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Abstract: Despite advancing Internet of Things (IoT) technologies, road projects often rely on inac-
curate supplier data, making it difficult to determine the cost, quantity, quality, and transportation
duration of the needed materials. The wrong choice of material suppliers can lead the supply chain to
suffer losses, directly affecting the project’s performance. In this regard, many studies have devised
material logistics optimization models for road projects. However, the majority based their decisions
on inaccurate or outdated data. This paper studies this gap by introducing a framework that utilizes
IoT technologies and smart construction to feed optimization models with accurate and dynamically
updated material data. This IoT-powered framework considers only quantitative criteria as input
data to the integrated linear programming optimization model, precisely selected suppliers, and
optimally calculated costs using MS Excel Solver. The results reveal that the framework is sensitive
to any dynamic data updates and can achieve up to 40% material cost savings in real runtime. The
paper demonstrates the proposed outline framework with a case study of planning an alternative
road between Riyadh and Madinah cities in Saudi Arabia.

Keywords: construction management; automation; smart construction; IoT; optimization

1. Introduction

With the extensive support of the leadership, the Kingdom of Saudi Arabia (KSA) has
become one of the leading countries in the communication and information technology
sector, advancing to the eighth rank of the G-20 countries, according to the 2020 Saudi
Press Agency (SPA) data [1]. The Chartered Institute for IT (BCS) [2] claimed that the
ongoing fourth industrial revolution could be described as “a fusion of advances in artificial
intelligence (AI), robotics, IoT” [3]. Locally, the KSA has an advanced IT position with
almost 81% of businesses in KSA already using IoT platforms [3]. Nevertheless, the
adoption is still limited in the construction sector, according to recent reports published by
the Saudi Communications & Information Technology Commission [4]. The optimizing
material logistics can utilize these advanced technologies to overcome the challenges and
reduce road construction costs.

Road projects occupy enormous importance in the local economy, yet they usually
present many inherent issues, especially material logistics costs [5]. As demonstrated in the
next topic, various scholars have studied material logistics, including a few road projects,
yet many models base their decisions on inaccurate or outdated data. One of the significant
saving potentials inherent in road projects is optimizing material logistics using modern
selection tools and dynamic data [6]. The incorrect selection can cause losses in the supply
chain, hurting project performance directly. Thus, any enhancement of material supply in
terms of time, quality, and cost would make a significant difference in project profitability,
particularly long-distance road constructions.

Selecting a suitable material logistics model is essential for the rest work progress
of construction projects and cost optimization. However, such models need readiness of
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accurate and dynamically updated data through reliable sources to achieve meaningful
material cost optimization. Thus, creating a dynamic data connectivity framework con-
nected with an appropriate optimization method and tools, such as official open data (OD),
global positioning system (GPS), blockchain (BC), mapping software (MSW), construction
smart machines (CSM), and smart logistics trucks (SLT), is considered an intelligent step to
support any logistics model. Such frameworks can provide project parties and stakeholders
with accurate and reliable material data, such as duration, location, capacity, price, and
type [7].

This paper proposes a smart framework for cost optimization that utilizes data connec-
tivity (DC) technologies to feed the process with accurate, reliable, and dynamic material
data to optimize material costs associated with road construction projects. The framework
contains several smart elements. It can help decision makers reach rapid optimized de-
cisions in terms of material cost with high dynamicity and accuracy input data, which is
different from previous studies. Besides the developed linear programming (LP) model,
enhancing the whole optimization process with precise and dynamic material data is the
main contribution of this paper. Additionally, a case study of a planned project is used to
demonstrate the proposed dynamic framework. The results reveal that the framework is
sensitive to any dynamic data updates and can achieve up to 40% material cost savings in
real runtime.

2. Literature Review

This section will discuss verities of studies related to the smart elements and technolo-
gies employed in the proposed framework. These elements are essential for accurate data
preparation, cost optimization, and supplier selection process.

2.1. IoT Studies

Nowadays, the internet maintains a sense of logistics meaning. It enables us to search
online data about the material, places, and people, utilizing search engines. In light of
the internet, logistics can be defined as providing the right product in the right condition,
amount, place, time, and cost [8]. The interaction between the internet and logistics in
terms of IoT can deliver fruitful benefits. Logistics governance is broadly possible with the
help of IoT.

The IoT is described as a DC network of physical smart objects or instruments that
are autonomously capable of sensing, monitoring, managing, tracking, interacting with
their surroundings, and collecting and exchanging data [4,9]. This intelligent DC technique
enables the users to comprehend the various parameters and their effects, making decisions
that benefit the system’s operation [10]. According to Witkowski [11], up-to-date IoT data is
a crucial solution for the logistics and transportation sectors since it can provide operational
data on the location and status of items while also shortening the logistical process cycle and
saving expenses. It is noteworthy that people fix their attention firmly upon communication
when they talk about the IoT and neglect IoT protocols from their consideration. However,
communication would fall without the interaction medium between IoT elements and
devices. In this regard, IoT elements and devices use generally one of two IoT protocols.
The first type is known as IoT data protocols which are used to connect low-power IoT
devices. This type of protocol provides communication with hardware without the internet.
The other protocols are recognized as IoT network protocols, which are typically used to
link IoT elements and devices over the internet [12]. As a result, IoT may play a critical
function in facilitating a dynamic data interchange across logistics and construction project
participants. With this in mind, this function can provide the most up-to-date data for the
selection and optimization of models, allowing them to identify the best suppliers and
compute the optimal material costs.
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2.2. Supplier Selection Criteria Studies

According to Cengiz [13], a proper supplier selection process seeks the ideal supplier
who can serve the client with the right quality products or services at the right price, in the
right proportions, and at the right time. Taherdoost and Brard [14] discovered that many
companies still rely solely on pricing performance when deciding on a supplier. Nonethe-
less, several companies have adopted a more detailed, multi-criteria approach. Price,
quality, and delivery were the most commonly used supplier evaluation factors [14,15].
Several scholars have classified supplier selection as a multiple criteria decision-making
(MCDM) problem. However, the supplier selection problem may be solved using a simple
linear programming (LP) approach when the selection criteria are limited and straightfor-
ward. Mukherjee [16] conducted a literature review and compiled the following list of the
most commonly utilized supplier selection criteria.

