comprehensive discussion of the final results. Finally,
Section 4 summarizes this research with findings, limitations, and recommendations.

2. Materials and Methods

The case study of this research is a water treatment plant (WTP) located in Razavi
Khorasan Province, Iran (see Figure 4). The studied WTP applies chlorination in primary
and final stages to carry out the disinfection process. Field survey assessments have
demonstrated the presence of several industrial factories in the vicinity of this WTP, such
as metal plating and tubing. Therefore, if the environmental standards of industrial
wastewater treatment are not observed, there is a possibility of leakage of industrial
wastewater containing cyanide to the upstream sources of the water treatment plant. On
the other hand, the water flow between the dam and the WTP is not transferred via a
channel or a pipeline and flows gravitationally along the riverbed. Such conditions may
intensify the possibility of industrial wastewater leakage.
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2.1. Determining the Optimal Concentrations of Chlorine

In this part of the study, three scenarios involving low (2.5 mg L−1), medium (5 mg L−1),
and high cyanide contamination (7.5 mg L−1) have been defined. In this study, the scenarios
are based on the specifics of the plating plant upstream of the water resources leading to
the water treatment plant. According to field inspection reports, the amount of possible
cyanide, if not violated by the industrial unit, can be between 2.5 and 7.5 mg /L. Therefore,
the scenarios of this study are defined based on the actual reports recorded in the legal
authorities. In the first step, samples were taken from the influent of the WTP and tested
for cyanide contamination, and the results showed that there was no cyanide in the WTP
influent. Then, the samples were contaminated by certain concentrations of cyanide, before
different doses of NaOCl were injected into the samples, and the residual cyanide was
detected. In order to increase the accuracy and reduce the chance of error, all laboratory
tests were performed with 3 repetitions. The United States Environmental Protection
Agency (US-EPA) deems the maximum contaminant level for free cyanide in surface water
resources must be less than 200 µg L−1 (EPA, 2009). Meanwhile, the 1053 standard of Iran
states the limit for existing cyanide in water supplies as 70 µg L−1 (DOE, 2016). Nonetheless,
the present study carried out the cyanide removal process until the concentration of cyanide
reached 70 µg L−1 in order to satisfy the 1053 standard of Iran. To measure the residual
concentration of cyanide in the chlorinated sample, the present study employs a patented
method known as US 4871681A, demonstrated in Table 1 [42]. Moreover, to record the
absorbance of the sample solutions, an Agilent 8453 spectrophotometer equipped with a
photodiode array detector was used.

Table 1. Stages of cyanide detection experiment according to US Patent 4871681A [42].

Test Stages Description

1 Pour 25 mL of the testing solution in the beaker
2 Add 5 mL of Na2CO3 0.5 mol L−1

3 Add 5 mL Picric acid (1% w/v) into the beaker
4 Heat the container to near boiling point to get the color changes
5 Let the samples to cool at room temperature
6 Measure the absorptions of the standard and testing samples at the wavelength of 520 nm

2.2. Reagents and Materials

Deionized water was used throughout the analysis, and all solutions were made with
deionised water produced in the lab by a portable water deioniser. Further, a stock solution
of 0.5 mol L−1 Na2CO3 was prepared from Na2CO3 salt, and a stock solution of NaOCl
5 mol L−1 was prepared and standardised according to the 4500-CI. B Iodometric Method I
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(APHA, 2005). A 1% (w/v) solution of Picric acid was used as a reagent to determine
cyanide. Moreover, a 1000 mg L−1 CN− stock solution was prepared from KCN salt.
Table 2 presents the raw material and instruments’ names and sources.

Table 2. Raw materials and instruments specifications.

