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Abstract: One of the most interesting applications of Structural Health Monitoring (SHM) is the
possibility of providing real-time information on the conditions of civil infrastructures during and
following disastrous events, thus supporting decision-makers in prompt emergency operations. The
Bayesian decision theory provides a rigorous framework to quantify the benefit of SHM through
the Value of Information (VoI) accounting for different sources of uncertainties. This decision theory
is based on utility considerations, or, in other words, it is based on risk. Instead, decision-making
in emergency management is often based on engineering judgment and heuristic approaches. The
goal of this paper is to investigate the impact of different decision scenarios on the VoI. To this
aim, a general framework to quantify the benefit of SHM information in emergency management is
applied to different decision scenarios concerning bridges under scour and seismic hazards. Results
indicate that the considered decision scenario might tremendously affect the results of a VoI analysis.
Specifically, the benefit of SHM information could be underestimated when considering non-realistic
scenarios, e.g., those based on risk-based decision-making, which are not adopted in practice. Besides,
SHM information is particularly valuable when it prevents the selection of suboptimal emergency
management actions.

Keywords: Bayesian decision theory; value of information; structural health monitoring; decision-
making; bridge management; earthquake; flood; scour

1. Introduction

Managing civil infrastructures during and after disastrous events is a complex task
where contrasting needs must be considered, such as ensuring the users’ safety vs minimiz-
ing losses in functionality [1]. One of the main concerns in these situations is that the health
state of single structures is often not known due to several sources of uncertainties affecting
factors such as the disaster magnitude, the structural properties (materials and geometry),
and the models used to estimate the structural state, e.g., the fragility curves [2,3]. For
this reason, generally, inspections are carried out by technicians to assess the structural
condition. In the case of large-scale natural disasters, emergency operations and inspections
are even more complicated since multiple assets must be managed and interdependencies
within and between different civil infrastructures must be accounted for [4,5]. Flood-
induced erosion of bridge foundations, i.e., scour, and seismic actions are among the main
concerns of the operators of transportation infrastructures. Thus, this paper focuses on
these two phenomena. Scour is commonly identified as the leading cause of the failure of
bridges worldwide and it is exacerbated by climate change effects [6–8]. Earthquakes can
affect large areas and produce considerable human and material losses [9–11].

Since inspections can be time-consuming depending on the extension of the hit area
and the number of structures to be assessed [12], expeditious inspections are performed
and ranking systems are typically adopted to prioritize assets’ inspections. In these cir-
cumstances, the possibility of obtaining real-time information on the structural condition
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is very appealing. Hence, in the last few decades, several Structural Health Monitoring
(SHM) techniques have been proposed to support decision-makers in the management of
emergencies [13–16].

Two types of scour monitoring approaches can be identified [17], namely scour mon-
itoring using depth-measuring instrumentation and scour monitoring using changes in
structural dynamic properties. The first approach aims at evaluating scour depth at piers
directly, e.g., through Fiber Bragg grating sensors, acoustic waves, or electromagnetic
sensors [18,19]. Instead, vibration-based SHM methods entail the measurement of the
dynamic response of bridges to identify variations in stiffness related to the presence of
scour, which is supposed to modify the external boundary conditions of the structure.
Several vibration-based methods for scour identification are based on changes in modal
frequencies and shapes [20]. The main advantage of these methods is that they can give
insight into the global behavior of the structure without the need to locate the sensors close
to the site of scour.

As for Seismic SHM (S2HM), it is generally based on dynamic measurements, e.g.,
accelerations, recorded at several locations on the bridge. Two main classes of methods
for S2HM exist. The first class of methods performs a comparison of damage-sensitive
features (DSFs) before and after the seismic event, such as modal shapes and natural
frequencies [15,21]; variations in these parameters might be associated with damage once
environmental and operational effects are removed. The second class of methods relies on
DSFs estimated during seismic excitation, such as drifts, or displacements.

The main issue with traditional SHM systems is that typically they require dense
networks of sensors at the level of each structure which provide a large amount of data
that must be stored and managed by operators. Thus, they are generally expensive. In turn,
the economic and social benefits of SHM systems might not be obvious.

In recent years, the Value of Information (VoI) from Bayesian decision theory has
been used to quantify the benefit of SHM in several situations [22–26], such as optimal
sensor placement [27], definition of optimal operation and maintenance, and structural
integrity strategies [28], as well as emergency management [29]. The VoI can be defined
as the expected reduction in management costs related to the adoption of an SHM system.
Thereby, the VoI is computed considering two situations, namely the situation in which the
optimal action is selected using the available knowledge on the system, the so-called Prior
analysis, and the situation in which the decision is supported by new SHM information
before it is available, i.e., the Pre-Posterior analysis. Generally, both types of analysis are
carried out according to utility considerations by selecting the action associated with the
maximum utility or, in other terms, the minimum risk [30]. Nevertheless, in real conditions,
decision-makers do not select optimal actions in the framework of the Bayesian decision
theory according to risk considerations. Instead, decisions are often based on engineering
judgment or heuristic methods. SHM potentially allows for proper real-time risk-based
management of structures.

As a novel contribution to the development of the VoI, this paper aims at investigating
the effect of considering the—more realistic—situation in which the Prior analysis is carried
out considering engineering judgment or heuristic rules. To this aim, two case studies are
developed relating to the traffic management of bridges under scour and seismic hazards.
For both types of hazards, an overview of current emergency management procedures
is provided considering real guidelines and examples. To compute the value of SHM
information, different prior scenarios are taken into account, including the risk-based
scenario and different heuristic decision scenarios based on existing practices. The results
associated with each decision scenario are compared in terms of VoI.

The remaining part of the paper is organized as follows. Section 2 recalls the general
framework of the Bayesian decision theory and the VoI as well as its extension to address
the emergency management of civil infrastructures. Sections 3 and 4 address the computa-
tion of the VoI in the case of flood and seismic emergency management, respectively. The
two sections are organized in a similar fashion: first, the current practices in emergency
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management are presented; after that, a reference case study is addressed and the frame-
work of the VoI in these situations is described; finally, the results of the VoI analysis are
presented. Section 5 contains a discussion of the obtained results and Section 6 ends the
paper with general conclusions, limitations, and future works.

2. Bayesian Decision Theory
2.1. General Framework—Value of Information

The Bayesian decision theory provides a probabilistic framework aimed at selecting
the optimal action when the state of a system is affected by uncertainty. It relies on the
Bayesian definition of probability and the principle of maximum expected utility [31]. The
general ingredients of a Bayesian decision problem are the following:

• An = set of the N available actions, with n = 1, . . . , N
• Sl = set of the possible L states of the system, with l = 1, . . . , L
• Oj = set of the J possible outcomes of a test, with j = 1, . . . , J
• u(An, Sl) = utility function, which expresses the desirability of the combination of the

action An and the state Sl .