• Cost • Logistical performance • Performance history

• Quality
• Commercial plans and

structure
• R & D

• Delivery • Production • Mutual trust

• Service • Facility and technology • Easy communication

• Supplier’s profile
• Professionalism of

salesperson
• Collaboration

• Reliability
• Quality of relationship with

vendor
• Annual demand

• Environment • Risk factor • Availability

• Responsiveness • Technology and capability • Supplier’s willingness

2.3. Supplier Selection Methods

Selecting a suitable criteria model depends on the purchasing situation. Each client
should decide on the criteria that correspond to their expectations and then create a
ranking method to determine the best supplier [14]. However, there is no standard method
for supplier selection. Because every supplier selection process is unique, companies
employ various methods depending on their criteria, product, industry, and expectations.
Tahriri et al. [17] discovered that the methods used are essential to the entire process and
substantially affect the selection results. It is critical to comprehend why a company prefers
one approach (or a mix of methods) over another. As a result, companies use the one that
best matches their sector and expectations. Taherdoost and Brard [14] collected the most
cited supplier selection methods in the literature and organized them into six categories,
as follows:

1. Statistical/probabilistic (cluster analysis), such as fuzzy set theory.
2. Multi-attribute decision making (categorial methods), such as AHP, ANP, TOPSIS,

MAUT, and outranking methods such as ELECTRE and PROMOTHEE.
3. Methods based on costs, such as ABC and TCO.
4. Mathematical programming (data envelopment analysis), such as LP, MOLP, and

goal programming.
5. AI, such as CBR and ANN.
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6. Combined approaches, such as (MP + TCO, AHP + LP, MAUT + LP, ANP + TOPSIS,
and fuzzy TOPSIS).

In this regard, Ali et al. [18] developed the LR-type fuzzy multi-objective model to
solve realistic supplier selection problems and serve as a helpful tool for decision making
in logistics management. Nazari-Shirkouhi et al. [19] developed a two-phase fuzzy multi-
objective LP model for supplier selection with multiple pricing levels and products. Liao
and Kao [20] performed a two-stage model for selecting the optimized suppliers in a
watch manufacturing company by utilizing a fuzzy (TOPSIS) method with fuzzy triangular
numbers and multi-choice goal programming (MCGP). Jadidi et al. [21] solved a multi-
objective supplier selection problem, using a normalized goal programming model with
specified goals and weights. Uygun et al. [22] integrated an approach combining ANP
and decision-making trial and evaluation laboratory (DEMATEL) methods to evaluate
the outsourcing providers in the telecommunication industry. The DEMATEL technique
determined the criteria interdependences and the fuzzy ANP method for calculating the
weights of the criteria and sub-criteria. Astanti et al. [23] conducted a comparative analysis
between AHP and fuzzy AHP in the supplier selection problem, using experts in the field
who have more than 12 years of experience in this area. This study’s fuzzy AHP approach
was unnecessary, mainly whenever ‘expert’ respondents supported the decision-making
process. In such a case, the AHP without the fuzzy technique is sufficient for making
the decision.

2.4. Studies Related to LP Methods of Optimizing Material Supply Chain

Numerous research papers have studied the optimization of the material supply
chain of road construction projects using different optimization techniques [24–26]. They
discussed how to deliver material from suppliers (SPL) to destinations and reduce lo-
gistics costs using LP optimization models. Choudhari and Tindwani [6] developed an
advanced LP model. They considered three phases of a raw material supply chain that
allow additional processing and mixing at intermediate locations before final consumption.
Nevertheless, because of a lack of sophisticated computer software/computing power,
their model focused on representative data, emphasizing the method, and did not probably
cover topics such as data preparation speed, accuracy, and data automation. They found
that current optimization modeling techniques in road construction projects need to be
enhanced with up-to-date data. Arayapan and Warunyuwong [27] developed standard
optimization models for transport planning to improve the overall logistics cost, including
intangible costs. However, the models could not measure inbound logistics regularly
and systematically.

According to the literature review, the present trend of supplier selection is an in-
tegrated or hybrid approach of two or more selection methods. However, developing
advanced and mixed methods, such as fuzzy TOPSIS, FAHP, ELECTRE, etc., were not the
objective of the current study. The authors considered only quantitative criteria as input
data to the recommended selection approach; thus, the LP method is adequate to calculate
quantitative values. Fathi and Bevrani [28] noticed that LP models were recently employed
widely to optimize resource allocation issues, such as material supply plans due to the
modest grade of exponents used in the decision variables. However, LP models must be
fed with up-to-date data to return accurate selection results. The next topics will cover the
smart resources needed for a successful material selection framework.

2.5. Studies Related to Location Data Accuracy for Optimizing Material Supply Chain

Besides IoT and DC technologies, data preparation is considered a vital part of the
optimization process in this research. Sammut et al. [29] determined that before data can
be analyzed, they must be organized into an appropriate form.

Dynamic and accurate location data are considered vital values needed in the current
paper. Many research papers have discussed the quick acquisition of mapping data to
calculate the transportation time between material suppliers and road construction sites.
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In this regard, Beskorovainyi et al. [30] designed mathematical models for optimizing
transportation routes in closed-loop logistics systems, considering several topological and
functional constraints. The model does not consider the data accuracy of material and
transportation prices. Zhao et al. [31] devised a system for assessing the consistency of
GPS-based logistics data on speed, elevation, and position from three separate receivers.
Cedillo-Campos et al. [32] delivered an integrated method to reliable measure variability
on travel times and its impact on transportation flexibility. Devlin et al. [33] evaluated the
positional accuracy of the dynamic non-differential global positioning system (non-DGPS)
for tracing trucks in Ireland. Somplak et al. [34] applied a data reconciliation method that
utilizes recording movement vehicles to mine the data. The database gathers the start and
endpoint of the way (GPS coordinates) and the entire duration. Based on the earlier studies,
feeding optimization models with accurate mapping data can enhance material logistics
costs by selecting the lowest overall cost alternatives. However, these studies concentrated
on obtaining travel data (routes and times) and did not utilize “dynamic” data to optimize
construction material costs or supplier selection.