Name Formula/Model of Instrument Source

Raw materials

Sodium carbonate Na2CO3 Merck, Germany
Sodium hypochlorite NaOCl Merck, Germany

Picric acid C6H3N3O7 Merck, Germany
Potassium cyanide KCN Merck, Germany

Instruments UV-visible Spectroscopy System Agilent 8453 Agilent Technologies, United States

2.3. Modelling the Residual Cyanide (RCN)

Mathematical modeling of the experimental data has been carried out to provide a
relationship between the concentration of cyanide and the required dosage of chlorine to
remove contamination. For this purpose, some mathematical models, including polynomial,
exponential, Fourier, Gaussian, and rational, have been used. The models are selected as
per conventional curve fitting practices [43], and each of them follows specific logics of
mathematics. For example, Fourier has been used for repetition events and may be in a
specific domain if it is fit to the curve and it should be discussed in terms of physical aspects.
Likewise, polynomial distributions are used in different applications and among all models
are general. Besides, the Gaussian distribution is a continuous probability distribution
utilized for real-valued random variables, while exponential distribution is applied for the
functions raised suddenly in a specific domain. In each model, data are put as an input and
assigning the constant-coefficient in equations, all computations are performed and based
on statistical indicators, the best model is chosen. The appropriate distribution has been
chosen by evaluating the statistical parameters of R2, SSE, and RMSE indices. Before the
modeling, it is necessary to interpolate the contour between values of injected chlorine and
RCN output using the Lagrange method expressed in Equation (1). It is worth mentioning
that all the interpolation calculations, as well as the mentioned modelling procedures, have
been carried out in MATLAB 2015a software.

f(xk) = P(xk), ∀ k ∼= 0, 1, 2, . . . n

P(x) =
n
∑

k=0
f(xk) Ln,k (x)

Ln,k (x) =
n
∏

i=0 i 6=k

(x−xi)
(xk−xi)

(1)

where xi, f(xi), Ln,k (x) present the variables, main functionalized variables, and Lagrange
function, respectively.

2.4. Calibration of Model using Genetic Algorithm (GA)

After determining the relationships between the concentration of injected chlorine and
residual cyanide in water, the obtained relationships are adjusted using model calibration
tests and single-purpose GA. Moreover, theoretical (calculated through predictive models)
and practical values (experimental results) are compared following the cost function equa-
tion presented in Equation (2). Using this method, the coefficients of the proposed models
are calibrated to lower the cost function (Equation (2)).

Cost Function = min (Re − Rt)
2

Re = Experimental Response
RtRt = Theoretical Response

(
in polynomial model, Rt = a0 + a1CNaocl + a2C2

Naocl + . . . an Cn−1
Naocl

)
Result of equation = to determine a0, a1, . . . , an

(2)
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MATLAB 2015a software was utilised to code the GA and computations to analyse
the abovementioned issue. According to the research study conducted by De Jong, the set
parameters of mutation rate, crossover probability, and initial population were considered
as 0.001, 0.6, and 50, respectively [44]. Sensitivity analysis of the algorithm’s behavior
concluded at the end value of 400 generations. In the following, the structure of GA is
demonstrated as per Figure 5.
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2.5. Artificial Intelligence (AI)

In this section, some different software is utilized, such as RapidMiner V9.10, WEKA
V3.9, and Minitab V16.2.4.4. Before each numerical practice, some blind sampling and
experimental tests are performed based on standard methods for the examination of water
and wastewater due to the data gathering of AI processes. Through experimental practices,
six water quality features are examined and added as inputs of machine learning compu-
tations, such as injected chlorine dosage, initial cyanide load, pH, water temperature in
sampling (T), ammonia concentration, and volatile dissolve solid (VDS) concentration. In
the following, all the declared factors are utilized for the prediction of RCN- as an output of
the model. Due to the prediction of RCN−, three AI algorithms are applied to implement
decision support system (DSS), including meta bagging, meta random committee, and
multilayer perceptron functions. Each DSS has three stages, including monitoring, predic-
tion, and control. In the research, the monitoring is provided according to experimental
practices. The prediction section is satisfied by machine learning computations, and finally,
by applying metaheuristics, the control section is executed in the research.

