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Abstract: As more and more container terminals are becoming intelligent, different kinds of sensors
are widely installed at different locations of the cranes and collect a large amount of data. In order to
effectively utilize and manage these huge amounts of actual working data of different sensors and
grasp the status of the terminal, this article proposes a data processing framework that integrates
the crane load, energy consumption, crane trolley speed and crane gearbox vibration signals of the
container terminal. Firstly, the load spectrum of the crane load is calculated by the non-parametric
density estimation method in probabilistic statistics and the energy consumption curves are obtained.
Secondly, the driving cycle of the crane trolley speed are constructed by drawing on the method
in the transportation field. Finally, the vibration signals of the crane gearbox are used for anomaly
detection by unsupervised methods; at the same time, clustering results can also be used as the basis
for extracting typical vibration signals and removing redundant data.

Keywords: container terminal; cranes; cluster analysis; data mining

1. Introduction

With the development of IoT (Internet of Things) and big data technologies, container
terminals are evolving from the traditional operation mode that requires a lot of human
involvement to intelligent and automated ports [1].

In recent years, many ports in China have completed the renovation and construc-
tion of automation one after another, such as the Haitian Terminal in Xiamen, the fully
automated terminal in Qingdao, the automated Yangshan Deepwater Port, the Nansha
Port in Guangzhou and so on. During this automation process, different kinds of sensors
are widely installed on various parts of the cranes and they can collect digital signals in
gigabytes every day.

Meanwhile, many areas of research in automated container terminals are still at a
preliminary stage, especially the application and analysis of big data technology [2]. There
are many studies on port scheduling optimization and crane operation optimization [3,4],
but they usually implement the application after the information is collected from scratch,
and there is little practice when the magnitude of the data reaches a high level. Therefore,
how to help smart harbor managers to process and analyze these mass data collected from
practical projects and apply the results to the actual project is an urgent problem at this
stage. Moreover, many aspects of port operations can be improved with the help of data.

The health status of cranes in ports is one of the key indicators of great concern. The
load spectrum is one of the important bases for predicting the equipment life, and how
to estimate the load spectrum from the available data of the port is a problem that needs
to be studied. Geng et al. [5] used the hybrid distribution probability model to construct
the road load spectrum of the test site, and then estimated the parameters of the Pareto
distribution using the maximum likelihood, and finally got the load spectrum of one and
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two dimensions. Luo et al. [6] established the load spectrum of a train axle by processing
the load spectrum and fitting its mean value and the amplitude. Zhang et al. [7] proposed
a facility maintenance strategy based on a randomized structural deterioration model for
port infrastructures, and the results showed an improved level of understanding of the
structural health of the port by managers.

The working cycle time of a crane is variable. The shorter the time of each working
cycle, the greater the handling capacity of the crane and the higher the handling efficiency.
This will directly affect the berth allocation of the terminal and ultimately affect the effi-
ciency of the terminal [8]. In order to describe the driving state of a vehicle, it is usually
necessary to obtain a series of velocity-time values to construct the driving cycle of the
vehicle. For the crane, the object is the trolley on the crane. The method in the problem of
the vehicle working cycle can be used for reference in the research of cranes, which requires
multi-step preprocessing, eigenvalue calculation and data analysis [9]. Among them, data
analysis methods usually use the k-means [10] method to analyze their eigenvalues and
Markov chain [11,12] to construct a typical working cycle.

In order to guarantee the normal working of the mechanism, the key component
of the mechanism, i.e., the gearbox, needs to be monitored in real time. The vibration
signals of the gearbox can be obtained through the acceleration sensors installed at different
locations of the gearbox. How to reflect the current state of the equipment through these
signals is also a problem that needs to be studied. Wang et al. [13] used an improved
feature selection technique in the condition monitoring of planetary gearboxes with an
unsupervised clustering algorithm for fault diagnosis. The method is tested when there are
cracks in the sun gear, the planet gear and the gear ring. The results show that the method
is effective. Aiming at the nonlinearity of the gearbox vibration signal, Zhang et al. [14]
used MFDFA to calculate the characteristic value of the gearbox as the application object of
the improved k-means method; it achieved better results in the gearbox fault experiment.