2.6. Studies Related to Data Validation for Optimizing Material Supply Chain Using BC

Besides the accuracy of location data, data validation (such as price, cost, and quality)
is crucial for successful LP optimization models. Recent technology, such as BC, is a
promising tool that impacts material data validation. Several recent studies demonstrated
the application of BC techniques to construction management. Some of these studies have
covered this technique generally, whereas the others have concentrated on a particular
area. For example, Farouk and Darwish [35] introduced a new framework that integrates
supplier relationship management (SRM) with customer relationship management (CRM)
in an application suite by BC technology. Of note, one of the applications of BC using smart
contracts, which is a promising technology, changes the future of project managing. In this
regard, Penzes [36] illustrated that smart contracts could make supply chain management
more straightforward and transparent through the lens of BC. Hence, BC can play a
significant role in the proposed framework. For example, to be sure that the bought
items (e.g., subbase stones) are fair trade, you would need a record of all transactions and
events of the life of that item. That would be possible with BC, which is different from
the centralized and traditional methods [37]. Accordingly, BC techniques can ensure data
validation for optimization models and help develop a reliable framework for material
selection, including cost optimization.

2.7. Studies Related to CSM in Optimizing Material Supply Chain

According to Japan Gov statistics [38], CSM is one of the most recent uses of sensor
technology for construction machines and is regarded as a promising construction approach.
One of Japan’s leading construction machinery companies, Komatsu, was the first to offer
this remarkable idea. All of the company’s construction machinery is wirelessly connected,
allowing the company’s KOMTRAX management system to monitor and handle the data
collected by the equipment. The system collects information, such as location, operation
status, and fuel level, using built-in sensors to efficiently manage operations, optimize fuel
consumption, forecast machine issues, and more. Thus, the CSM is a vital element of the
current smart framework.

2.8. Studies Related to ICT Technology CSM in Optimizing Material Supply Chain

Komatsu introduced new ICT technology into its construction machinery in 2008 with
the launch of its Autonomous Haulage System (AHS), the first automated operating system
for super-large dump trucks in the world. The firm then developed its smart construc-
tion Platform in 2015, which utilizes ICT to dynamically integrate not only construction
machines, but all phases of the construction process to achieve total optimization. Smart
construction is already in operation at over 3300 locations across Japan [38].



Infrastructures 2022, 7, 62 6 of 21

2.9. Smart Networks and IoT-Based Real-Time Production Logistics

The relationship between sustainable urban governance networks and Internet of
Things-based real-time production logistics as regards construction road projects has been
covered in several recent studies. Evans and Horak [39] performed assessments about how
data-driven IoT systems and machine learning-based analytics can interact and exchange
big data by utilizing networked and integrated sustainable urban technologies, such as
sensing infrastructures and smart city solutions. They anticipated a growing future of
utilizing big data sources to link communities and cities and to improve local government
technological knowledge. Nica et al. [40] presented an exploratory review of the current
research on IoT-based real-time production logistics and found that by employing various
sensors, the logistical status of front-line machines and the operating setting data can be
controlled sufficiently. Popescu et al. [41] came up with analyses concerning smart IoT
systems and conducted that operational reliability can be improved by deploying a machine
condition monitoring system. They found that fast data supplied by IoT can construct
manufacturing environments that can optimize outputs into digitalized and networked
systems across a smart framework that assists in decision making by use of massive real-
time data and interaction and teamwork with equipment, sensors, and operators.

2.10. Discussion of the Gap of Knowledge in This Study

Briefly, the lack of data accuracy and dynamicity is the gap of knowledge of the se-
lection and optimization models demonstrated in the above-given studies. Their main
objective was to minimize the total cost, including ordering, inventory holding, purchasing,
and transportation costs. Consequently, the main contribution of this paper is assembling
a smart framework with fourth industry revolution techniques to ensure data accuracy,
dynamicity, and validation to achieve accurate outputs of the employed LP optimiza-
tion model.

Next, a conception of the smart framework is demonstrated by a case study to aid
optimization and selection models with accurate, updated, validated, and dynamic supplier
data. Besides the selection model, this framework consists of multiple smart elements
such as OD source, mapping software, BC technology, and more to maintain dynamic data
validation for the material cost optimization and calculation process.

3. Flowchart of the Proposed Smart Framework for Logistics Cost Optimization

As presented in Figure 1, the framework consists of two main components, Sections A
and B. Section A utilizes IoT technologies and network protocols to collect and validate
all input data needed to calculate the discount cost (Cji) initiated between the current
workstation (WST) and the potential supplier (SPL). Section B receives ready calculated Cji
and employs it to proceed with the MS Excel Solver and LP Equations (2)–(5) to compare
and select the best SPL alternatives. More explanation about the two sections can be reached
in the following paragraphs.

3.1. Section A: Collecting and Validating of Dynamic Input Data of Material Logistics Cost

This section consists of four main modules of input data. The first module delivers
by CSM and represents input data of the current WST position: demand of material, GPS
coordinates, and material specifications. The second module describes an OD, which
contains all accurate and dynamically updated data about road construction materials and
all officially registered SPLs. The third module contains two aided tools that help to define
distance and validate supplier data. The first aided tool utilizes MSW to determine the
distance between any two locations considered in this framework. The second aided tool
uses BC to validate construction material data (purchase and transportation prices). The
fourth module (central module) considers all data acquired over the IoT network protocols
from modules (1 to 3) to calculate the discount cost (Cji) that arises between current WST
and potential SPLs to purchase and transport construction materials. This module utilizes
DC technologies, such as IoT, to collect dynamic data from other modules. The output data
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of the central module flow as input data to the MS Excel Solver (LP optimization algorithm)
in Section B.
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In detail, the first module provides the central module with the requirements of the
current WST. These requirements (or input data) are fed automatically by CSM (client’s
machine) that works at the current GPS coordinates of WST. The input data in this part
cover WST requirements, such as the following:

• Material demand volume (denoted by variable Tj) is required for the current WST. The
active CSM working at the current position predicts this material demand volume.
The variable counts the number of fully-loaded SLTs needed to cover the demand of
this site.