The state of the system Sl and the test outcome Oj are random variables associated
with the probability P(Sl) and P

(
Oj
)
, respectively. In a Bayesian framework, the probability

P(Sl) represents the confidence that the decision-maker has regarding the state Sl , ranging
from P(Sl) = 0 (no confidence) to P(Sl) = 1 (absolute confidence). The probability P(Sl) is
referred to as the prior probability of Sl since it is evaluated considering prior knowledge,
i.e., without the new knowledge from tests. The prior probability P(Sl) can be updated
according to the Bayes’ theorem in case the outcome of a test is available; this is shown
as follows:

P
(
Sl
∣∣Oj
)
=

P
(
Oj|Sl

)
P(Sl)

P
(
Oj
) (1)

where P
(
Oj|Sl

)
is the so-called likelihood function, i.e., the probability of observing Oj when

the state of the system is Sl , and P
(
Oj
)

is the so-called evidence. The evidence is obtained
as follows:

P
(
Oj
)
=

L

∑
l=1

P
(
Oj|Sl

)
P(Sl) (2)

The Prior analysis is performed using prior probabilities, while the Posterior analysis is
carried out when posterior probabilities are employed. Based on the available probabilities
of the states of the system (and the associated amount of information), the decision-maker
selects the action that maximizes their expected utility as follows:

Â = argmax
n

E[u(An)] = argmax
n

L

∑
l=1

u(An, Sl)P(Sl) (3)

ĂOj = Ă
(
Oj
)
= argmax

n
E
[
u(An)

∣∣Oj
]
= argmax

n

L

∑
l=1

u(An, Sl)P
(
Sl
∣∣Oj
)

(4)

where Â and ĂOj are the optimal actions selected during the Prior and the Posterior analysis,
respectively. It should be noted that the result of the Posterior analysis depends on the test
outcome. Before performing the test, the decision-maker can perform the Pre-Posterior
analysis, in which they consider all the possible test outcomes and associated probabilities
of occurrence. The VoI is quantified as the difference between the expected utility from the
Pre-Posterior analysis and the expected utility from the Prior analysis as follows:

VoI =
J

∑
j=1

E
[
u
(

ĂOj

)∣∣Oj

]
P
(
Oj
)
− E

[
u
(

Â
)]

(5)
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The VoI quantifies the expected increase in the utility associated with a given test before
the test is performed. Thus, it can be used in decision-making related to the implementation
of the test.

2.2. Value of Information in Emergency Management

Recently, the general framework of the VoI has been extended to address the emer-
gency management of civil infrastructures, for instance, in the case of earthquakes [32]
or floods [33]. This extended framework is reported in this section to make the paper
self-contained.

In emergency management, (i) the prior probabilities of the states of the structure
depend on the intensity measure which characterizes the disastrous event I; (ii) the utility
function is expressed as negative costs and the costs of different combinations of actions
and damage states depend on the probability of failure of the possibly damaged structure;
(iii) since the VoI is computed before the occurrence of the emergency, the hazard associated
with the potential disastrous event must be defined in advance.

As for the first point, the states of the structure are generally referred to as damage
states DSl , whose probability of occurrence is conditioned on I, P(DSl |I).

As for the second point, the utility function is expressed as follows:

u(An, DSl) = −
{

cF(An)P( F|Φ) + cF(An)[1− P( F|Φ)]
}

(6)

where P( F|Φ) is the probability of failure conditional on a set of parameters contained
in the vector Φ, such as the action An and the damage state DSl ; and cF(An) and cF(An)
are the costs of bridge failure and survival, respectively, which generally depend on An.
According to this definition of the utility function, the decision-maker selects the action
associated with minimum expected costs, or equivalently, minimum risk.

As for the third point, the VoI in emergency management generally depends on a set
of parameters, which are collected in the vector Θ. Thus, the expected VoI is computed
considering the joint Probability Density Function (PDF) of the parameters contained in Θ

as follows:
VoI =

∫
Θ

VoI(Θ) f (Θ)dI (7)

To account for the occurrence of multiple disastrous events over time, the life-cycle
VoI, VoILC, is introduced [34]. It reads:

VoILC =
TLC

∑
i=1

λ
VoI

(r + 1)i (8)

where TLC is the reference period (in years) accounted for in the analysis, λ is the expected
number of disastrous events in one year, and r is the discount rate. The VoILC can be
compared to the expected life-cycle cost of the SHM system over the reference period,
CSHM, to establish if the acquisition of a given SHM is cost-effective or to compare different
SHM systems.

3. Flood Emergency Management
3.1. Current Practice

Scour consists of the erosion of soil around and under bridge foundations due to the
action of water. It generally acts in combination with other harmful hydraulic-related phe-
nomena, such as uplift and drag forces, impact of large floating objects, and accumulating
debris [35]. Hence, bridge operators have to define emergency plans to manage bridges
during floods, e.g., to establish under which conditions a bridge should be closed to traffic
due to safety concerns.

Unlike other disastrous events such as earthquakes, floods are linked to the intensity
and duration of the meteoric events as well as the shapes and dimensions of the catchment
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areas. Thus, hydrological forecast models can be exploited to simulate the formation of the
flood wave with some notice.

Typically, emergency management actions are triggered when certain hydraulic param-
eters reach—or are expected to reach shortly—fixed thresholds. A widely used parameter
that functions to decide if a bridge should be closed is the Water Surface ELevation (WSEL)
(see e.g., [36,37]).

The Field Manual of the Idaho Transportation Department [38] provides an example
of a bridge flood emergency management plan. It considers three emergency procedures,
namely bridge closures, monitoring, and positioning of emergency protections. The Field
Manual establishes the closure of bridges upon the occurrence of at least one of the follow-
ing conditions:

• The scour depth has exceeded the critical level or is falling rapidly;
• The WSEL has exceeded a critical level;
• The bridge presents clear structural anomalies;
• Existing scour countermeasures, such as rock riprap, show signs of failure;
• The hydraulic conditions are critical and a flood wave is imminent.

In case a bridge is shut down, it must remain closed for the entire duration of the
flood. Detour maps must be previously defined to diverge traffic flow. Before re-opening
the bridge to traffic, an in-depth inspection of the entire structure (including underwater
foundations) must be carried out to check that the bridge is healthy. Decision-making is
made by a monitoring crew in conjunction with local authorities. The monitoring crew
examines the evolution of the flow both visually and with the aid of portable devices, e.g.,
to monitor WSEL or scour depths. The emergency management does not rely either on
fixed scour monitoring devices (since they “will rarely be available”) or SHM systems.

More recently, smart strategies for automatic disaster response have been developed.
For instance, in Sardinia (Italy), the passage of vehicles on the Oloé bridge on the Provincial
Road SP46 during floods is regulated by an automatic system [39]. The bridge, even if
structurally sound, was considered to not be fully compliant with the current hydraulic
requirements. Instead of replacing the bridge, authorities decided to adopt an automatic
traffic management system to ensure the safety of users. This system is composed of five
ultrasonic hydrometers, a meteorological station, and two automatic rising bar barriers
which activate when the WSEL exceeds the critical thresholds established by the Civil
Protection Plans.

To summarize, current emergency plans, even if technologically advanced, rely on
approximate indicators of hydraulic risk, e.g., critical WSEL, while measurements of scour
depth and structural conditions are generally obtained after the flood by visual inspec-
tion [36]. Even though transport agencies are increasingly interested in deploying sensors
for scour measurement, the adoption of SHM systems, either vibration-based monitoring or
direct scour monitoring, which provide real-time information on the conditions of bridges
during floods, is typically not considered by current emergency protocols.

3.2. Case Study

The investigated case study consists of a reference bridge with one pier in water, while
the decision problem relates to the installation of a permanent vibration-based SHM system
to support traffic management during a flood when the possible actions are a1 = do nothing
and a2 = close the bridge. A very similar case study was described in [40], where a risk-based
decision scenario was considered. To make the paper self-contained, in this section, the
main features of the case study are reported.

Damage states. During the flood, the bridge can be in three damage states according
to the attained scour depth ys. The three damage states are defined based on fixed scour
thresholds: thl , with th1 = 0 m, th2 = 2 m, and th3 = 4 m. Therefore, the structure is in
DS1 for 0 ≤ ys < 2 m, in DS2 for 2 ≤ ys < 4 m, and in DS3 for ys ≥ 4 m.
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Prior probabilities. The scour depth is predicted using the HEC-18 design equa-
tion [41], which reads:

ys

y1
= 2.0λys K1K2K3K4

(
a

y1

)0.65
Fr0.43

1 (9)

where y1 is the upstream flow depth; K1, K2, K3, and K4 are correction factors; a is the
pier width; Fr1 is the Froude Number Fr1 = V1/

√
gy1, where V1 is the mean velocity of

upstream flow and g is the gravitational acceleration; and λys is a model correction factor
that reflects the fact that scour models are usually very conservative and affected by great
uncertainty [42].