In addition, energy and environmental issues have been hot topics recently. As a hub
connecting the sea and land, the terminal consumes a lot of energy to transship bulk cargo,
which will lead to high energy costs and accompanying high pollution and greenhouse
gas emissions [15]. Port operators are also looking to reduce energy consumption by
applying various strategies, such as energy-aware optimization of operations [16] and
peak shaving [17]. These studies propose a variety of berth allocation and quay crane
assignment strategies to reduce power consumption or reduce grid burden. Iris et al. [18]
studied optimal operations plan, demand response and optimal power flow from the
perspective of port microgrid. The results prove that the energy cost can be reduced under
the action of the energy storage system and the demand response mechanism.

As can be seen, there are some new technologies that can be applied to the port to
improve the intelligence. However, they do not solve the new problems brought about by
the increase in the level of data in smart harbors. A smart harbor can collect very similar
data in gigabytes every day. How does one process these data to obtain information from
them? How does one delete similar data to reduce the storage space burden? In order to
solve the challenges brought about by massive data and obtain valuable information at the
same time, this article proposes a framework for the application of big data technology in
ports. Under this framework, the load spectrum, energy consumption, typical working
cycle for trolley and vibration signal clustering of the gearbox are obtained. The results will
be used to help port operators gain insight into the port operations and equipment health
and find typical data within a specified period, providing a basis for removing duplicate
similar data.

2. Problem and Solution

Most of the cranes in container terminals are quay container cranes, as shown in
Figure 1. These cranes are approximately 110 m long, 30 m wide and 70 m high, weighing
up to 580 tons and capable of gripping containers of up to 60 tons. Manual inspection of
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such a large structure involves a lot of labor. Therefore, the monitoring of these large steel
structures is of great importance.
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Figure 1. Quay Container Cranes.

As mentioned above, the new smart port has achieved multi-channel monitoring of
cranes, as shown in Figure 2. The main monitoring object of the container terminal is the
ship-to-shore quay crane. Various sensors can monitor the crane lifting load, the crane
trolley running speed/direction, the vibration signal of the key mechanism of gear box and
so on.
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Figure 2. Crane Monitoring Interface.

For port operators, the infrastructure for data monitoring is gradually improving,
but there is still a big gap in how data are applied. In addition, the growing amount of
monitoring data is also a problem that has to be faced.

For the crane lifting load, lifting position, trolley speed and vibration signal of the
gearbox collected at the port, this article proposes a data mining framework, as shown
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in Figure 3. The specific methods are: firstly, the crane load spectrum is obtained by
statistically estimating the crane lifting load through a non-parametric kernel density
estimation algorithm and the power under different loads can also be calculated; secondly,
by drawing on the typical driving cycle construction problem in the transportation field, the
eigenvalues of the trolley speed on the crane are calculated, and the typical working cycle is
obtained through the k-means algorithm; finally, for the vibration signal of the gearbox, its
time-domain and frequency-domain eigenvalues are calculated, and the k-means algorithm
is used for unsupervised fault diagnosis of the gearbox; its clustering center can also
represent the vibration data over a period of time and be retained as typical data for a
long time.
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3. Methods
3.1. Kernel Density Estimation of the Load Spectrum

In probability statistics, it is necessary to analyze the collected data to solve its underly-
ing probability density. The method used is usually parametric method or non-parametric
method. The parameter method needs to assume that the sample data conforms to a distri-
bution law, and then solve the parameters in this distribution law [19]. The non-parametric
method does not require the assumption of a specific form of the distribution function, and
the probability density estimation results are determined by the data itself [20]. For the
load spectrum of the crane, because the weight of the transported cargo is unknown and
completely random, the spectrum may have multiple peaks and may change with time.
This makes it infeasible to use a preset probability distribution for estimation, whereas
kernel density estimation does not need to preset a probability distribution and can achieve
better results. As a result, the non-parametric method of kernel density estimation is chosen
to calculate the load spectrum of the crane lifting weight.