• GPS coordinates of the current WST (latitude and longitude). These data are fed
permanently by the active CSM and used by the MSW to determine the distance
between the current WST and potential SPLs.

• Type of construction materials required to the current WST.

The second module is termed OD and provides reliable data about available material
SPLs. It covers such data as follows:

• GPS coordinates of trusted SPL (exact latitude and longitude);
• Material transportation price per km (Ri);
• Material types available by SPLs (M-types, such as M1, M2, and M3);
• Capacity: the maximum count of fully loaded SLTs that SPL can send (the quantity

unit of the transported material is measured by the count of fully loaded SLTs, not m3);
• The material price, which is updated dynamically by SPLs (Mi).
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The third module consists of two aided tools, namely BC and MSW. CSM can initialize
the MSW to calculate the expected distance (Dji) between current WST (Pj) and potential
material SPLs (Si). The MSW employs the GPS coordinates of the current WST (Pj) and
potential SPLs (Si) to calculate the accurate logistics distance (Dji). This calculation process
is performed repeatedly by CSM every kilometer along the WST. The purpose of repeating
the Dji calculation is to consider all the suppliers’ options and find the fastest and shortest
Dji. The logistics distance (Dji) is a genuine variable of the discount cost (Cji) calculated in
the 4th module. On the other hand, BC is responsible for validating material data (Ri and
Mi) imported from the OD.

The fourth module in section A (central module) utilizes Equation (1) to advance
discount cost (Cji) based on data collected from other modules. All variables mentioned in
section A (GPS coordinates, Ri, M-types, capacity, and Mi) flow in the following central
Equation (1) to determine the discount cost (Cji) of material procurement and transportation
between current WST (Pj) and potential material SPLs (Si).

Cji = Tj · Dji · Ri + Tj · VT · Mi (1)

where

T: Material demand (number of fully loaded SLTs needed for current WST);
D: Accurate logistics distance (derived from MSW);
R: Updated transportation cost per km (imported from OD and proved by BC);
V: Constant SLT volume equals 30 m3 (max. 24 ton);
M: Material procurement cost per m3 (imported from OD and proved by BC).

One essential objective of this study is realized by linking all section A data together
through IoT and DC techniques.

3.2. Section B: Applying LP Optimization Functions by MS Excel Solver

This section performs the following LP steps to select appropriate SPLs and optimize
the material logistics cost for the entire project.

• Conceptualize sourcing of raw material for road construction as a logistics optimiza-
tion problem.

• Formulate the LP model for the given problem statement and implied resource constraints.
• Solve the LP formulation by an optimization solver.
• Interpret the final output of the solver to determine the quantity to be procured from

each supplier and distributed through various demand locations of the road.

For better understanding, a simplified sketch figure of the proposed LP model was
created to develop the idea of calculation variables. Figure 2 depicts the pictorial represen-
tation of the problem. Each WST (Pj) can cover its demand from one or more SPLs (Si) and
vice versa. At the end phase, the model creates numerous relationships (decision variable
Xji) among WSTs and SPLs.

The above-illustrated sketch shows two perspectives of relationships (Xji) arising
between system nodes (SPLs and WSTs). The first represents material shipping from a
single SPL to one or more WSTs. The sketch shows that SPL S9 is shipping materials to
all WSTs (P1 to P10). The second perspective represents the situation when the material
is shipped from multiple SPLs to a single WST, such as SPLs S1-20 to WST P1, as depicted
in Figure 2. Moreover, another type of relationship is the unit discount cost (Cji) arising
between system nodes, such as C1,1, forming the unit discount cost between P1 and S1.

Under those circumstances, the proposed optimization model can be formulated
simply by using LP techniques. The related formulations and corresponding variables of
the model are defined in Table 1.
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Table 1. Description of notations used in LP formulation.

Notation Description

Index
i SPL index (from 1 to I)
j WST index (from 1 to J)

Decision variables
xij Unit quantity of raw material shipped from Si to Pj

Parameters
I Total number of SPLs
J Total number of WSTs

cij Discount cost of transporting single unit of material from Si to Pj
ρi The maximum supply capacity of raw material at source Si (per SLT) *
µj The total demand of raw material at WST Pj (per SLT) *

* The quantity unit of transported material counted by number of full loaded SLTs, not m3.

Accordingly, the mathematical formulations can be expressed as follows based on the
LP conditions [42].

Objective function (Min Cost)

∑∑ Cij · Xij (2)

Subject to:
for i = 1, . . . I

∑ Xij ≤ ρi (3)

for j = 1, . . . J
∑ xij ≥ µj (4)

xij ≥ 0 (5)

All symbols demonstrated above in the LP equations are termed in Table 1. These
equations are linear with the decision variables. Thus, LP is an appropriate method for
this problem. Equation (2) states the objective function, which minimizes the total supply
cost of shipping desired quantity of material to the project. This cost contains the unit
price and transportation cost as indicated previously. Equation (3) is the first constraint
expression which imposes that the demanded material volume cannot exceed the SPL
capacity of material (ρi). In contrast, the second constraint, Equation (4), imposes that the
shipped volume of material must meet the demand of each WST (µj). The last constraint,
Equation (5), satisfies the non-negativity conditions and assures that all associated decision
variables can be zero or take positive values.
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4. Case Study: Enhancing Material Logistics Cost with a Smart Framework
4.1. Case Study Description

This case study considered a planned road construction project between two major
cities in Saudi Arabia, namely Riyadh and Madinah, as presented in Figure 3. These two
cities are vital in Saudi Arabia. Riyadh is the country’s capital, having a population of
more than 7 million people. In addition, Riyadh is a hub business for major local and
international companies. On the other side, Madinah city is a holy city that attracts millions
of Muslim visitors annually. The demand for connecting these two cities has increased
yearly, and there is a need to increase the access road between them.
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The newly planned road (indicated by the red line in Figure 3) is around 137 km
shorter than the existing one (blue line), which benefits this vital project. The Google
function called “Terrain” considers the topographical situation of the new road, as shown
in Figure 3. This function confirms there are no significant topographical barriers (such as
elevation, mountains, lakes, rivers, etc.) that may affect the logistics of the road work sites.