The meta bagging computation includes original data entering, bootstrapping, ag-
gregating, and bagging. In the first step, in the training data set D with n size, uniform
sampling process is done in new D’ with n’ size as sub dataset. The cycle is run until n=n’
and the declared dataset is named bootstrapping [45]. In the following, the stages of Meta
bagging are demonstrated in Figure 6a. As per Figure 6b, in the meta random committee
algorithm, a dataset is first created by available records. Then, after using classifiers, the
banked data are distributed instantly in different levels based on the algorithm’s logic.
Likewise, in the next stage of batch size activities and calculations, the most efficient model
is applied for training and testing approaches. Next, the machine learning strings are built
by the WEKA model, before partitioning, membership assignment, revision, and estimation
are implemented, correspondingly [46]. Multilayer perceptron models include at least three
input, hidden, and output layers and the learning process is performed by backpropagation
method, which is one of supervised learning techniques [47]. In the model, prediction is
executed by the application of weight assignment to each input feature by received signal
analysis of the input data (Figure 6c).
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3. Results and Discussion

As mentioned before, the studied WTP used chlorine in its gas state [48]. Meanwhile,
the results obtained from the studies by Botz have shown that the final product of the reac-
tion between Chlorine gas (Cl2) and cyanide ion does not produce dangerous components,
according to Equation (3) [49].

Cl2 + CN− → CNCl + Cl−

CNCl + H2O→ OCN− + Cl− + 2H+

OCN− + 3H2O Cl2 catalyst → NH+
4 + HCO−3 + OH−

3Cl2 + 2NH+
4 → N2 + 6Cl− + 8H+

(3)

3.1. Experimental and Mathematical Modelling

In this study, the optimal concentrations of chlorine for the removal of cyanide in low
(2.5 mg L−1), medium (5 mg L−1), and high (7.5 mg L−1) contamination scenarios have
been calculated as 2.9, 4.7, and 6.1 mg L−1, respectively. In the water matrix, different
mineral and organic compounds react with chlorine in an oxidation-reduction reaction.
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With more than 2.5 mg L−1 injected chlorine, there is a sufficient concentration of oxidant
and cyanide at the same time. Besides, with the 2.5 oxidant injection, it should be controlled
for a complete reaction of mineral and organic compounds and cyanide at the same time.
Therefore, as per experimental practices in this study, due to reaching less than 1 mg L−1

residual chlorine concentration, the optimum concentration of chlorine in different dosages
of cyanide are examined and the optimal oxidant values are measured.

The relationship between the injected chlorine and the residual cyanide in low,
medium, and high degrees of contamination is illustrated in Figure 7a–c. As can be seen,
by increasing the concentration of injected chlorine, the residual cyanide is decreased non-
linearly. Noticeably, due to the high concentrations of volatile solids (VS) in surface waters,
chlorination with the obtained optimal doses increases the possibility of Trihalomethane
formation. Two strategies, including initial disinfection using potassium permanganate
and multistage chlorination, are recommended to solve this problem [43]. Due to the colour
formation by using high concentrations of potassium permanganate (higher than 1 mg L−1),
its application encountered many limits. Therefore, multistage chlorination is preferred.

Infrastructures 2022, 7, x FOR PEER REVIEW 11 of 20 
 

than 2.5 mg L-1 injected chlorine, there is a sufficient concentration of oxidant and cyanide 

at the same time. Besides, with the 2.5 oxidant injection, it should be controlled for a com-

plete reaction of mineral and organic compounds and cyanide at the same time. Therefore, 

as per experimental practices in this study, due to reaching less than 1 mg L−1 residual 

chlorine concentration, the optimum concentration of chlorine in different dosages of cy-

anide are examined and the optimal oxidant values are measured. 

The relationship between the injected chlorine and the residual cyanide in low, me-

dium, and high degrees of contamination is illustrated in Figure 7a–c. As can be seen, by 

increasing the concentration of injected chlorine, the residual cyanide is decreased non-

linearly. Noticeably, due to the high concentrations of volatile solids (VS) in surface wa-

ters, chlorination with the obtained optimal doses increases the possibility of Trihalome-

thane formation. Two strategies, including initial disinfection using potassium perman-

ganate and multistage chlorination, are recommended to solve this problem [43]. Due to 

the colour formation by using high concentrations of potassium permanganate (higher 

than 1 mg L−1), its application encountered many limits. Therefore, multistage chlorination 

is preferred. 