The kernel density (also called Parzen window) estimation algorithm, which is an
extension of the idea of Gaussian mixture model, generates a set of probability density
functions for all sample points to obtain an approximate target probability distribution.
The one-dimensional kernel density can be calculated as follows:

fh(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(1)
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where n is the sample capacity, h is the bandwidth and K(·) is the kernel function. The
kernel function is a probability density function, which needs to satisfy the condition that
the value is non-negative and the integration is one. The kernel function and bandwidth
determine the accuracy and smoothness of the final estimated density. Commonly used
kernel functions are square window function, trigonometric window function, Gaussian
function, etc. In this article, Gaussian function is used as the kernel function.

3.2. Preprocessing of Trolley Speed Signals

The speed signal is obtained by a sensor mounted on the coupling between the gearbox
and the motor of the trolley mechanism and is able to reflect the fluctuation of the trolley
motor speed over a period of time. A simple analysis of the speed data shows that there are
obvious skipping phenomena in the signal collected on site, and the signal jitter is strong,
shown in Figure 4, which will create obstacles for the subsequent analysis and calculation.
Therefore, the speed signal needs to be preprocessed.
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First, by calculating the speed difference between adjacent moments, we can obtain
the real-time angular acceleration of the crane motor shaft. Points with angular acceleration
greater than a threshold are marked as abnormal. Secondly, by calculating the mean value
of other normal data near the anomaly point, the corrected data can be obtained.

In addition, the signal usually still contains a certain amount of noise, and the Savitzky–
Golay filter based on the least squares fitting theory can effectively reduce the influence of
the mutation point [21]. For a time-series data point x(t), if there are M units of data before
and after the moment t0, use these 2M + 1 units of data for fitting:

y(n) =
N

∑
k=0

aknk (2)

where N is the order of the polynomial and 2M + 1 is the window width.
The minimum mean square error of the fit is:

εN =
M

∑
m=−M

(
N

∑
k=0

aknk − x(t0 + m)

)2

(3)
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Letting the partial derivative of this error with respect to ai be zero, each value of ai
can be calculated.

∂εN
∂ai

=
M

∑
m=−M

2ni

(
N

∑
k=0

aknk − x(t0 + m)

)
= 0 (4)

The data at the moment t0 can eventually be solved for as follows:

y(t0) = y(0) = a0 =
M

∑
m=−M

h0,m·x(t0 + m) (5)

where h0,m can be obtained from the set of equations solved for ai.
The original rotational speed data and the data after outlier processing and data

smoothing are shown in Figure 4.

3.3. The Characteristic Value of Trolley Speed

In order to characterize the driving cycle of the trolley and to analyze the characteristics
quantitatively, it is necessary to calculate the characteristic parameters as its reference
basis [22]. In this article, 13 characteristic values are selected to describe the trolley speed:
average speed, average travel speed, average acceleration, average deceleration, idle time
ratio, acceleration time ratio, deceleration time ratio, speed standard deviation, acceleration
standard deviation, running time, maximum acceleration, minimum deceleration and
maximum speed [12].

Because the speed data in this article is segmented time series, each time series is
a crane operation process. There is no need for additional segmentation of the signal
segments, and the feature values can be calculated directly. After the eigenvalues are
calculated for all segments, the eigenvalues need to be normalized in order to prevent
the difference influence ratio of the eigenvalues in the subsequent processing due to the
difference of the order of magnitude. In this article, the normalization method of Z-Score is
used to normalize the feature matrix by the following equation.

x∗ =
x− µ

σ
(6)

where µ is the mean of all sample data and σ is the standard deviation of all sample data.
The matrix of eigenvalues after normalization is shown in Table 1.

Table 1. The eigenvalues matrix of trolley speed.

No. Average Speed Average
Acceleration . . . Maximum

Deceleration Maximum Speed

1 2.817 1.270 . . . 1.701 0.225
2 2.793 1.492 . . . 0.070 −0.443
3 −1.350 −1.954 . . . −1.249 0.371

. . . . . . . . . . . . ... . . .