Moreover, the planned project intersects with many local routes that offer access paths
for transportation trucks that supply the project with the required materials. Figure 4 shows
some local routes (in red) intersecting the project line (in black) according to the data gained
from Saudi GASGI [43]. In this case study, MSW utilized these access routes to measure the
distance between suppliers (SPL Si) and workstations (WST Pj).
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The planned project scope includes building a three-lane international highway road
for a 700 km stretch with 10 WSTs. Raja [44] explained the standard structure of road layers,
in which the construction layer comes directly under the road surface. In the current case,
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each road direction is almost 11 m wide. In addition, it reaches an average depth of 50 cm
under the surface courses along with the project.

However, to demonstrate the cost-saving of material supply in this study, only one
type of material was adopted, namely, crushed stone. Crushed stone is a widely accessible
substance in Saudi Arabia and forms an essential stone layer for the highest traffic volume
category in the country. Filling this layer with stones delivered by carefully selected SPLs
presents a real challenge that faces project decision makers repeatedly. For this reason, road
projects often rely on inaccurate SPL data, which makes it difficult to determine the cost,
quantity, quality, and transportation duration of the demanded materials.

4.2. Applying Case Study with the Proposed Framework

The authors proposed a comprehensive framework that assures a smart and fast
DC medium to link trusted material SPLs with their clients to overcome the challenges
mentioned above. With this in mind, the smart framework imports SPL data validated
regularly by the Ministry of Industry and Mineral Resources (MIM). The framework utilizes
many smart elements such as OD, LP, BC, MSW, CSM, SLT, and sensors that interact under
IoT techniques. This framework can offer accessible and reliable supplier data in the end
phase in case of direct adoption from MIM.

The following example illustrates the connectivity mechanism that interacts among
all the aforementioned smart elements. Each active CSM uses built-in sensors and an
optimization algorithm to predict the material demand for the current project stage. Then,
the machine uses the IoT network protocols to connect automatically with OD to reach
validated supplier data. The CSM receives over the IoT network protocols all validated
material data and calculates the discount cost Cji of each SPL. Based on quantitative selection
criteria stored in the machine’s software, the CSM processes LP optimization (MS Excel
Solver) and selects the best SPL among all available material SPLs. On the other hand, the
SPL’s system receives a request from the CSM that orders a specific material type/amount.
Then the SPL sends several SLTs to satisfy the CSM demand. As the roadwork progresses,
the WST-coordinates also move. Consequently, the distance between the material SPLs and
the WST changes simultaneously. With this in mind, the optimization of material logistics
needs to be readjusted frequently by CSM. This step recalculates the new material volume
and the best SPLs based on the newly recognized WST coordinates. Accordingly, the
optimization algorithm stored in the CSM is responsible for calculating a new optimized
material cost. All fetched data are validated simultaneously by smart elements facilitated
by IoT technologies.

In this paper, the authors have intentionally concentrated on one single factor to
demonstrate the reliability of the proposed framework. This includes only factors that
affect the discount cost Cij of material logistics (such as material cost and transportation
cost). Accordingly, the requested material in this study is limestone size = 0.075/37.5
mm. Moreover, SLT size = 30 m3 with a maximum 24 Ton weight are considered to haul
the needed material from the trusted local quarries. Such information can be conducted
through the OD connected by IoT.

The framework uses MSW, such as Google maps, which obtains accurate GPS coor-
dinates from the OD and returns distance value as input data to the LP model. Through
this process, CSM can obtain the best transportation cost and duration of each SLT hauling
material to the project. Table 2 illustrates an example of the data structure offered by the
OD. Due to privacy rights, all suppliers’ names are omitted, as shown in the table.
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Table 2. An example of dynamic data offered by OD.

Field Name SPL S1 SPL S2 SPL S3 . . . Si

location (city) Jubail Riyadh Jeddah . . .
GPS (lat., long.) 27.15, 49.2 24.98, 46.99 21.47, 39.39 . . .
raw material type M1 M3 M1 . . .
material description limestone silica sand limestone . . .
capacity (per SLT) 210,372 135,621 77,235 . . .
price (SAR/SLT) SAR 830.00 SAR 720.00 SAR 980.00 . . .
available transporters (SLTs) 50 33 75 . . .
transportation price (per SLT/km) SAR 3.50 SAR 4.00 SAR 4.30 . . .
quotation update time 16/9/21 7:16 19/9/21 13:52 18/9/21 0:43 . . .

Figure 5 illustrates a microscale location map of the road WSTs considered in this
project. The WSTs are denoted by variable Pj, which varies the index j from WST to WST. In
detail, WST (P1) is the start point of the planned project and refers to WST of Riyadh City.
All following WSTs (P2–P10) are secured with logistics routes (as depicted in Figure 4) and
ended with Madinah WST (P10). Each WST could have unlimited logistics alternatives (Xji),
as shown in Figure 5 and later called decision variables. Decision variables (Xji) represent
the relationship between WST (Pj) and SPL (Si), where the index j and i refer to WST and
SPL, respectively. Thus, CSM has a wide range of supply alternatives that can be selected
among all recognized suppliers in the country. Note that the grey line between WSTs and
SPLs (for instance, S36 with P10, etc.) forms the mathematical relationship or the decision
variable (X36,10), not the actual route distance.
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Considering the decision variables (Xji lines colored grey) between material SPLs and
project WSTs, a two-dimensional matrix with 20 (SPLs) and 10 (WSTs) was created to form
a range of 200 decision variables (X1,1; X20,10) in this study. Despite the vast number of
local SPLs in Saudi Arabia, the authors have intentionally decreased the considered SPLs
(Si) count to demonstrate the concept more easily. Generally, the details mentioned earlier
and influence factors that impact road construction are considered in the following sections.
These factors are essential to developing a framework that can reduce the costs associated
with the project material logistics.

4.3. Results and Discussion of the Case Study

Considering the above-discussed mathematical formulations, an MS Excel Solver was
fed dynamically with the data collected and validated via IoT in Section A. The data contain
values (such as GPS coordinates, material prices, demand, capacities, etc.). Using this data,
the CSM calculates Equation (1) and returns the discount cost Cji related to the demanded
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material needed for the current WST. Next, the CSM sends the result (Cji) to the solver that
processes Equations (2)–(5) and calculates the optimal logistics plan.