 
(a) 

 
(b) 

 
(c) 

2.11

1.71 1.63 1.57

1.20
0.98 0.93

0.69

0.00

0

0.5

1

1.5

2

2.5

1 1.5 2 2.5 3

R
es

id
u

al
 c

ya
n

id
e 

co
n

ce
n

tr
at

io
n

 
(m

g/
L-

1
)

Injected chlorine concentration (mg/L-1)

4.90

4.16
3.923.91

2.392.22

1.59 1.48
1.08

0.00

0

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
es

id
u

al
 C

ya
n

id
e

co
n

ce
n

tr
at

io
n

 
(m

g/
L-

1
)

Injected Chlorine concentration (mg/L-1)

1.83

1.51

0.94
0.85

0.57

0.32

0.08
0.01

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4.5 5 5.5 6 6.5

R
es

id
u

al
 c

ya
n

id
e 

co
n

ce
n

tr
at

io
n

 
(m

g/
L-

1
)

Injected Chlorine concentration (mg/L-1)

Figure 7. Diagram of changes of the residual cyanide in water at various concentrations of the injected
chlorine as per—(a) low contamination scenario ([CN−] = 2.5 mg L−1), (b) medium contamination
scenario ([CN−] = 5 mg L−1), and (c) high contamination scenario ([CN−] = 7.5 mg L−1).
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To predict residual cyanide based on the injected chlorine in different contamination
scenarios, various mathematical models were evaluated, and the proposed equations for
each model are presented in Table 3. Regarding the fitness indices of R2, RMSE, and SSE,
the Gaussian model provides the best functionality.

Table 3. Mathematical models for predicting residual cyanide based on the injected chlorine
dose in different scenarios of contamination ((1) [CN−] = 2.5 mg L−1 , (2) [CN−] = 5 mg L−1 ,
(3) [CN−] = 7.5 mg L−1).

Model’s Name General Form Scenario Num. Typical Content SSE RMSE R2

Exponential RCN = a× exp
(
b× CC†

)
+ c× exp(d× CC)

1 a = 2.57b = −0.3c = 0.0002d = 2.901 0.01 0.05 0.97

2 a = 5.774b = −0.365c = 0d = 0 0.02 0.08 0.91

3 a = 840.1 b = −1.35 c = 0d = 0 0.01 0.03 0.95

Fourier
RCN = a0 + a1 × cos(CC× w)

+ b1 × sin(CC× w)

1 a0 = −1.357e + 06 a1 = 1.357e + 06 b1
= −583.5 w = 0.0004893 0.01 0.07 0.96

2 a0 = 2.851 a1 = 2.273 b1 = −1.059 w = 0.5098 0.01 0.06 0.97

3 a0 = 1.844e + 05 a1 = −1.844e + 05 b1
= −2447 w = 0.001915 0.00 0.01 0.99

Gaussian
RCN = a1 × exp

(
−
(
(CC−b1)

c1

)2
)

+ a2 × exp

(
−
(
(CC−b2)

c2

)2
)

1 a1 = 0 b1 = −4.913 c1 = 0.5982 a2 = 2.481 b2
= 0.1276 c2 = 2.155 0.01 0.01 0.93

2 a1 = 5.113b1 = −0.3064c1 = 3.276a2 = 0b2
= 0c2 = 0 0.01 0.01 0.97

3 a1 = 2.292b1 = 3.877c1 = 1.307a2 = 0b2 = 0c2 = 0 0.00 0.01 0.98

Rational RCN =
(p1×CC2+p2×CC+p3)
(q1×CC2+q2×CC+q3)

1 p1 = −678.8 p2 = −1193 p3 = 1.037e + 04 q1
= 0 q2 = 1 q3 = 4179 0.01 0.08 0.96

2 p1 = 0 p2 = −9.897 p3 = 60.37 q1 = 1 q2
= −1.41 q3 = 11.94 0.01 0.04 0.97

3 p1 = 0 p2 = −2.532 p3 = 15.72 q1 = 0 q2 = 1 q3 = −2.161 0.00 0.01 0.99

Polynomial RCN = p1 × CC2 + p2 × CC + p3 1 p1 = −0.1624 p2 = −0.2855 p3 = 2.48 0.01 0.04 0.96