3.4. Vibration Signal Eigenvalue Calculation

In practice, the collected vibration signal is a segment of random discrete signal,
and in order to reflect the vibration pattern of the segment, the statistical eigenvalues of
the segment are used as the eigenvalues to characterize the signal [23]. The statistical
eigenvalues of the vibration signal can be divided into two categories: time domain
statistical eigenvalues and frequency domain statistical eigenvalues [24]. The calculation
formula is shown in Table 2.

The time domain statistical characteristic values used in this article include mean,
standard deviation, root mean square (RMS), peak indicator, pulse indicator, waveform
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indicator, kurtosis indicator, skewness indicator, margin indicator and root-mean-square
amplitude. The standard deviation reflects the degree of fluctuation of the signal around
the mean value; the root-mean-square value describes the energy of the vibration signal,
which has a good stability and repeatability; the peak indicator and pulse indicator can
be used to detect whether there is shock in the signal; the kurtosis indicator is sensitive
to the shock characteristics of the signal, and when the value is too large, it indicates that
there may be shock vibration in the machinery due to excessive clearance, the existence
of the broken slide joint surface, etc.; the margin indicator can be used to detect the wear
of mechanical equipment; the skewness indicator reflects the asymmetry of the vibration
signal; the root-mean-square amplitude is not only a reflection of the mean value of the
signal vibration but also of the fluctuation and dispersion of the signal.

Table 2. Time domain eigenvalue.

Eigenvalue Equation

Mean µ = 1
N

N
∑

i=1
xi

Standard Deviation σ =

√
1
N

N
∑

i=1
(xi − x)2

RMS Xrms =

√
∑N

n=1 (X(n))2

N

peak indicator C f =
X̂

Xrms

pulse indicator I f =
Xp

|X|
waveform indicator S f =

Xrms

|X|
kurtosis indicator K4 = 1

N
∑N

i=1(|xi−x|)4

S4

skewness indicator K3 = 1
N

∑N
i=1(|xi−x|)3

S3

margin indicator L =
Xp
Xr

root-mean-square amplitude Xr =
(

1
N ∑N

i=1
√
|xi|
)2

Frequency domain statistical features include power spectrum center of gravity indi-
cator, mean square spectrum, power spectrum variance, correlation factor, harmonic factor,
origin moment of spectrum, etc. The power spectrum is a reflection of the variation of signal
power with frequency in a unit frequency band, that is, the distribution of signal power in
the frequency domain. Power is defined as the time-averaged component of the square of
the amplitude, and this calculation can also be seen as the process of removing the phase
information of the harmonic components in the frequency domain. The gravity center of
power spectrum reflects the degree of change in energy center, which can better describe
the changes in the frequency domain characteristics of the signal; the power spectrum
variance reflects the degree of dispersion of the energy distribution; the power spectrum
mean square frequency characterizes the location of the main band of the power spectrum;
the correlation factor reflects the degree of correlation of the spectrum energy distribution;
the harmonic factor reflects the distribution state and the spectral width of the spectrum;
the origin moment of spectrum reflects the overall energy situation of the power spectrum.
The calculation formula is shown in Table 3.

These time and frequency domain eigenvalues can better reflect the difference between
mechanical equipment in fault and non-fault states, and the characteristic matrix is chosen
as the object of machine learning. Again, these feature values need to be normalized to
obtain better results.
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Table 3. Frequency domain eigenvalue.

Eigenvalue Equation

power spectrum center of gravity indicator Fcx = ∑N
i fi pi

∑N
i=1 pi

mean square spectrum Fc =
∑N

i=1 f 2
i pi

∑N
i=1 pi

power spectrum variance VF = ∑N
i=1( fi− fcx)