For the sake of simplicity, the variables y1 and V1 are obtained using the equations
valid for a channel with a rectangular cross-section, namely:

y1 =

(
Qn

Bs0.5

)3/
5

(10)

V1 =
Q

By1
(11)

where Q is the water flow; B is the average channel width; n is the Manning’s coefficient,
and s is the channel slope. Given the water flow, the prior probabilities of the different
states of the bridge read:

P(DSl |Q) = P[{ys ≥ thl} ∩ {ys < thl+1}] f or l 6= L
P(DSl |Q) = P(ys ≥ thl) f or l = L

(12)

Here, the scour depth ys is considered as a random variable while the scour thresh-
old thl is a deterministic value. The input parameters used to evaluate the distribution
of ys are displayed in Table 1. For the sake of simplicity, the variables that appear in
Equations (10) and (11) are assumed to be deterministic. In this way, thanks to the one-to-
one matching between the Q and y1 provided by Equation (10), the VoI can be expressed
either in terms of Q or y1. More complex situations might be considered in which, for
instance, the Manning’s coefficient is a random variable [43].

Table 1. Input variables for scour depth calculation.

Variable Unit Distribution Mean CoV Ref.

K1 - Det. 1 - -
K2 - Det. 1 - -
K3 - Uniform 1.2 0.048 [44]
K4 - Det. 1 - -
a m Det. 1.2 - -
B m Det. 50 - -
s - Det. 0.003 - -

λys - Normal 0.55 0.52 [45]
n - Det. 0.025 -

Probabilities of failure. It is assumed that failure is due to the action of traffic on
the—possibly—scoured bridge. Thus, the capacity of the bridge to sustain external forces
depends only on the attained scour depth and the action selected by the decision-maker,
i.e., Φ = [An, DSl ]. More complex failure modes may be considered, e.g., entailing failure
due to the combined action of water and debris. Table 2 presents the probabilities used
in this example. The probability of failure increases with increasing scour depth. Instead,
given the state of the bridge, the probability of failure is higher when the bridge is open
due to the demand induced by traffic loads.
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Table 2. Probabilities of failure for different damage states and actions.

Damage State An = Open An = Close

DS1 10−5 10−6

DS2 10−2 10−3

DS3 10−1 10−2

Costs. In this example, the costs of failure and survival depend only on the action
selected by the decision-maker and account for both direct and indirect costs (see Table 3).
The worst scenario is the collapse of the bridge when it is open to traffic. This event
generates both direct costs (e.g., rebuilding costs, casualty costs) and indirect costs (e.g.,
costs due to increasing travel time). Instead, if the bridge collapses when it is closed,
casualty costs are not considered. In case the bridge is open, and it does not collapse, no
costs have to be paid. In case the bridge is closed and does not collapse, the costs relate to
the loss of functionality during the emergency phase.

Table 3. Cost of bridge failure and survival depending on the selected action.

Cost An = Open An = Close

cF(An) 10, 000, 000$ 1, 000, 000$
cF(An) 0$ 100, 000$

Likelihood functions. The decision-maker is planning to install a vibration-based SHM
system that provides the first natural frequency of the structure. The likelihood functions
are modeled according to [29], considering the distribution of the natural frequency in each
damage state and the distribution of the error (including different sources of uncertainty,
e.g., due to numerical errors and environmental factors [46]) associated with each frequency
value, as follows:

P
(
Oj
∣∣DSl

)
=

K

∑
k=1

P
(
Oj
∣∣ fk
)

P( fk|DSl) (13)

where P
(
Oj
∣∣ fk
)

is the probability of observing the SHM outcome Oj when the “real”
frequency value is fk and P( fk|DSl) is the probability of the occurrence of fk when the
structure is in DSl . Here, it is supposed that for each value of fk, Oj is normally distributed
with a mean equal to fk and a standard deviation equal to 0.2 Hz. In real applications, the
error associated with the outcome of the monitoring system (the first natural frequency
in this case) strictly depends on the case study and the monitoring strategy adopted to
extract this information [47]. This is defined by factors such as the quality of the deployed
sensors, the length of the acceleration record, the modal identification technique employed,
and the techniques used to remove the effect of environmental factors. Furthermore, the
standard deviation also depends on the magnitude of the frequency (higher frequencies are
expected to be characterized by higher standard deviations). A standard deviation of the
error of 0.2 Hz is reasonable in case the effects of environmental factors, e.g., temperature,
are not removed.

As for the distribution of the frequency values in the different states of the bridge, it is
supposed that they are uniformly distributed within the corresponding frequency range.
Specifically, the frequency ranges are 1.0–1.2 Hz for DS1, 0.7–1.0 Hz for DS2, and 0.0–0.7 Hz
for DS3. Since continuous distributions are employed, the integral version of Equation (13)
is adopted. The resulting likelihood functions, shown in Figure 1, are truncated to obtain
only positive frequency values.
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Figure 1. Likelihood functions for scoured foundations.

Flood hazard. The flood hazard is modeled by exploiting a Peaks over Threshold
(POT) series model [48] that is able to represent multiple flood events. First, the flood
is defined as a river discharge event exceeding a flow threshold, Q0. The POT model is
composed of parts: (1) a probabilistic model for the annual number of events and (2) a
probabilistic model for the flood intensity.

The VoI depends on Q, i.e., in Equation (7), Θ = [Q]. The VoI for a generic flood event
is obtained as follows:

VoI =
∫

Θ
VoI(Θ) f (Θ)dΘ =

∫
Q

VoI(Q) f (Q)dQ (14)

The number of events in one year is assumed to follow a Poisson distribution while
the flood magnitude is assumed to have a truncated exponential distribution. It is assumed
that Q0 = 500 m3/s and that the scale parameter of the exponential distribution of the
flood magnitude is ν = 0.0033

(
m3/s

)−1.
As for the computation of the life-cycle VoI, the expected number of floods per year is

1, the reference period is 30 years, and the discount rate is 1%.

3.3. Decision Scenarios and VoI Analysis

If SHM information is not available, the management of emergencies can be carried
out with a heuristic (e.g., selection of the management action based on a pre-defined
system state) or with a risk-based approach (e.g., selection of the management actions that
minimize the risk). The system in this case includes the bridge and the river.

In the case of flood emergency management, the heuristic approach is based on the
achievement of threshold values of the demand quantified in terms of the WSEL. The risk-
based approach also requires an estimation of the structural capacity (e.g., of the damage
state). The latter can be supported by monitoring information that allows for a reduction of
the uncertainty related to the bridge’s damage state.

In both cases, the selection of the management action can be improved by information
about the system state. Such information can be relevant to the demand (water level) or the
capacity (damage state).

In the following, it is assumed that the water level is known and only the value of
installing an SHM system on the bridge is quantified. Two decision scenarios are considered
as follows:

• Scenario 1, a risk-based decision scenario for both the Prior and the Pre-Posterior analysis;
• Scenario 2, a heuristic Prior analysis and a risk-based Pre-Posterior analysis. The

heuristic Prior analysis is based on the attained WSEL according to current flood
emergency management procedures (see Section 3.1). Two critical WSEL thresholds
are considered, i.e., WSEL1 = 2.77 m, corresponding to Q = 600 m3/s (Scenario 2a),
and WSEL2 = 3.78 m, corresponding to Q = 1000 m3/s (Scenario 2b).
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The results of the analysis are reported in Figure 2. Figure 2a,b show the results of the
Prior analysis for different decision scenarios and WSEL thresholds. The grey and black
solid lines display the expected costs of the actions Open and Close, respectively. The red
line relates to the optimal action selected in the risk-based scenario (Scenario 1), which
is the one corresponding to minimum expected costs or, equivalently, minimum risk. In
this case, the critical WSEL is defined as the value of the water level for which the two
actions lead to the same expected cost, i.e., roughly 3.5 m. For a WSEL lower than 3.5 m,
the optimal action is Do nothing. Instead, for higher values, Close the bridge has a lower
expected cost. The dotted yellow lines represent the expected cost of the optimal action in
case the decision is based on the WSEL (Scenario 2). Specifically, Figure 2a shows results
relating to WSEL1 (Scenario 2a) and Figure 2b to WSEL2 (Scenario 2b).