2 p1 = 0.02926 p2 = −1.2 p3 = 5.357 0.02 0.02 0.96

3 p1 = 0.3383 p2 = −4.688 p3 = 16.08 0.00 0.01 0.99

In order to improve the proposed Gaussian models and minimise the cost function
(Table 3), Gaussian models were calibrated by single-purpose GA based on Equation (2).
The calibrated model for the prediction of residual cyanide in the low contamination
(2.5 mg L−1) scenario is presented in Equation (4). The mentioned process has also been
applied for cyanide contaminations of 5 and 7.5 mg L−1 (medium and high contamination
scenarios). The calibrated models are expressed in Equations (5) and (6), respectively.

Gussian− distribution(For [CN−] = 2.5ppm) [Residual CN]

= a1 ∗ exp
(
−
(
([NaOCl]−b1)

c1

)2
)
+ a2 ∗ exp

(
− ([NaOCl]−b2)

c2

)2
)− 13.38 ≤ a2 ≤ 18.34− 15.76 ≤ b2 ≤ 16.01− 6.629

≤ c2 ≤ 10.94a1 = 0 b1 = −4.913 c1 = 0.5982 a2 = 2.322 b2 = 0.3245 c2 = 0.9562

(4)

Gussian− distribution(For [CN−] = 5ppm) [Residual CN] = a1 ∗ exp
(
−
(
([NaOCl]−b1)

c1

)2
)

4.174 ≤ a1

≤ 6.052− 1.498 ≤ b1 ≤ 0.88522.268 ≤ c1 ≤ 4.284a1 = 4.855 b1 = 0.5691 c1 = 4.023
(5)

Gussian− distribution
(

For
[
CN−

]
= 7.5ppm

)
[Residual CN] = a1 ∗ exp

(
−
(
([NaOCl]−b1)

c1

)2
)

0.3544 ≤ a1 ≤ 4.2292.444

≤ b1 ≤ 5.3090.4596 ≤ c1 ≤ 2.155a1 = 2.075 b1 = 2.559 c1 = 1.694
(6)

There are several methods for purifying cyanide, each with advantages and disad-
vantages. Depending on the cyanide composition, concentration, and other factors, the
appropriate method should be selected. Common methods for cyanide purification include
INCO sulfur dioxide/air, hydrogen peroxide, adsorption, activated carbon polishing, and
chemical and biological treatment [49]. For instance, several studies involve the use of
cyanide adsorption with different adsorbents, including the works of Manyuchi, et al. [50].
However, the adsorption technique is expensive, and sometimes it is not sustainable due
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to the use of chemical substances. Another approach is biological treatment [51]. This
method is more environmentally friendly than other methods and less costly, but it is
mostly used for cyanide-contaminated wastewater and not for drinking water treatment.
Therefore, chlorination is one of the best methods for treating cyanide from drinking water
and increasing the resiliency of drinking water systems in consideration of the facilities
available in water treatment plants. In the following, the convergence of the best solutions
in the different iterations for all three scenarios are demonstrated, as in Figure 8. All
computations are performed in 400 iterations, but the trends of cost function optimization
are converged to constant values after 120 iterations. Likewise, the process of optimization
in all the declared scenarios are similar with each other, but the equation using 5 ppm
cyanide pollution is reduced with the lowest time in comparison to the other ones.

Infrastructures 2022, 7, x FOR PEER REVIEW 13 of 20 
 

sustainable due to the use of chemical substances. Another approach is biological treat-

ment [51]. This method is more environmentally friendly than other methods and less 

costly, but it is mostly used for cyanide-contaminated wastewater and not for drinking 

water treatment. Therefore, chlorination is one of the best methods for treating cyanide 

from drinking water and increasing the resiliency of drinking water systems in consider-

ation of the facilities available in water treatment plants. In the following, the convergence 

of the best solutions in the different iterations for all three scenarios are demonstrated, as 

in Figure 8. All computations are performed in 400 iterations, but the trends of cost func-

tion optimization are converged to constant values after 120 iterations. Likewise, the pro-

cess of optimization in all the declared scenarios are similar with each other, but the equa-

tion using 5 ppm cyanide pollution is reduced with the lowest time in comparison to the 

other ones. 