2 pi

∑N
i=1 pi

correlation factor FR = ∑N
i=1 cos(2π fi)pi

∑N
i=1 pi

harmonic factor H =

√
∑N

i=1 f 2
i pi ∑N

i=1 f−2
i pi

∑N
i=1 pi

origin moment of spectrum Mn =
∫ ∞

0 pi f 2
i d f

3.5. Eigenvalue Dimensionality Reduction

For each vibration signal, a total of 16 eigenvalues can be calculated. Therefore, the
dimension of the eigenvalue matrix will be n*16, where n is the number of vibration
signal. For one signal, a 1*16 eigenvalue vector can be obtained. However, there may be
information overlap among the feature values, in order to improve the efficiency of machine
learning and reduce unnecessary computation; it is necessary to reduce the dimensionality
of the feature values. In this article, principal component analysis (PCA) is used to reduce
the dimensionality of the eigenvalue matrix. It performs orthogonal transformation on the
values of related variables, thereby projecting them into the values of a series of linearly
uncorrelated variables [25]. These uncorrelated variables are called principal components.
These principal components will no longer have any physical meaning but represent deeper,
uncorrelated intrinsic features of those former values.

Solving the covariance matrix of the normalized feature matrix, and then finding the
eigenvalues of its covariance matrix, we can obtain the contribution rate of each component.
The contribution rate indicates the ability of the principal components to represent the
original data, and the larger the contribution rate is, the stronger the ability to comprehend
the original variable data.

The contribution rate is defined as follows:

k

∑
i=1

CONTi =
∑k

i=1 λi

∑m
j=1 λj

> CL (7)

where λ is the eigenvalue of each component. Therefore, the number of components to be
retained can be obtained after determining the value of CL, and the sum of contribution
rates is generally required to be not less than 85%. In this article, the sum of contribution
rate of vibration signal is 90.15% when 3 dimensions are retained after dimensionality
reduction, which meets the requirement.

The vibration signal after normalization and dimensionality reduction is shown in Table 4.

Table 4. Vibration eigenvalues after dimensionality reduction.

Number Dim1 Dim2 Dim3

1 −4.96274 −1.39188 −1.48589
2 −6.31311 1.33577 0.45164
3 −1.16182 −0.54277 2.38734
4 −3.47988 0.127853 2.21343
5 −2.39999 −0.61635 2.52252
6 −1.22929 −0.349458 2.65056

. . . . . . . . . . . .
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3.6. K-Means

The k-means algorithm [26] is a vectorized computational method that initially came
from signal processing and is more commonly used as a clustering algorithm in many
fields [27]. Because abnormal data and normal data have different eigenvalues, they will
be distributed in different locations in the feature space, so the abnormal data can be
separated by clustering algorithm. In addition, the distance in the feature space can reflect
the similarity between data, so the center of each cluster can be used as the typical data
representing the class. The k-means algorithm can specify the number of clusters, which
will also facilitate the generation of a specified number of typical data. In this article, the
method will be applied several times for the purpose of mining information from port data.

The essence of the k-means algorithm is to divide the sample points observed at one
time into k clusters and to ensure that each sample point belongs to the cluster correspond-
ing to its nearest cluster center.

The steps of k-means clustering are as follows:
In the first step, k clustering centers are selected, which are also called the mass center

of the class. If the mass center is selected completely randomly, it may make the clustering
process too computationally intensive and increase the number of unnecessary iterative
steps. Therefore, it is necessary to increase the probability of selecting points that are far
from the selected center of mass when selecting a new center of mass.

In the second step, for each sample point i, the category to which it belongs is calculated
with the following formula:

s(i) = argmin‖x(i) −mj‖
2
, j = 1, 2, 3 . . . (8)

where x(i) is the sample, mj is the mass center of the class, s(i) is the new class to which the
sample belongs and ‖a− b‖2 is the Euclidean distance between the two computations.

This step can be specifically divided into two steps: calculating the distance and
finding new classes, and the main computational effort occurs in the distance calculation.
To speed up the iterative clustering process, a large number of computational steps can be
reduced by using the geometric properties of triangles through the Elkan algorithm.

In the third step, for each category, the position of its center of mass is recalculated
according to the following equation.

mj =
∑n

i=1 1
{

s(i) = j
}

x(i)

∑n
i=1 1

{
s(i) = j

} (9)

Repeat the second and third steps until convergence or until the termination condition
is reached.