Figure 2. Flood emergency management. Results of the VoI analysis as a function of the WSEL for
different decision scenarios: (a) Results of the Prior analysis for Scenarios 1 and 2a; (b) Results of the
Prior analysis for Scenarios 1 and 2b; (c) VoI for Scenarios 1 and 2a; (d) VoI for Scenarios 1 and 2b.

Figure 2c,d show the VoI as a function of the WSEL. In particular, Figure 2c refers
to Scenarios 1 and 2a and Figure 2d to Scenarios 1 and 2b. The asterisk indicates that
the VoI has been computed in the context of Scenario 2. Thus, it quantifies the expected
reduction in management costs due to the use of both SHM information and the adoption of
risk-based decision-making. For the sake of notational simplicity, in the following sections,
the asterisk is specified only when needed. The VoI in the two decision scenarios is the
same when the corresponding optimal prior costs coincide. In Figure 2c, this happens for
WSEL < WSEL1 = 2.77 m or WSEL > 3.5 m; in Figure 2d, this happens for WSEL < 3.5 m
or WSEL > WSEL2 = 3.78 m. For all decision scenarios, the VoI reaches the maximum
in correspondence with the WSEL for which the optimal action changes, which is in the
proximity of 3.5 m for Scenario 1, WSEL1 = 2.77 m for Scenario 2a, and WSEL2 = 3.78 m for
Scenario 2b. The highest VoI peak is reached for Scenario 2b.

Figure 3 shows the VoI integrated over the PDF of Q, according to Equation (14), and
the corresponding life-cycle VoI, computed according to Equation (8). In Figure 3a, the
lowest VoI is associated with Scenario 1 in which risk-based decision-making is carried out
during both the Prior and the Pre-Posterior analysis. In Scenario 1, the VoI as a function
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of the WSEL presents a value equal to or lower than the VoI obtained in Scenarios 2a and
2b. Consequently, the associated expected VoI is the lowest. The highest VoI relates to
Scenario 2a, where the bridge is closed for a relatively low value of the WSEL during the
Prior analysis. The intermediate VoI characterizes Scenario 2b. This can be explained by
considering that even if the maximum VoI is obtained for Scenario 2b, this value is obtained
for a WSEL value with a relatively low probability of occurrence (the flood magnitude is
assumed to have a truncated exponential distribution, with a maximum probability density
of Q0 = 500 m3/s). Similar considerations can be drawn for the life-cycle VoI shown in
Figure 3b.

Figure 3. Flood emergency management: (a) VoI and (b) VoILC for different decision scenarios.

4. Post-Earthquake Emergency Management
4.1. Current Practice

Earthquakes consist of abrupt ground shaking caused by sudden movements between
tectonic plates. The effects of earthquakes on transportation infrastructures depend on
several factors, such as epicentral distance, soil conditions, and structural properties.
Furthermore, mainshocks are generally accompanied by aftershocks which can aggravate
the conditions of already damaged assets.

In the case of earthquakes, remedial actions cannot be implemented just before or
during the disastrous event, as in the case of flood emergency management, but only after
it has occurred. The management of bridges in the aftermath of an earthquake relates to
the assessment of structural conditions, the prioritization of inspections, the definition and
prioritization of interventions, and, finally, the definition of traffic limitation measures.
Typically, to manage portfolios of bridges on large areas, multilevel inspections are carried
out by trained technicians to assess structural conditions, restrict traffic if needed, and plan
structural interventions.

As an example, a general emergency management procedure for bridges is detailed
in [49]. It entails four types of inspections of increasing duration and level of detail, namely:

(i) Fast Reconnaissance, to determine the extent of the region affected by the disas-
trous event;

(ii) Preliminary Damage Assessment (PDA), to provide preliminary information on the
state of each bridge and establish if further investigations are required;

(iii) Detailed Damage Assessment (DDA), to provide detailed information about struc-
tural conditions;

(iv) Extended investigation, to further investigate structural conditions and determine
repairs or replacements.

Decisions relating to the usability of bridges, such as limiting or closing traffic, are
taken after the PDA or the DDA. Specifically, after the PDA, the inspectors mark each
structure as INSPECTED (good conditions—traffic allowed) or UNSAFE (uncertain or bad
conditions—traffic not allowed). In case there are doubts about the structural conditions
and a high consequence of failure, the structure is marked as UNSAFE and a DDA is
requested. A less conservative approach is considered for lightly damaged and non-critical
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structures, which are marked as INSPECTED with a low-priority DDA. After the DDA, a
structure is tagged as INSPECTED, LIMITED USE (uncertain conditions—only emergency
vehicles allowed or heavy traffic not allowed), or UNSAFE.

In the Indiana Department of Transportation handbook [50], two types of inspections
are detailed, namely:

(i) Level 1 inspections aimed at providing a preliminary classification of structures. It
comprises aerial surveys or drive-through inspections aimed at assigning a tag to
each structure. The Green tag is assigned to structures in good condition, the Yellow
tag to structures whose conditions are uncertain, and the Red tag to unsafe structures
which should be closed to traffic.

(ii) Level 2 inspections aimed at investigating the conditions of Yellow tagged structures
in more detail. After Level 2 inspections, traffic limitations might be issued, such as
restricting traffic to emergency vehicles only.

Level 1 inspections are first carried out on predetermined primary routes and on
secondary routes after. During Level 2 inspection, after completing Yellow tagged bridges,
Red tagged bridges are inspected to determine if they can be used with temporary repairs.

Neither in [49], nor in [50], permanent S2HM is mentioned. Instead, the assessment of
bridges in the aftermath of an earthquake is generally carried out through time-consuming
visual inspections. Similar procedures are also applied in the case of buildings [12].

In [51], a different decision-making approach is considered. Namely, an Aftershock
Probabilistic Seismic Hazard Analysis (APSH) is first carried out to determine the residual
reliability of the damaged bridge. After that, the optimal action (bridge close vs bridge
open) is selected based on the comparison between the residual reliability and a given
threshold: if the reliability of the bridge is lower than the threshold, the bridge is closed to
traffic. To the authors’ knowledge, approaches based on residual reliability are not applied
in current practice.

4.2. Case Study

The study analyzed in this section is an exemplary bridge located in a seismic area. In
the aftermath of an earthquake, the decision-maker must select the optimal action between
“close the bridge” and “keep the bridge open”. Before the earthquake, the decision-maker
may install a vibration-based SHM system to support decision-making in case of a seismic
event. Refer to [32] for a detailed description of the framework to quantify the benefit of
S2HM for bridge emergency management.

Damage states. After the mainshock, the bridge can be in three damage states, namely
“lightly damaged”, DS1, “damage”, DS2, and “severely damaged”, DS3. The damage states
are defined in terms of an Engineering Demand Parameter (EDP), such as the maximum
displacement response, and EDP thresholds, EDPl , with EDP1 = 0. Specifically, the
structure is in DS1 for EDP1 ≤ EDP < EDP2, in DS2 for EDP2 ≤ EDP < EDP3, and in
DS3 for EDP ≥ EDP3.