 

Figure 8. The trend of cost functions in different iterations. 

3.2. AI and Soft-Sensor Design 

The outputs of the analysis of variance (ANOVA) for the exact determination of each 

factor’s effect are determined in Table 4. Here, it is clear that the injected chlorine and 

initial CN− with p-value < 0.0001 have the greatest effects on RCN. Furthermore, the F-

value of injected chlorine is more than the other one, and therefore it is the most important 

feature in these experiments. Meanwhile, as per Table 4, it can be found that the pH has a 

less important effect (p-value = 0.71) on the response of the present research (RCN). 

Table 4. The outputs of ANOVA method in the present research. 

Source Sum of Squares df Mean Square F Value p-Value (Prob > F)  

Model 46.10124 6 7.683541 61.54065 <0.0001 significant 

A-pH 0.01776 1 0.01776 0.142247 0.7092  

B-VDS 0.083866 1 0.083866 0.671721 0.4202  

C-T 0.291519 1 0.291519 2.3349 0.1391  

D-Initial CN 16.59342 1 16.59342 132.9036 <0.0001  

E-Ammonia 0.26992 1 0.26992 2.161901 0.1539  

F-Cl2 32.6946 1 32.6946 261.8646 <0.0001  

Residual 3.121328 25 0.124853    

Cor Total 49.22257 31     

The outcomes of data availability in the form of a heat map are demonstrated in Fig-

ure 9 for initial CN-, ammonia, injected Cl2, RCN- (Figure 9a), T, pH (Figure 9b), and VDS 

(Figure 9c). Per a literature review [26,52], it can be found that all VDS (mgL−1), ammonia, 

and water temperatures affect chlorine decay directly, and increasing them, CN anions 

can release greater water bulk. Therefore, if the concentrations of ammonia and VDS are 

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Er
ro

r 
va

lu
e

Iteration

[CN-]=5 ppm [CN-]=7.5 ppm [CN-]=2.5 ppm

Figure 8. The trend of cost functions in different iterations.

3.2. AI and Soft-Sensor Design

The outputs of the analysis of variance (ANOVA) for the exact determination of each
factor’s effect are determined in Table 4. Here, it is clear that the injected chlorine and initial
CN− with p-value < 0.0001 have the greatest effects on RCN. Furthermore, the F-value of
injected chlorine is more than the other one, and therefore it is the most important feature
in these experiments. Meanwhile, as per Table 4, it can be found that the pH has a less
important effect (p-value = 0.71) on the response of the present research (RCN).

Table 4. The outputs of ANOVA method in the present research.

Source Sum of Squares df Mean Square F Value p-Value (Prob > F)