The loss function is:
J(s, m) = ∑n

i=1 ‖x
(i) −ms(i)‖

2
(10)

4. Results
4.1. Data set

In this article, an experiment based on real data was conducted, and the data are all
collected from the actual working cycles of a container terminal in China, as shown in
Figures 5 and 6.

Each group of data records a complete working cycle of a crane, including hoisting
mechanism lifting, trolley mechanism operation and hoisting mechanism lowering. The
specific contents of each group of data include the signals of 16 vibration sensors, the
signals of 2 speed sensors and the trolley position, lifting sling position and lifting weight
obtained from the PLC (Programmable Logic Controller). These data are stored in csv
format, and each group of data may contain multiple work cycles. In the preprocessing
stage of the data, it is split into individual work cycles using the spreader unlock signal as
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a boundary. The sampling frequency of most signals is 1Hz, and the sampling frequency of
gearbox vibration signal is 12,800 Hz.
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Figure 6. The mounted sensor.

4.2. Load Spectrum and Energy Consumption

The load data are initially discrete values, and the density estimation converts them
into a curve, which can intuitively reflect the operation and capacity of the terminal over a
period of time. The kernel density estimation method introduced in this article is used to
estimate these load data, whose kernel function is a Gaussian kernel and bandwidth value
is 1.2. The final density function obtained is shown in Figure 7.
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The load can be divided into three levels of light, medium and heavy, and the interval
is [0, 15], [15, 40] and [40, 65]. With the obtained density function, we can calculate the
probability of the crane lifting load in the range of 0 to 15 t as 66.10%; 15 to 40 t as 19.22%;
40 to 65 t as 14.45%; and the value of the 90% quantile as 50.2 t.

With this load classification, the energy consumption under different loads can be
calculated separately. The main work of the crane is the lifting of the goods, that is, the
up and down movement of the spreader. Through the derivation of the position value of
the spreader, the speed of the spreader moving up and down can be obtained, and then
multiplied by the load, the main energy consumption of the crane can be obtained.

Figure 8 shows the energy consumption for three load cases and the selected data are
typical data obtained from subsequent experiments.
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4.3. Typical Working Cycle of Trolley Speed

Due to the inevitable data drift and other phenomena in actual data, the speed data
of the trolley needs to be preprocessed to correct for exception values and smooth the
noise. Then, the feature value of the speed is calculated and standardized. Finally, the
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k-means algorithm is used with the number of clusters being set to one. The sample with
the closest distance to the final cluster center is taken as the typical working cycle, shown
in Figure 9, and the comparison between the typical working cycle eigenvalue and the
average eigenvalue of all collected data is shown in Table 5.
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Table 5. Eigenvalue comparison of typical working cycle and the average values.

Typ Avg Error Ratio (%)

1 281.068 325.234 13.58
2 512.857 706.243 27.38
3 134.523 114.383 17.61
4 −115.795 −101.852 −13.69
5 0.434151 0.475575 8.71
6 0.261887 0.247967 5.61
7 0.303774 0.2762 9.98
8 398.907 474.593 15.95
9 109.034 100.371 8.63

10 106 99 7.07
11 305.186 315.193 3.17
12 −283.147 −339.469 −16.59
13 1612.25 1520.69 6.02

4.4. Clustering Analysis of Vibration Signals

First, in order to verify the effect of the unsupervised machine learning method
proposed in this article in fault diagnosis, experiments are conducted with the publicly
available data set from Case Western Reserve University.

This experiment selects the drive end data of a 14-inch bearing installed at a sampling
frequency of 12 kHz. The bearing had an inner ring failure, a rolling element failure and a
6 o’clock outer ring failure at 1797 rpm.

Ten faulty samples were selected from each of the three groups of faulty data, in
addition to 30 samples from each of the three corresponding groups of normal data to form
a total data set of 90. When the final number of clusters is set to 4, the number of samples in
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each category is 60, 17, 12 and 1, as shown in Figure 10. Among them, 60 normal data are
identified as one cluster, and the other clusters are faulty data, indicating that the method
can achieve the separation of faulty data from normal data.
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Figure 10. Distribution of samples by cluster.