Prior probabilities. Prior probabilities of the damage states after a mainshock are re-
trieved by fragility functions expressing the probability that the EDP exceeds the thresholds
EDPl associated with damage state DSl for given seismic intensity values Im as follows:

P(EDP ≥ EDPl |Im ) = Φ
[

1
βtot

ln
(

Im

IDSl

)]
(15)

where Φ[·] is the standard cumulative probability function, IDSl is the median value of
the intensity measure required to cause the damage state DSl , βtot is the total lognormal
standard deviation, which takes into account both the uncertainty in the demand, i.e., the
seismic input, and the capacity. In the absence of a more accurate estimation of βtot, the
value of 0.6 proposed by Mander [52] is used.
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The intensity measure Im is obtained through the Ground Motion Prediction Equation
(GMPE) proposed in [53], in the form:

log10 Im = ψ(Mm, Rm) + ε (16)

where ψ(Mm, Rm) is a function that depends on Mm and Rm and ε is a random variable
with a zero mean and standard deviation σε.

The probability that the structure is in a damage state DSl depends on the intensity
measure of the mainshock Im, and reads:{

P(DSl |Im ) = P(EDP ≥ EDPl |Im )− P(EDP ≥ EDPl+1|Im ) f or l < L
P(DSl |Im ) = P(EDP ≥ EDPl |Im ) f or l = L

(17)

In this application, the Spectral Acceleration (SA) related to the fundamental period
of the structure is employed as an intensity measure. Since P(EDP ≥ EDP1|Im ) = 1 and
three damage states have been introduced, two fragility functions must be defined. The
following IDSl values are assumed in this application: IDS2 = 1 m/s2 and IDS3 = 1.5 m/s2.

Probabilities of failure. It is assumed that aftershocks are the leading cause of struc-
tural failure in the aftermath of the mainshock. The probability of failure due to aftershocks
depends on the damage state of the structure after the mainshock and on the characteristics
of the mainshock itself, as well as the considered duration of the aftershock sequence.

The probability of failure due to the occurrence of an aftershock of intensity Ia can be
quantified through aftershock fragility functions which express the probability of structural
failure for a bridge already in DSl as follows:

P(F|Ia, DSl ) = Φ

[
1

βtot
ln

(
Ia

IF(DSl)

)]
(18)

where IF(DSl)
is the median intensity measure of the aftershock required to cause the

structure in DSl to fail. The intensity measure Ia is obtained through the GMPE used
for Im. The following IFDSl values are assumed in this application: IF(DS1)

= 3.0 m/s2,
IF(DS2)

= 2.50 m/s2, and IF(DS3)
= 2.00 m/s2.

The intensity of the aftershocks is not known in advance. Therefore, the probability
distribution of Ia should be considered to quantify the probability of failure due to a generic
aftershock, P∗(F|Mm, Rm, DSl ), as follows:

P∗(F|Mm, Rm, DSl ) =
∫

Ia
P(F|Ia, DSl ) f (Ia|Mm, Rm )dIa (19)

where f (Ia|Mm, Rm ) is the PDF of Ia, which, generally, is conditional on the magnitude of
the earthquake Mm and the epicentral distance from the bridge Rm.

After the mainshock, in a period [t; t+T], more than one aftershock may occur. Assum-
ing the aftershock sequence as a Poisson process, the probability of failure in [t; t+T] can be
approximated to:

P( F|Φ) = P(F|Mm , Rm, DSl , t, T) = 1− e−NF(Mm ,RmDSl ,t,T) (20)

where Φ = [Mm, Rm, DSl , t, T] and NF(Mm, RmDSl , t, T) is the expected number of after-
shocks leading to structural failure in [t; t+T]. NF can be estimated as follows:

NF(Mm, Rm, DSl , t, T) = P∗(F|Mm, Rm, DSl )Na(Mm, t, T) (21)

where Na(Mm, t, T) is the expected number of aftershocks in [t; t+T].
Costs. To facilitate the comparison of results, the costs of bridge failure and survival

used for the previous case study (displayed in Table 3) are considered.
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Likelihood functions. An S2HM system that provides the first natural frequency of
the bridge is considered. This parameter is expected to decrease in the presence of damage,
such as the formation of plastic hinges due to seismic actions. As for the costs, to simplify
the comparison of results, the likelihood functions adopted for the previous case study
(shown in Figure 1) are employed.

Seismic hazard. The quantification of the VoI in seismic emergency management
requires mainshock and aftershock hazard models. As for the mainshock, the PDF of Mm
is modeled as a truncated exponential function [23] as follows:

f (Mm) =
βe−βMm

e−βMm,l − e−βMm,u
(22)

where Mm,l and Mm,u are the lower and upper bounds, respectively, of the mainshock
magnitude and β = bln10, where b is the Negative slope of the Gutenberg−Richter law.
Mainshocks are supposed to be generated with uniform probability in any location of the
circular seismogenic area shown in Figure 4.

Figure 4. Bridge and seismogenic area.

Aftershocks are modeled as a non-homogeneous Poisson process. Under the assump-
tion that the upper magnitude bound for aftershocks is equal to the magnitude of the
mainshock that has generated them, the PDF of Ma reads:

f (Ma|Mm ) =
βe−β(Ma−Mm,l)

1− e−β(Mm−Mm,l)
(23)

The mean number of aftershocks in the period [t; t+T] following a mainshock of
magnitude Mm is computed as follows:

Na(Mm, t, T) =
10a+b(Mm−Mm,l) − 10a

p− 1

[
(c + t)1−p − (c + t + T)1−p

]
(24)

where a, b, c, and p are parameters characteristic of the seismic area. Aftershocks are sup-
posed to occur with uniform probability in a circular region centered at the epicenter of the
mainshock [54]. The area of this region is a function of the intensity of the mainshock [55],
namely:

Sa = 10Mm−4.1 (25)

Aftershock locations have uniform probability inside this area and zero probability
outside. Given the above considerations, the PDF of Ia can be expressed as follows:

f (Ia|Mm, Rm ) =
x

Ma ,Ra
f (Ia|Ma, Ra ) f (Ma|Mm ) f (Ra|Mm, Rm )dMadRa (26)
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The parameters characterizing mainshocks and aftershocks are displayed in Table 4.
The duration of the emergency phase is assumed to be two weeks after the mainshock, i.e.,
t = 0 and T = 14 days.

Table 4. Mainshock and aftershock parameters.

Mainshock Aftershock

Variable Value Variable Value

Minimum magnitude, Mm,l 5 a −1.71
Maximum magnitude, Mm,u 9 b 0.97
Negative slope, b 1 logc −1.46

p 0.94

According to the definition of the seismic hazard, the VoI not only depends on Im, but
also on Mm and Rm, i.e., Θ = [Mm, Rm, Im]. The VoI for a generic mainshock reads:

VoI =
∫

Θ
VoI(Θ) f (Θ)dΘ =

=
∫ ∫ ∫

Mm ,Rm ,Im
VoI(Mm, Rm, Im) f (Im|Mm, Rm ) f (Mm) f (Rm)dImdMmdRm

(27)

Regarding the computation of the life-cycle VoI, the expected number of mainshocks
per year λ is 0.1, the reference period is 30 years, and the discount rate is 1%.

4.3. VoI Analysis

In the case of seismic emergency management, the S2HM system can provide infor-
mation on both the seismic action and the state of the bridge after the mainshock. In turn,
this information reduces the uncertainty in both the seismic demand and the structural
capacity and supports risk-based decision-making. In this application, it is supposed that
the S2HM system provides information only on the structural condition. Specifically, the
VoI is quantified considering two decision scenarios, namely:

• Scenario 1, a risk-based decision scenario for both the Prior and the Pre-Posterior analysis;
• Scenario 2, a heuristic Prior analysis and risk-based Pre-Posterior analysis. The heuris-

tic Prior analysis is based on the prior knowledge of the decision-maker on the state
of the bridge, which, for instance, comes from an expeditious visual inspection. Two
situations are analyzed: first, the bridge is closed because it is not considered safe,
without risk considerations (Scenario 2a); second, the bridge is not closed because it is
considered safe or deeper investigations are planned (Scenario 2b).