The expressions, such as cost-minimizing objective function, constraints, and decision
variable fields, are defined and set at appropriate cells in MS Excel Solver, as shown in
Figure 6. An appropriate solving method, namely Simplex LP, was also nominated as the
default method through the software. All decision variables were set as integers due to
the nature of the transportation problem. The unconstrained decision variables were set as
non-negative to satisfy the condition of non-negativity. Figure 6 illustrates the input and
output data representation in an excel spreadsheet, which comprises three main sub-tables
needed for the Solver calculations.
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In detail, the first sub-table includes a pre-calculated unit discount cost (Cji) of shipping
one loaded SLT from SPL (Si) to WST (Pj). The calculation to obtain the discount cost (Cji)
that arises between particular nodes, namely SPL (Si = 2) and WST (Pj = 3), can be taken from
Equation (1) as follows.

This is a numerical example of Equation (1):

C3,2 = Tj = 3 · D3,2 · Ri = 2 + Tj = 3 · VT · Mi = 2

where the GPS coordinates of nodes P3 and S2 are from other modules (1 and 2). Then, we
calculate the exact distance between them, and

j = 3, which refers to WST P3
I = 2, which refers to SPL S2
T3 = 1, which represents one full loaded SLT of limestone collected from WST P3
D3,2 = 242 km, where this value is derived from MSW (Module 3), which imports
R2 = SAR 3.30 for one fully loaded SLT per km. These data were imported from Module (2)
and validated by Module (3).
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VT = 30 m3 SLT volume (max. 24 ton). This value is constant.
M2 = SAR 27 per m3. Module (2) and (3) imported and validated these data.

By substituting all variables in equation (1) with the above collected values, a discount
cost (C3,2) of shipping one fully loaded SLT from S2 to P3 reached the following result:

C3,2 = 1 SLT · 242 km · SAR 3.30 + 1 SLT · 30 m3 · SAR 27

C3,2 = SAR 1609 per one fully loaded SLT (delivered)

The previous calculation procedure of unit discount cost is repeated among all other
system nodes (Si and Pj) in this project. As previously stated, with varying the GPS
coordinates of construction location, the active CSM will perform this calculation repeatedly
to find the best SPLs and competitive material logistics costs. Repeating this calculation as
a response for the variable GPS coordinates is more accurate. However, in this paper, we
fixed the GPS coordinates of WSTs (P1–P10) to simplify the associated LP calculations. The
results of all discount cost calculations of the fixed WSTs are given in the 1st sub-table of
Figure 6. The discount cost C3,2 can be seen in excel cell number D4 with the same result
SAR 1609 as previously calculated to prove the given values.

Furthermore, the second sub-table nominates all possible decision variables (Xji)
needed to ship the one-unit quantity of construction material from any Si to any Pj. The
3rd sub-table contains Solver functions and utilizes all data imported from other sub-tables.
The Solver proceeds all LP algorithms and returns optimized results.

Since the road has 700 km, it is required to have thousands of WSTs and GPS coor-
dinates in response to the continuous movement of the active CSM. This arrangement
requires many calculations requiring powerful software to cover all the possibilities raised
between different project nodes. Hence, the concept of 10 WSTs was used in this case study
with a fixed distance (70 km) between them. These 10 WSTs will be connected with 20 SPLs
and form a matrix of 200 values (cost data) that may arise between those nodes (i.e., 10
WSTs · 20 SPLs = 200 cost data). The second sub-table in Figure 6 presents these values in
tabulated form.

The main Solver’s sub-table satisfies all mathematical formulations of LP Equations
(2)–(5). The material demand limitations for WSTs (from P1 to P10) were inserted in demand
cells (Cells, N25:W25). Similarly, the material capacity constraints of 20 SPLs were added to
column Z (Cells, Z3:Z22). Respectively, demand and capacity values were fed to the Solver
by CSM and OD. Both data values were already prepared in Table 3 to be used in the LP
optimization process of the Solver.

Table 3. WST demands and SPL capacities (measured in SLTs).

WST Pj Demand (SLTs) SPL Si Capacity (SLTs) SPL Si Capacity (SLTs)

P1 (depth = 0.5 m) 25,667 S1 66,000 S11 198,000
P2 (0.2 m) 10,267 S2 46,200 S12 118,800
P3 (0.25 m) 12,833 S3 75,900 S13 95,700
P4 (0.4 m) 20,533 S4 23,100 S14 138,600
P5 (0.5 m) 25,667 S5 132,000 S15 66,000
P6 (0.3 m) 15,400 S6 59,400 S16 89,100
P7 (0.35 m) 17,967 S7 62,700 S17 105,600
P8 (0.2 m) 10,267 S8 50,820 S18 128,700
P9 (0.15 m) 7700 S9 102,300 S19 52,800
P10 (0.25 m) 12,833 S10 112,200 S20 33,000

Before starting the Solver, all decision variables (X11:X2010) were set to the value one.
At this stage, the initial configurations of the optimization model are complete, and the
Solver is ready to present the model results at once.

Once the Solver is initiated, as shown in Figure 7, the total demand cells (N23:W23)
will be satisfied and filled with the requested supply units (Cells, X3:X22) within the SPL
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capacity limit. At this phase, the LP model increases the number of decision variables (Xji)
next to the most competitive SPLs and decreases it once the SPL is insufficient. For example,
the model converted all decision variables (from X11 to X201) into zero. Exceptionally, X101
was set to 25,667 SLTs to satisfy the demand of the first WST P1. This exception means
all SPLs beneath WST P1 (except S10) were insufficient to supply that WST with the most
competitive material logistics cost. The same procedure was performed with the rest of the
WSTs (from P2 to P10). After these calculations, the LP model returns the objective function
(Cell Z25) value that represents a product of decision variables (Xji) and discount costs (Cji)
of the selected competitive material SPLs chosen above. The value of the objective function
equals the minimum optimized total cost of all materials needed for the entire project based
on competitive SPLs.