SSE (Sum of Squared errors) measures the similarity within each cluster and is often
used as a quantitative evaluation of clustering algorithms. Because the k-means algorithm
iterates quickly, and the results are greatly affected by the selection of the initial point, the
k-means algorithm is generally executed multiple times to select the optimal result. Table 6
shows the variation of SSE in executing the k-means algorithm four times.

Table 6. The variation of SSE.

Executions of K-Means Iteration SSE

1
1 327.2920551
2 215.8913183
3 199.0128277

2
1 293.117468
2 282.3126043

3
1 381.7330591
2 215.8913183
3 199.0128277

4
1 278.4945887
2 199.0128277

Secondly, the data collected from the actual port machine will then be the object of the
next experiment.

The data set contains a total of 16 vibration data points from sensors located in the
gearbox, and this article uses the signals collected by the sensors on the output shaft of the
crane hoist mechanism. Firstly, the time domain and frequency domain eigenvalues of the
vibration signals were calculated; then, normalized and k-means clustering was performed.
By setting different numbers of clusters and analyzing the clustering results, it was found
that even when the number of clusters was greater than 1, the number of sample points
in each category is still evenly distributed, which proved that the data set did not contain
fault data. This conclusion is also consistent with the composition of the data set.

By setting different numbers of clusters, as shown in Figure 11, we can obtain multiple
sets of data. The sample closest to the center can be treated as the typical vibration data that
can represent this data set. Therefore, the typical data under different loads can be obtained
by first grouping the data according to three load levels and then clustering them separately.
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5. Discussion of the Results

The main purpose of this article is to address the difficulty in obtaining valuable
information from the vast amount of information and excessive data storage pressure as
ports become intelligent.

First, the load spectrum was obtained from the raw data by kernel density estimation.
The load spectrum can be used as the basic condition for calculating the structural life. It
can also intuitively show the cargo transportation situation for a period of time to the port
operator, understand the proportion of different weights of cargo and provide a factual basis
for formulating the follow-up development direction. In addition, the energy consumption
under different loads is calculated. Based on the energy consumption curve, the smart
port can dynamically adjust the working status of each crane to avoid the superposition of
energy consumption peaks, thereby reducing energy bills and green gas emissions.

Secondly, the typical working cycle of the trolley is obtained from the massive data.
As important as the problem of typical working cycle in the automotive field is, the
acquisition of the working cycle of the trolley can guide the next development and selection.
In addition, the working cycle of the trolley directly reflects the working efficiency of
each crane. Comparing the typical working cycle of different cranes can help the port to
further optimize the efficiency and provide a basis for berth allocation and crane operation
optimization.

Finally, experiments with cluster analysis of gearbox vibration signals on a public data
set have verified its validity, and the analysis results on real data are identical to the actual
situation. As an effective anomaly detection method, cluster analysis of gearboxes can
greatly reduce the frequency of manual inspections and further accelerate the intelligence
of the port. In addition, by setting different filtering conditions and different number of
clusters, multiple clustering results can be obtained, and then the centers of the different
clusters can be stored separately as typical data. The rest of the data can be deleted, which
not only completes the process of data analysis and extraction and ensures the integrity of
typical historical data but also effectively reduces the pressure on the port to store several
gigabytes of data per day.

6. Conclusions

This article proposes a framework and method for data mining using different sensor
signals in smart harbors, which solves the problem of using, retaining and deleting massive
amounts of data in smart ports. The load spectrum, energy consumption curve and typical
working cycle of the trolley obtained in this article can help the port in its decision making
and optimization from different aspects. The cluster analysis of gearbox vibration signals
in this article can become a common method for port anomaly detection, and it can also
filter out typical data to delete the remaining redundant data and reduce the pressure of
data storage.

This article does not go into more depth in the area of scheduling and planning
management in ports but mainly provides the basis for the next step of research. Future
research can be done in areas such as berth allocation and crane operation optimization. In
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terms of health status detection, the main need of the port lies in abnormality detection,
and further research can focus on fault diagnosis to achieve the discovery of abnormalities
while locating faults.
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