The results of the VoI analysis for different decision scenarios are shown in Figure 5.
In particular, Figure 5a displays the results of the Prior analysis according to risk con-
siderations, i.e., the optimal action is the one corresponding to minimum expected costs
(minimum risk) according to the epicentral distance and magnitude of the mainshock
(Scenario 1). The bridge should be closed for a mainshock of relatively high magnitude
and/or short epicentral distance (north-left corner). Otherwise, it should not be closed to
traffic (south-right corner). The corresponding VoI is shown in Figure 5b. The VoI is at the
maximum in correspondence with the boundary between the optimal actions in Figure 5a,
which is when the two actions have similar expected costs during the Prior analysis.

Figure 5c relates to Scenario 2a, which is when the bridge is closed because it is not
considered safe (without performing in-depth analyses). Again, the asterisk is associated
with Scenario 2 and indicates that the VoI is generated by the SHM information and the
adoption of risk-based decision-making. The associated value of SHM information is
displayed in Figure 5d. The VoI is particularly high in the south-right corner, which is
approximately where the optimal action is leaving the bridge open according to the risk-
based Prior analysis (see Figure 5a). In this case, the SHM information may indicate that
the bridge is in good condition, thus it should not be closed. In turn, the VoI is high because
the SHM information might lead the decision-maker to select a different optimal action
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with respect to the Prior analysis (when the optimal action was always closing the bridge).
Instead, in the north-right corner, the VoI is null. Here, the SHM information indicates that
the bridge is in bad condition. Thus, it does not modify the choice of the optimal action
and the resulting VoI is null.
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Figure 5e relates to Scenario 2b, i.e., when the bridge is not closed using prior informa-
tion. The corresponding VoI shown in Figure 5f is particularly high in the north-left corner,
which roughly corresponds to the area in Figure 5a where the optimal action is closing
the bridge. In this situation, the S2HM information may suggest that the bridge is in bad
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condition. Thus, the decision-maker might select to close the bridge to traffic. The VoI in
Figure 5f reaches higher values than the VoI shown in Figure 5d. According to Table 3, the
cost of failure when the bridge is open is higher than the other costs. Thus, considering the
costs at stake, leaving the bridge open when it should be closed generates higher costs than
closing the bridge when it could be left open.

Figure 6 shows the VoI and the life-cycle VoI computed considering the parameters
specified in Section 4.2. In Figure 6a, the lowest VoI is quantified for Scenario 1, due to
the relatively small conditional VoI displayed in Figure 5b. Even if the highest values of
the conditional VoI are reached in Scenario 2b (see Figure 5f), the highest expected VoI
is obtained for Scenario 2a. This is due to the PDF of the Mm and Rm. For instance, Mm
presents a truncated exponential distribution, which associates high probabilities to small
values of magnitude. In turn, in Scenario 2a, low magnitudes are linked to relatively high
values of the VoI. In Scenario 2b, low magnitudes are linked to null values of the VoI.
Thereby, the expected VoI is higher in the case of Scenario 2a. The life-cycle VoI values
shown in Figure 6b for the three scenarios are similar to the corresponding VoI values due
to the low expected number of earthquakes in one year in the seismic area (λ = 0.1).

Figure 6. Post-earthquake emergency management: (a) VoI and (b) VoILC for different decision
scenarios (on a logarithmic scale).

5. Discussion

In the previous sections, two case studies on the emergency management of bridges
are analyzed in the case of floods or seismic events, respectively. For each type of hazard, a
framework for computing the value of SHM (or S2HM) information in emergency manage-
ment is described and applied considering reference bridges. To facilitate the comparison
of results, similar case studies are considered. Specifically, the management actions, the
number of damage states, the costs of failure and survival, and the likelihood functions
are the same in the two cases. Probabilities of failure and hazard modeling are tailored to
the specific case. For each case study, three decision scenarios are considered, involving
different Prior analyses made with different assumptions, and the same Pre-Posterior anal-
ysis is made according to the Bayesian decision theory, i.e., according to risk considerations.
The rationale is that SHM can potentially provide real-time information about structural
conditions and thus support risk-based decision-making.

In Scenario 1, decision-making is made according to risk considerations during both
the Prior and the Pre-Posterior analysis. This Prior scenario is generally not realistic,
since, in practice, during the Prior analysis—without SHM information—decision-makers
base their actions on engineering judgment or heuristic methods. Scenarios 2a involve
conservative Prior emergency decision-making where the bridge is closed for a relatively
low value of the WSEL in case of flood or closed as a precaution after a seismic event. In
turn, Scenarios 2b involve non-conservative Prior emergency decision-making where the
bridge is closed only for a relatively high value of the WSEL in case of flood or not closed at
all after a seismic event. In brief, the Prior analyses in Scenarios 2a and 2b entail suboptimal
actions from the point of view of the Bayesian decision theory.
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For both case studies, the VoI computed in Scenario 1 is lower than the VoI∗ computed
in Scenario 2a or 2b. The VoI computed in Scenario 1 quantifies the expected reduction in
management costs obtained when both the Prior and the Pre-Posterior analyses are carried
out selecting the actions which minimize the expected costs. Instead, the VoI* computed
in Scenario 2 is obtained also considering non-optimal actions during the Prior analysis,
which, in turn, are associated with higher expected costs. For this reason, the VoI* is always
higher or equal to the VoI. The difference between the two quantities is not due to the
SHM information but to the different decision-making approach, i.e., risk-based instead of
heuristic decision-making.

The maximum values of the conditional VoI∗ are reached for Scenarios 2a (see Figures 2 and 5).
Leaving the bridges open (when they could be in a bad health state) might result in high
direct and indirect costs in case of failure. In this dangerous condition, the SHM information
is particularly valuable since it might give insight into the actual structural conditions and
lead the decision-maker to change their actions. Nevertheless, in both cases, the maximum
expected VoI∗ is obtained for Scenarios 2b. This is due to the probabilistic models used
to represent Q and the couple (Mm, Rm) that assign higher probabilities of occurrence to
low-intensity events, which, in turn, are associated with a higher VoI∗ in Scenarios 2b.

The VoI and the life-cycle VoI for the three decision scenarios present similar values
in the case of flood management (roughly in the range 6–8·105). Instead, in the case of a
seismic event, they differ by several orders of magnitude (roughly in the range (102–106).
This is because suboptimal actions are selected in the Prior analysis for a large set of couples
(Mm, Rm) (see Figure 5). On the contrary, in the case of flood management, suboptimal
actions only relate to a small set of Q values (see Figure 2).

6. Conclusions

This paper investigates the VoI from SHM in the case of the emergency management of
bridges. The VoI is quantified in the realm of the Bayesian decision theory, which bases the
selection of the optimal action on the principle of maximum utility. In engineering contexts,
this is equivalent to selecting the action associated with minimal risk. Nevertheless, emer-
gency management in real practice is generally based on engineering judgment or heuristic
methods in cases where an SHM is not installed. In turn, the availability of real-time SHM
information can potentially support risk-based decision-making and, ultimately, optimize
the management of infrastructures.