Model 46.10124 6 7.683541 61.54065 <0.0001 significant

A-pH 0.01776 1 0.01776 0.142247 0.7092

B-VDS 0.083866 1 0.083866 0.671721 0.4202

C-T 0.291519 1 0.291519 2.3349 0.1391

D-Initial CN 16.59342 1 16.59342 132.9036 <0.0001

E-Ammonia 0.26992 1 0.26992 2.161901 0.1539

F-Cl2 32.6946 1 32.6946 261.8646 <0.0001

Residual 3.121328 25 0.124853

Cor Total 49.22257 31

The outcomes of data availability in the form of a heat map are demonstrated in
Figure 9 for initial CN-, ammonia, injected Cl2, RCN- (Figure 9a), T, pH (Figure 9b), and
VDS (Figure 9c). Per a literature review [26,52], it can be found that all VDS (mgL−1),
ammonia, and water temperatures affect chlorine decay directly, and increasing them, CN
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anions can release greater water bulk. Therefore, if the concentrations of ammonia and
VDS are increased, chlorine should be injected in a relative amount based on specific logic.
In the next step of the present research, the value of injected chlorine according to effective
features is modelled by machine learning computations as a smart DSS.
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In the next step, the available normal diagram of experimental outputs is demonstrated,
as shown in Figure 10. As shown, all data distributions follow the normal type.
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Before machine learning computations, the sensitive analysis of the most important
features is demonstrated, as shown in Figure 11. Here, it is clear that the slope variation of
injected chlorine concentration and initial CN− dosage are greater than other ones, and this
supports the significant effects of them on RCN− as a cost function of the present research.
As per Figure 11a, it is clear that the slope fluctuation of initial CN− load is greater than
injected chlorine, and therefore the initial CN− concentration is more significant than the
other one. Meanwhile, in Figure 11b, it can be seen that the importance of temperature
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is greater than oxidant concentration based on RCN−. Besides, as per Figure 11c,d, the
importance degree of the initial concentration of cyanide is greater than the two factors of
ammonia concentration and temperature, and this can be deduced from the sensitivity of
the target function to this factor. It is clear that, during the cyanide ion decontamination,
the ammonia is an active compound for reaction by chlorine, and it plays a significant role
in removing the cyanide in the interaction of chlorine as an interference (Figure 11e). It is
worth noting that the present research outcomes are local and for each case study should
be executed again for the exact adjustment of the equations and models.

Infrastructures 2022, 7, x FOR PEER REVIEW 15 of 20 

is greater than oxidant concentration based on RCN−. Besides, as per Figure 11c,d, the 

importance degree of the initial concentration of cyanide is greater than the two factors of 

ammonia concentration and temperature, and this can be deduced from the sensitivity of 

the target function to this factor. It is clear that, during the cyanide ion decontamination, 

the ammonia is an active compound for reaction by chlorine, and it plays a significant role 

in removing the cyanide in the interaction of chlorine as an interference (Figure 11e). It is 

worth noting that the present research outcomes are local and for each case study should 

Figure 11. Sensitive analysis of the most important factors on RCN in the present research. 

The results of AI processes in the present investigation are summarized in Table 5. 

Based on the results shown, the efficiency of the multilayer perceptron functions algo-

rithm for the prediction of RCN− as per the initial CN−, ammonia, injected Cl2, RCN−, T, 

pH, and VDS is demonstrated with a correlation coefficient greater than 0.99. Likewise, in 

the next level, meta bagging and meta random committee are shown to be the most ap-

propriate with regression coefficients of 0.9 and 0.84. The correlation coefficient of the 

multilayer perceptron functions proves the best fitting of the algorithm for the prediction 

of RCN− based on the experimental data. 

Table 5. The outputs of AI computations in the present research. 

Statistical parameters Meta Bagging Meta Random Committee Functions Multilayer Perceptron 

Correlation coefficient 0.90 0.84 0.99 

Mean absolute error 0.61 0.81 0.3 

Root mean squared error 0.81 1.12 0.36 

Relative absolute error 62.37% 70.88% 26.49 % 

Root relative squared error 72.73% 83.78% 26.98% 

Description  Equation (S1) Equation (S2) Equation (S3) 

There is a supervisory control and data acquisition (SCADA) in each water treatment 

plant for data transfer, mining, and management. All available qualitative sensors, such 

as residual real-time chlorine sensors, are connected to the SCADA. Besides, according to 

valid historical chlorine data, the conventional (without cyanide concentrations) condi-

tions can be controlled and detected by simple IF-THEN frameworks and each in-

crease/decrease from thresholds can trigger an alert by the smart infrastructure as an un-

conventional situation. Due to the increase of cyanide (as a high risk measured 

Figure 11. Sensitive analysis of the most important factors on RCN in the present research.

The results of AI processes in the present investigation are summarized in Table 5.
Based on the results shown, the efficiency of the multilayer perceptron functions algorithm
for the prediction of RCN− as per the initial CN−, ammonia, injected Cl2, RCN−, T, pH,
and VDS is demonstrated with a correlation coefficient greater than 0.99. Likewise, in the
next level, meta bagging and meta random committee are shown to be the most appropriate
with regression coefficients of 0.9 and 0.84. The correlation coefficient of the multilayer
perceptron functions proves the best fitting of the algorithm for the prediction of RCN−

based on the experimental data.

Table 5. The outputs of AI computations in the present research.