Accordingly, by utilizing dynamic and high accurate data, the outcomes of the pro-
posed DC framework could assist the CSMs in saving logistics costs. As a sign of its
reliability, the LP model used in this framework focused on specific SPLs and dynamically
ignored the other. In other words, the model selected the material SPL S10 as the best source
for WSTs P1 to P3 due to its total price and capacity at optimization runtime. Similarly, the
model decided to cover the material demand of P4 exclusively from S16. However, P5 has a
dual relationship with S10 and S19 to meet its high demand for crushed stone.

On the other hand, S19 remained the best source for many other WSTs. It could
completely cover the demand for roadworks from P6 to P10. Nevertheless, the alternatives
mentioned above are variable and could be altered rapidly due to any slight change in the
framework’s primary input data, which IoT reflects. In the last module of section B, the
framework summarizes all essential information associated with the competitive SPLs in
a report. Thus, CSMs can select among many cost choices listed in the report to gain the
desired limestone based on reliable and dynamic data sources with less human intervention.

In the real-life application of this model, the Solver can repeatedly calculate the mini-
mum optimized cost of demand “individually” for the current WST, where the active CSM
positions itself. This reliable logistics cost cannot be achieved without the DC concept
utilized in this paper. Otherwise, the results of the logistics will be non-competitive due to
the inaccurate and outdated supplier data. Moreover, connecting the CSM permanently
with the OD over the IoT network protocols can provide the project with a variable list of
competitive material suppliers due to the dynamic data shared through this framework.
Thus, this framework contributes to better and more accurate cost optimization and DC for
dynamic supplier selection.

4.4. Validation of the Smart Framework

In this section, the framework is validated by using two means. The first means
compares the optimized model with the manually calculated cost to validate the reliability
of the framework outcomes. The second means is comparing the optimized model results
with three local SPLs to demonstrate the reasonability of the model results.

In the first means, the authors considered two results to prove the reliability of the
proposed model. First, the optimized results were obtained from the LP model (Figure 7).
Second, a list of manually calculated unit discount costs Cji (Table 4) represents the tradi-
tional plan for all project nodes. We can compare optimal vs. traditional outcomes with
these results and decide whether the model is a reliable choice. It is to be noted that the
optimal plan is the best distribution plan, which cannot be improved further within the
given constraints. As the cost of material changed among all SPLs in real life, the little cost
in the material purchasing process is due to the project team procuring more quantity from
the supplier, which charges a lower price than other sources but costs more on transporta-
tion. Therefore, it was expected to save cost if the framework’s optimal plan was fed by the
CSMs instead of the manually prepared traditional plan. The deficits of the traditional plan
consider one supplier each WST and neglect the newly updated cost alternatives revised
permanently by the suppliers.
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Although supplier (S19) has limited capacity, the Solver filled the demand of worksta-
tion P5 “partially” from supplier S19 due to its’ competitive material price. Nevertheless,
the Solver decided to cover the rest of the demand of P5 from another source, the second
priority pricing supplier, namely S16. This step occurs automatically in our optimal plan,
namely the smart framework, while the cost could be higher in traditional plans for the
same WST.

Table 4. Unit discount costs Cji (measured by SLTs) calculated manually using the traditional plan.

Si P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

S1 2281 2069 2089 1853 1769 1917 2285 2537 2585 2765
S2 1050 1272 1609 1718 2024 2318 3041 3097 3292 3440
S3 908 1088 1407 1658 1909 2152 2670 2838 2878 2997
S4 720 1021 1553 1863 2448 2682 3609 3780 3951 4154
S5 742 890 1150 1309 1513 1711 2156 2239 2321 2420
S6 769 930 1213 1388 1612 1825 2320 2401 2500 2608
S7 888 1098 1426 1713 2003 2261 2818 2960 3064 3192
S8 704 958 1408 1784 2164 2480 3259 3418 3547 3718
S9 1196 1463 1943 2349 2734 3099 3964 4120 4271 4456
S10 695 838 1098 1316 1536 1732 2209 2262 2346 2443
S11 1056 1197 1459 1681 1879 2075 2556 2622 2721 2840
S12 992 1146 1374 1562 1752 1922 2334 2379 2452 2535
S13 919 1048 1282 1480 1702 1848 2268 2344 2420 2510
S14 1149 1363 1749 2076 2386 2680 3376 3501 3627 3772
S15 1065 1227 1665 2031 2375 2704 3537 3500 3840 4007
S16 2443 2126 1607 1211 990 1273 2206 2184 2580 3064
S17 1024 1112 1409 1654 1907 2112 2672 2647 2887 2999
S18 1043 1229 1724 2140 2531 2905 3845 3808 4194 4383
S19 1885 1743 1515 1337 1273 997 959 1007 1131 1387
S20 1207 1239 1571 2107 2367 2727 3591 3551 3943 4255
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In the second means, three reference SPLs were interviewed to seek their opinion
about the unit price of the material logistics cost. In our case, the optimal total cost between
the two cities was around SAR 163 MM. The road distance of the project was 700 km; thus,
the optimal unit price for transported material is [SAR 163,381,057 ÷ (700,000 m · 0.5 m ·
22 m)] = 21.22 SAR/m3 based on the optimal total cost calculated by the LP model. On the
other hand, the first reference, SPL (A), stated a range of limestone unit prices between SAR
20 and SAR 25, excluding transportation costs. The second reference, SPL (B), stated that
the unit price of this type of road material equals SAR 40 excluding transportation as well.
However, this price includes the overhead cost and profit (mark-up). Of note, the mark-up
is usually 40% of the price in Saudi Arabia. The third SPL (C) implies a competitive range
of material unit prices between SAR 18 and 26, excluding transportation. Having this in
mind, Table 5 illustrates a comprehensive comparison of the average cost given by the
reference SPLs. The cost covers shipping one unit of limestone, including transportation
cost, excluding overhead cost. Additionally, the last column contains the optimal unit
prices advanced earlier in this study for comparison purposes.

Table 5. The optimal unit discount cost Cji vs. the cost gained from reference SPLs.