The impact of the decision scenario on the VoI is investigated considering different
types of prior decision scenarios—in which the SHM information is not available—and
a risk-based pre-posterior scenario—which is carried out before the collection of SHM
information, simulating that it is available. Two case studies relating to the emergency
management of bridges under flood and seismic hazards are considered. The general
framework for computing the VoI in emergency management is reported and then tailored
to the two types of hazards. The limitations of the analysis are similar to those of any other
VoI analysis and relate to the difficulties of determining all the required ingredients, such
as likelihood functions, fragility functions, hazard models, probabilities of failure, and
costs. Despite the VoI depending on the specific case study, some general findings can be
drawn. Specifically, it has been demonstrated that the decision scenarios underlying the VoI
analysis must be carefully evaluated. Considering non-realistic prior decision scenarios can
lead to underestimating the benefit of SHM and risk-based decision-making in emergency
management. Instead, in these situations, SHM might provide valuable information to
decision-makers and prevent the selection of suboptimal emergency management actions.
The reduction in expected management costs resulting from the Pre-Posterior analysis is
not only determined by the use of SHM information but also by the adoption of risk-based
decision-making.

Future works will address different types of decision scenarios, such as decision-
making under reliability constraints, as well as more realistic case studies.
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5. Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban

Water J. 2015, 12, 14–29. [CrossRef]
6. Zhang, G.; Liu, Y.; Liu, J.; Lan, S.; Yang, J. Causes and statistical characteristics of bridge failures: A review. J. Traffic Transp. Eng.

2022, 9, 388–406. [CrossRef]
7. Wardhana, K.; Hadipriono, F.C. Analysis of Recent Bridge Failures in the United States. J. Perform. Constr. Facil. 2003, 17, 144–151.

[CrossRef]
8. Montalvo, C.; Cook, W.; Keeney, T. Retrospective Analysis of Hydraulic Bridge Collapse. J. Perform. Constr. Facil. 2020,

34, 04019111. [CrossRef]
9. Flora, A.; Cardone, D.; Vona, M.; Perrone, G. A simplified approach for the seismic loss assessment of rc buildings at urban scale:

The case study of Potenza (Italy). Buildings 2021, 11, 142. [CrossRef]
10. Han, R.; Li, Y.; van de Lindt, J. Seismic Loss Estimation with Consideration of Aftershock Hazard and Post-Quake Decisions.

ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2016, 2, 04016005. [CrossRef]
11. Kilanitis, I.; Sextos, A. Impact of earthquake-induced bridge damage and time evolving traffic demand on the road network

resilience. J. Traffic Transp. Eng. 2019, 6, 35–48. [CrossRef]
12. Cardone, D.; Flora, A.; De Luca Picione, M.; Martoccia, A. Estimating direct and indirect losses due to earthquake damage in

residential RC buildings. Soil Dyn. Earthq. Eng. 2019, 126, 105801. [CrossRef]
13. Quqa, S.; Landi, L.; Diotallevi, P.P. Seismic structural health monitoring using the modal assurance distribution. Earthq. Eng.

Struct. Dyn. 2021, 50, 2379–2397. [CrossRef]
14. Limongelli, M.P.; Çelebi, M. Seismic Structural Health Monitoring; Springer International Publishing: Cham, Switzerland, 2019.

[CrossRef]
15. Rainieri, C.; Notarangelo, M.A.; Fabbrocino, G. Experiences of Dynamic Identification and Monitoring of Bridges in Serviceability

Conditions and after Hazardous Events. Infrastructures 2020, 5, 86. [CrossRef]
16. Dolce, M.; Nicoletti, M.; De Sortis, A.; Marchesini, S.; Spina, D.; Talanas, F. Osservatorio sismico delle strutture: The Italian

structural seismic monitoring network. Bull. Earthq. Eng. 2017, 15, 621–641. [CrossRef]
17. Prendergast, L.J.; Gavin, K. A review of bridge scour monitoring techniques. J. Rock Mech. Geotech. Eng. 2014, 6, 138–149.

[CrossRef]
18. Lin, Y.-B.; Chen, J.-C.; Chang, K.-C.; Chern, J.-C.; Lai, J.-S. Real-time monitoring of local scour by using fiber Bragg grating sensors.

Smart Mater. Struct. 2005, 14, 664–670. [CrossRef]
19. Maroni, A.; Tubaldi, E.; Ferguson, N.; Tarantino, A.; McDonald, H.; Zonta, D. Electromagnetic Sensors for Underwater Scour

Monitoring. Sensors 2020, 20, 4096. [CrossRef]
20. Malekjafarian, A.; Kim, C.; Obrien, E.J.; Prendergast, L.J.; Fitzgerald, P.C.; Nakajima, S. Experimental demonstration of a mode

shape-based scour monitoring method for multi-span bridges with shallow foundations. J. Bridge Eng. 2020, in press. [CrossRef]
21. Rainieri, C.A.; Gargaro, D.A.; Fabbrocino, G.I.; Maddaloni, G.; Di Sarno, L.; Prota, A.N.; Manfredi, G. Shaking table tests for the

experimental verification of the effectiveness of an automated modal parameter monitoring system for existing bridges in seismic
areas. Struct. Control Health Monit. 2018, 25, e2165. [CrossRef]

22. Zhang, W.-H.; Lu, D.-G.; Qin, J.; Thöns, S.; Faber, M.H. Value of information analysis in civil and infrastructure engineering: A
review. J. Infrastruct. Preserv. Resil. 2021, 2, 16. [CrossRef]

23. Thöns, S. On the Value of Monitoring Information for the Structural Integrity and Risk Management. Comput. Civ. Infrastruct.
Eng. 2018, 33, 79–94. [CrossRef]

http://doi.org/10.1061/(ASCE)BE.1943-5592.0000201
http://doi.org/10.1080/15732470903241881
http://doi.org/10.1080/13632469.2013.771593
http://doi.org/10.1002/eqe.626
http://doi.org/10.1080/1573062X.2013.857421
http://doi.org/10.1016/j.jtte.2021.12.003
http://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)
http://doi.org/10.1061/(ASCE)CF.1943-5509.0001378
http://doi.org/10.3390/buildings11040142
http://doi.org/10.1061/AJRUA6.0000875
http://doi.org/10.1016/j.jtte.2018.07.002
http://doi.org/10.1016/j.soildyn.2019.105801
http://doi.org/10.1002/eqe.3451
http://doi.org/10.1007/978-3-030-13976-6
http://doi.org/10.3390/infrastructures5100086
http://doi.org/10.1007/s10518-015-9738-x
http://doi.org/10.1016/j.jrmge.2014.01.007
http://doi.org/10.1088/0964-1726/14/4/025
http://doi.org/10.3390/s20154096
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001586
http://doi.org/10.1002/stc.2165
http://doi.org/10.1186/s43065-021-00027-0
http://doi.org/10.1111/mice.12332


Infrastructures 2022, 7, 165 19 of 20

24. Straub, D. Value of information analysis with structural reliability methods. Struct. Saf. 2014, 49, 75–85. [CrossRef]
25. Pozzi, M.; Der Kiureghian, A. Assessing the value of information for long-term structural health monitoring. In Health Monitoring

of Structural and Biological Systems; Kundu, T., Ed.; SPIE Press: San Diego, CA, USA, 2011; p. 79842W. [CrossRef]
26. Giordano, P.F.; Quqa, S.; Limongelli, M.P. The value of monitoring a structural health monitoring system. Struct. Saf. 2023,

100, 102280. [CrossRef]
27. Malings, C.; Pozzi, M. Conditional entropy and value of information metrics for optimal sensing in infrastructure systems. Struct.

Saf. 2016, 60, 77–90. [CrossRef]
28. Kamariotis, A.; Chatzi, E.; Straub, D. A framework for quantifying the value of vibration-based structural health monitoring.

Mech. Syst. Signal. Process 2023, 184, 109708. [CrossRef]
29. Giordano, P.F.; Iacovino, C.; Quqa, S.; Limongelli, M.P. The value of seismic structural health monitoring for post-earthquake

building evacuation. Bull. Earthq. Eng. 2022, 20, 4367–4393. [CrossRef]
30. Faber, M.H. Statistics and Probability Theory. In Pursuit of Engineering Decision Support; Springer Netherlands: Dordrecht, The

Netherlands, 2012. [CrossRef]
31. Raiffa, H.; Schlaifer, R. Applied Statistical Decision Theory. Boston: Division of Research; Graduate School of Business Administration,

Harvard University: Boston, MA, USA, 1961.
32. Giordano, P.F.; Limongelli, M.P. The value of structural health monitoring in seismic emergency management of bridges. Struct.