Statistical parameters Meta Bagging Meta Random Committee Functions Multilayer Perceptron

Correlation coefficient 0.90 0.84 0.99
Mean absolute error 0.61 0.81 0.3

Root mean squared error 0.81 1.12 0.36
Relative absolute error 62.37% 70.88% 26.49 %

Root relative squared error 72.73% 83.78% 26.98%
Description Equation (S1) Equation (S2) Equation (S3)

There is a supervisory control and data acquisition (SCADA) in each water treatment
plant for data transfer, mining, and management. All available qualitative sensors, such
as residual real-time chlorine sensors, are connected to the SCADA. Besides, according to
valid historical chlorine data, the conventional (without cyanide concentrations) conditions
can be controlled and detected by simple IF-THEN frameworks and each increase/decrease
from thresholds can trigger an alert by the smart infrastructure as an unconventional
situation. Due to the increase of cyanide (as a high risk measured phenomenon in the
water treatment plant), the free residual chlorine is decreased, and this unknown event can
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be interpreted as a dangerous condition. Therefore, the cyanide or other contamination
entrance can be detected without adding expensive sensors by putting thresholds for the
post computational processing of chlorine sensor data. Moreover, after detection, according
to the created models in the present study, exact injection amounts of chlorine will be
ordered to dosing pumps by a programmable logic controller and possible crises will
be managed.

There is an idea about the injection of chlorine in WTPs and the formation of tri halo
methane (THM) as a carcinogenic compound [53] that should be controlled. However,
cyanide has an acute effect in crisis conditions and THM has a chronic one. Therefore,
the priority of the chlorination process for damping the effects of cyanide emission in
drinking water resources is more important than the formation THM in a limited time.
Besides, the formation of THM is related to organic compounds and with the reaction of
chlorine and VDS, the possibility of the THM formation is increased [54]. However, in the
present research, the main idea is related to real-time cyanide reduction to enhance WTP as
an infrastructure.

3.3. SDGs Assessment

As mentioned earlier, access to clean water plays an important role in different aspects
of sustainable development. Therefore, in this section, the impact of the present study
is evaluated based on SDGs. For instance, preventing pollutants such as cyanide from
water resources directly contributes to reaching SDG No. 3, 6, and 14. Moreover, SDG
No. 1.2 and 1.5 will also be satisfied by reducing the chance of diseases from unsafe water
and medical costs and enhancing urban resiliency [55,56]. Another aspect of this study
that has an indirect positive effect on SDGs is the increase in infrastructure resilience (No.
9.1), namely the drinking water system in this study. SDGs No.11.B and 11.3 will be met
by the transition towards more sustainable cities by removing cyanide from urban water
networks [57,58]. Figure 12 evaluates the impact of SDGs through this study and explains
the mentioned SDGs in detail.
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4. Conclusions and Future Studies

In the present research, a method is developed for the enhancement of water treatment
plants’ resiliency against cyanide contaminations. With the application of the method,
sensitive infrastructure cities, namely the water treatment plant, can be protected from
the side effects of high-risk pollution. After experimental practices, exact interactions of
cyanide and chlorine are evaluated in different concentrations during the research. Then,
predictive equations of an RCN− based on injected chlorine are calibrated by the GA model.
Finally, with the application of machine learning computations, the RCN− is estimated in
different conditions. The study’s main outcomes are related to the reduction of cyanide
risks in different levels (2.5, 5, and 7.5 mgL−1) by chlorination. Meanwhile, the interactions
of chlorine and cyanide are modeled by regression-GA with high performance outcomes.
Finally, the RCN− is predicted by multilayer perceptron functions with a correlation
coefficient greater than 0.99. As a suggestion for future studies, the application of strong
metaheuristics, such as the lion-inspired optimization algorithm [59], social engineering
optimization algorithm [60], and red deer algorithm [48,61], can be useful for smart cyanide
risk control in the case of water resources [49]. Finally, an evaluation of cyanide fate and
transportation in water distribution networks as a qualitative assessment of the facility in
different scenarios may be attractive in scientific communities. The main limitation of the
research concerned a lack of permission for the execution of the created smart models on
the electrical boards and their online testing.
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