Cost Type SPL (A) SPL (B) SPL (C) Optimal Unit Cost

SAR/m3 SAR/m3 SAR/m3 SAR/m3

Average material price
(excl. overhead cost) 22.5 24 22 17.22

Transported (+SAR 4.0) 26.5 28 26 21.22

Note that the average cost of transporting one cubic meter of material ranges between
SAR 3.0 and SAR 5.0 per kilometer in KSA. For calculation simplicity, the average trans-
portation cost is considered SAR 4.0 for further usage in the following table. All reference
supplier names are omitted in this paper due to privacy rights.

Overall, the optimal cost reached in this study is considered competitive, even
with transportation costs. It outperforms the closest competitor SPL C, saving SAR 4.78
(26 − 21.22) of cost for each cubic meter transported one kilometer. Considering the entire
project length and the difference of cost, the potential saving exceeds SAR 36.8 MM in favor
of the optimal solution, as shown in the following calculation:

Potential saving = road length × width × average depth × difference
= 700,000 m × 22 m × 0.50 m × 4.78 SAR/m3

= SAR 36,806,000
(6)

The saving for each WST could be higher if the accurate GPS coordinates are considered
continuously through this framework. However, such calculation needs powerful software.
Such colossal research can be performed in future studies.

4.5. Sensitivity Analysis

Supplier selection could be single sourcing (one SPL) or multiple sourcing (group of
SPLs) is/are selected to fulfill the entire project’s demand. Randomly biding suppliers can
lead to a massive economic loss when the whole project demand is taken from a single
source. This section demonstrates the saving cost by comparing the results of single and
multiple sourcing. For example, the total cost of material shipped from a single source (S1)
to the entire project exceeded SAR 342 MM. Similarly, the cost amounted to SAR 303 MM
when the calculation depended only on (S11). This type of calculation is usually used
in traditional plans. The results of these costly attempts are presented in the following
scenario, Figures 8 and 9:
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It is noteworthy that the optimized logistics cost of the entire road construction project
is still favorable, with a cost less than SAR 163 MM (equivalent to around USD 43.5 MM)
compared to Scenarios 1 and 2. The optimal solution could save more than 40% of the
logistics cost than single-sourcing solutions. Moreover, the savings can be higher with DC
if the calculation is based on moving WST coordinates, as demonstrated earlier.

5. Conclusions

Road projects are usually fraught with many challenges, including material logistics
costs. They often rely on inaccurate SPL data, which makes it difficult to determine the
cost, quantity, quality, and transportation duration of the demanded project materials.
The wrong choice of material suppliers can lead the supply chain to suffer losses, directly
affecting the project’s performance. In this regard, many studies conducted material
logistics optimization models for road projects; however, the majority based their decisions
on inaccurate or outdated data. Hence, there is a need to enhance supplier selection models
to optimize material logistics costs with updated and validated data.

This paper contributes a framework that utilizes many smart elements to feed selection
and optimization models with accurate, dynamic, and reliable material data to fix this gap.
Besides the LP model, this framework utilizes the fourth industry revolution components
such as IoT technologies, OD, BC, MSW, and CSM. Only quantitative criteria were consid-
ered as input data to the LP optimization model to select suppliers and calculate optimal
costs. A case study was used to prove the framework’s reliability. The case study is a
planned road construction between two Saudi cities, including building a subbase course
of a highway road for a 700 km stretch with 10 workstations and 20 suppliers, considering
the moving GPS coordinates of the workstations. The framework demonstrated high
cost-saving levels of the entire project.

Through IoT network protocols and with less human intervention, CSM fed the frame-
work with input data about the demand of the workstations. In response, the framework
fetched and validated the supplier’s data from OD and calculated the material logistics cost
for each supplier. Using MS Excel Solver, the LP model delivered an optimized material lo-
gistics cost and selected the competitive suppliers for the individual workstations, including
the entire project considering the GPS coordinates of the permanently moving roadworks.

The framework was validated using two means—the first one, comparing the opti-
mized results with the traditionally calculated costs. The second means comparing the
optimized results with the cost gained from three reference suppliers. The first comparison
results revealed that the traditional plan considers a single supplier for each workstation
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and neglects the updated cost data revised by the suppliers. However, the proposed frame-
work in this paper was sensitive for any data updates and could change the optimal plans
in response.

On the other hand, three cost alternatives were calculated for the entire project based on
the unit price data gained from three reference suppliers. The results were compared with
the frameworks’ optimal outcomes. The optimal cost outperformed the closest competitor
with a potential saving of SAR 36.8 MM. However, the cost-saving for each WST can be
even higher if the accurate GPS coordinates are considered continuously through this
framework. The sensitivity analysis demonstrated that the cost-saving could exceed 40%
of the entire project costs by using multiple instead of single sourcing. This framework
utilized IoT technologies and enhanced the supplier selection process with dynamic data
sources for more material logistics cost calculations accuracy.

It is recommended in this study to develop the model with more constraints and
parameters, such as various SLT sizes; internal transportation among project sites; moving
WST coordinates; considering traffic limitation of trucks in real-life; using multiple types
of construction materials; quality; delivery performance; cost; and capability. However,
the price remains the primary factor of the selection process. Future research of this work
can be a fully coded program of the integrated proposed model in this paper to attain
an entirely automated process. In addition, this model can be employed to optimize any
material logistics associated with the project.
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Abbreviations

IoT internet of things
DC data connectivity
BC blockchain
AI artificial intelligence
KSA Kingdom of Saudi Arabia
LP linear programming
GPS global positioning system
MIM ministry of industry and mineral resources
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OD governmental open data
MSW mapping software
CSM construction smart machine
WST workstation
SPL supplier
SAR Saudi Arabian Riyal (currency)
MM million
j index of workstations
i index of suppliers
Pj symbol of workstation
Si symbol of supplier
Xji decision variable of unit quantity for shipping material from SPL to WST
Cji variable of unit discount cost for shipped material.
Dji distance variable measured by MSW to ship material from SPL to WST.
Tj unit demand of material (loaded SLT) needed for WST j
Ri transportation price per km and SLT
Mi dynamically updated material prices offered by SPL.
V SLT volume
ρi maximum supply capacity of raw material available by SPL
µj total demand of raw material (loaded SLTs) needed for WST j
km kilometer
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