Infrastruct. Eng. 2020, 18, 537–553. [CrossRef]
33. Giordano, P.F.; Prendergast, L.J.; Limongelli, M.P. Quantifying the value of SHM information for bridges under flood-induced

scour. Struct. Infrastruct. Eng. 2022. [CrossRef]
34. Zonta, D.; Glisic, B.; Adriaenssens, S. Value of information: Impact of monitoring on decision-making. Struct. Control Health

Monit. 2014, 21, 1043–1056. [CrossRef]
35. Tubaldi, E.; White, C.J.; Patelli, E.; Mitoulis, S.A.; De Almeida, G.; Brown, J.; Cranston, M.; Hardman, M.; Koursari, E.; Lamb, R.;

et al. Invited perspectives: Challenges and future directions in improving bridge flood resilience. Nat. Hazards Earth Syst. Sci.
2022, 22, 795–812. [CrossRef]

36. Tubaldi, E.; Maroni, A.; McDonald, H.; Zonta, D. Monitoring-Based Decision Support System for Risk Management of Bridge Scour,
Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures. EUROSTRUCT 2021, Padua,
Italy, 29 August–1 September 2021; Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2022; Volume 200, pp. 877–884.
[CrossRef]

37. Crotti, G.; Cigada, A. Scour at river bridge piers: Real-time vulnerability assessment through the continuous monitoring of a
bridge over the river Po, Italy. J. Civ. Struct. Health Monit. 2019, 9, 513–528. [CrossRef]

38. Ayres Associates. FIELD MANUAL. Scour Critical Bridges: High-Flow Monitoring and Emergency Procedures; Idaho Department of
Transportation: Boise, Idaho, 2004.

39. CAE. Roads at Risk of Flooding? Sardinia Invests in Technology and Safety. 2020. Available online: https://www.cae.it/eng/
news/roads-at-risk-of-flooding-sardinia-invests-in-technology-and-safety.-nw-1364.html (accessed on 1 November 2022).

40. Giordano, P.F.; Prendergast, L.J.; Limongelli, M.P. The value of different monitoring systems in the management of scoured
bridges. In Experimental Vibration Analysis for Civil Engineering Structures; Springer: Cham, Switzerland, 2023. [CrossRef]

41. National Academies of Sciences, Engineering, and Medicine. Risk-Based Management Guidelines for Scour at Bridges with Unknown
Foundations; The National Academies Press: Washington, DC, USA, 2007. [CrossRef]

42. Johnson, P.A.; Clopper, P.E.; Zevenbergen, L.W.; Lagasse, P.F. Quantifying Uncertainty and Reliability in Bridge Scour Estimations.
J. Hydraul. Eng. 2015, 141, 04015013. [CrossRef]

43. Davis, D.W.; Burnham, M.W. Accuracy of Computed Water Surface Profiles; Hydraulic Engineering; U.S. Army Corps of Engineers:
Washington, DC, USA, 1987; pp. 818–823.

44. Johnson, P.A.; Dock, D.A. Probabilistic bridge scour estimates. J. Hydraul. Eng. 1998, 124, 750–754. [CrossRef]
45. Ghosn, M.; Moses, F.; Wang, J. Design of Highway Bridges for Extreme Events; Transportation Research Board: Washington, DC,

USA, 2003.
46. Caspani, V.F.; Tonelli, D.; Poli, F.; Zonta, D. Designing a Structural Health Monitoring System Accounting for Temperature

Compensation. Infrastructures 2021, 7, 5. [CrossRef]
47. Kamariotis, A.; Chatzi, E.; Straub, D. Value of information from vibration-based structural health monitoring extracted via

Bayesian model updating. Mech. Syst. Signal Process. 2022, 166, 108465. [CrossRef]
48. Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Wiley-Blackwell: Hoboken, NJ, USA, 2009.
49. National Academies of Sciences, Engineering, and Medicine. Assessing, Coding, and Marking of Highway Structures in Emergency

Situations—Volume 3: Coding and Marking Guidelines; The National Academies Press: Washington, DC, USA, 2016. [CrossRef]
50. Ramirez, J.A.; Frosch, R.J.; Sozen, M.A.; Turk, A.M. Handbook for the Post-Earthquake Evaluation of Bridges and Roads; Indiana

Department of Transportation: Indianapolis, IN, USA, 2000.
51. Alessandri, S.; Giannini, R.; Paolacci, F. Aftershock risk assessment and the decision to open traffic on bridges. Earthq. Eng. Struct.

Dyn. 2013, 42, 2255–2275. [CrossRef]
52. Mander, J. Fragility Curve Development for Assessing the Seismic Vulnerability of Highway Bridges; Technical Report, MCEER

HighwayProject; FHWA: Philadelphia, PA, USA, 1999.

http://doi.org/10.1016/j.strusafe.2013.08.006
http://doi.org/10.1117/12.881918
http://doi.org/10.1016/j.strusafe.2022.102280
http://doi.org/10.1016/j.strusafe.2015.10.003
http://doi.org/10.1016/j.ymssp.2022.109708
http://doi.org/10.1007/s10518-022-01375-2
http://doi.org/10.1007/978-94-007-4056-3
http://doi.org/10.1080/15732479.2020.1862251
http://doi.org/10.1080/15732479.2022.2048030
http://doi.org/10.1002/stc.1631
http://doi.org/10.5194/nhess-22-795-2022
http://doi.org/10.1007/978-3-030-91877-4_100
http://doi.org/10.1007/s13349-019-00348-5
https://www.cae.it/eng/news/roads-at-risk-of-flooding-sardinia-invests-in-technology-and-safety.-nw-1364.html
https://www.cae.it/eng/news/roads-at-risk-of-flooding-sardinia-invests-in-technology-and-safety.-nw-1364.html
http://doi.org/10.1007/978-3-030-93236-7_11
http://doi.org/10.17226/23243
http://doi.org/10.1061/(ASCE)HY.1943-7900.0001017
http://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(750)
http://doi.org/10.3390/infrastructures7010005
http://doi.org/10.1016/j.ymssp.2021.108465
http://doi.org/10.17226/24609
http://doi.org/10.1002/eqe.2324


Infrastructures 2022, 7, 165 20 of 20

53. Bindi, D.; Pacor, F.; Luzi, L.; Puglia, R.; Massa, M.; Ameri, G.; Paolucci, R. Ground motion prediction equations derived from the
Italian strong motion database. Bull. Earthq. Eng. 2011, 9, 1899–1920. [CrossRef]

54. Iervolino, I.; Chioccarelli, E.; Giorgio, M. Aftershocks’ Effect on Structural Design Actions in Italy. Bull. Seismol. Soc. Am. 2018,
108, 2209–2220. [CrossRef]

55. Utsu, T. Aftershocks and Earthquake Statistics(1): Some Parameters Which Characterize an Aftershock Sequence and Their
Interrelations. J. Fac. Sci. Hokkaido Univ. 1970, 3, 129–195.

http://doi.org/10.1007/s10518-011-9313-z
http://doi.org/10.1785/0120170339

	Introduction 
	Bayesian Decision Theory 
	General Framework—Value of Information 
	Value of Information in Emergency Management 

	Flood Emergency Management 
	Current Practice 
	Case Study 
	Decision Scenarios and VoI Analysis 

	Post-Earthquake Emergency Management 
	Current Practice 
	Case Study 
	VoI Analysis 

	Discussion 
	Conclusions 
	References

