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Abstract: Concrete delamination detection using unmanned aerial vehicle (UAV)-mounted infrared
cameras has proved effective in recent research. However, most studies used expensive research-
grade infrared cameras and proprietary software to acquire images, which is hard to implement in
state departments of transportation (DOTs) due to the lack of specialty professionals. Some state
DOTs started deploying lightweight UAV-based consumer-grade infrared cameras for delamination
detection. Quantitative performance evaluation of such a camera in concrete delamination detection
is lacking. To fill this gap, this study intends to conduct a comprehensive assessment of the consumer-
grade camera benchmarked against the results of a research-grade camera to see the practicality of
using the small and low-cost camera in concrete delamination detection. Data was collected for a slab
with mimicked delamination and two in-service bridge decks. For the case of the slab, maximum
detectability of 70–72% was achieved. A transient numerical simulation was conducted to provide a
supplemental and noise-free dataset to explore detectability accuracy peaks throughout the day. The
results of the in-service bridge decks indicated that the consumer-grade infrared camera provided
adequate detection of the locations of suspected delamination. Results of both the slab and in-service
bridge decks were comparable to those of a research-grade infrared camera.

Keywords: delamination; non-destructive evaluation; infrared thermography; unmanned aerial
vehicle; consumer-grade; level-set method; intersection over union; numerical simulation

1. Introduction
1.1. Concrete Deck Delamination Detection Using Infrared Thermography (IRT)

The steel reinforcement in concrete bridge decks is susceptible to corrosion due to
exposure to environmental elements [1,2]. This could lead to serviceability deterioration
of the bridge as it leads to cracking and delamination [3,4]. Concrete delamination occurs
when the steel rebar corrodes to the point that causes cracking, which is exaggerated as
the corrosion causes the concrete cracks to widen until they connect [3,4]. The cracks
that usually occur at the concrete cover level compromise the bridge’s structural integrity,
thus decreasing its service life [3]. Therefore, accurate detection of concrete delamination
in bridge decks is critical to aid in making the appropriate decisions concerning repairs
or replacement of said bridge decks, which is a costly procedure. It was estimated in
2016 that about 25% of bridges in the United States are in either fair, poor, or very poor
condition, with about $70.9 billion needed for maintenance [5]. Bridges are susceptible to
deterioration problems since they continuously support traffic loads and are exposed to the
natural environment. Thus, they constantly need inspections and maintenance.

Traditional methods, such as the chain drag test, are still being applied to detect
shallow delamination. The method involves dragging a chain over the concrete surface and
attempting to detect hollow sounds in the affected areas [6–8]. However, this method is
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subjective as it depends on the inspector’s judgment, interrupts traffic on the bridge, and is
time-consuming. The traditional detection methods, such as hammer-sounding test results,
are also considered to be of relatively low accuracy, where the accuracy was estimated to be
no more than 30% [5,9]. In recent decades, many non-destructive evaluation (NDE) methods
have been adopted in an attempt to dampen the excessive financial losses and increase the
accuracy of the results [10,11], such as impact-echo (IE) [12–14], ground-penetrating radar
(GPR) [10,12,15], ultrasonic tests (UST) [12,16,17], and infrared thermography (IRT) [18–42].

Mixed results were reported on the performance of using infrared thermography
(IRT) in concrete delamination detection since the 1980s [43–46]. The main issue was
its sensitivity to environmental conditions and the difficulty of data collection [32,43,44].
Furthermore, IRT can also be influenced by the properties of the concrete itself. The lower
the density and water–cement ratio of the concrete (higher compressive strength), the
better the performance of IRT [47]. However, concrete bridge deck design generally follows
rigid guidelines on the compressive strength of concrete to be achieved, along with water–
cement ratio specification [48]. Therefore, concrete bridge deck delamination detection
results would be fairly consistent within the selected region of inspection.

Due to the recent advancements in infrared sensors, image processing, and UAVs, UAV-
based IRT has demonstrated promising results in concrete delamination detection in recent
studies [19,24–27,27–41,43,47,49,50]. These studies reported comparable or better results
compared to other non-destructive evaluation (NDE) methods [23,42,51]. Additionally,
while providing comparable results to other NDE methods, IRT offers advantages over
other detection methods. The benefits of IRT include lower labor costs and easier handling
of equipment [51]. The data collection time can be significantly reduced as there is no
need for direct surface contact [18]. Furthermore, thermal and regular RGB images are
non-distorted and thus can be easily overlaid to map out the issued areas [19].

However, in most of these recent studies, researchers used sophisticated and expensive
research-grade infrared cameras that host infrared sensors in a cooling
chamber [19,24,26–28,30,31,36,37,41]. Research-grade infrared cameras are both costly and
heavy, thus needing customized equipment for handling. In addition, these cameras require
specialized technical training to acquire and process the infrared image data, which is a sig-
nificant technical and financial challenge for state DOTs to implement the new technology.

On the other hand, the utilization of lightweight UAV-based infrared cameras that use
uncooled infrared sensors grows fast in many UAV applications [26–30,33,34,38,50]. Many
DOTs possessed these UAV-based infrared cameras. These uncooled sensors typically have
lower spatial and temperature resolutions/performance than cooled sensors [20,52]. As
shown in Table 1, the cooled sensor has a higher spatial resolution, temperature sensitivity,
and more accurate temperature readings.

Table 1. Specification comparison between cooled and uncooled thermal cameras.

Thermal Camera Detector Type Thermal
Sensitivity (K)

Resolution
(Pixels)

Spectral
Range (µm)

Scene
Range (◦C)

Temperature
Accuracy (◦C)

Weight
(kg) Cost

DJI Zenmuse XT VOx
Microbolometer ±0.05 640 × 512 7.5–13.5 −25 to 135 ±20 0.27 Low–

Medium
FLIR A8300 Indium

Antimonide (InSb) ±0.02 1280 × 720 3.0–5.0 −20 to 350 ±2 [53] 4.54 [19] High

It is tempting to know whether the performance of the uncooled sensors can be compa-
rable to that of the cooled sensors. Currently, there is a lack of comprehensive quantitative
studies to answer this question. In this study, the authors conducted a comprehensive
study to evaluate and compare the delamination detection performance of the uncooled
and cooled infrared image sensor intending to assist state DOTs in assessing their options
when selecting the appropriate technology for bridge deck assessments.

1.2. IRT Delamination Detection and Segmentation

IRT-based delamination detection and segmentation rely on differentiating the tem-
perature differences between the delaminated areas and the sound areas caused by their
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different thermal conductivities of 1.6 W/m ◦C (sound concrete) and 0.0241 W/m ◦C
(delaminated concrete) [28,54]. Thus, when solar irradiance heats the concrete under pas-
sive conditions, the air inside the delaminated area heats up faster than the surrounding
concrete, and the areas appear warmer. The opposite would apply during the cooling
phase, as the delamination areas would cool faster [28,54].

IRT data collection can be completed under different thermal excitation approaches of
either passive or active thermography inspection [55,56]. Passive thermography depends
on environmental conditions, ambient temperatures, and solar irradiance to induce thermal
contrast for materials of different thermal conductivities. On the other hand, active IRT
introduces an external heating source such as halogen lamps [55,56]. The lamps are used
to emit radiation to the target element. The emitted radiation would then induce thermal
contrasts, same as the passive IRT mechanism. However, while active IRT would produce
more consistent detection results, there is a need to incorporate more equipment and other
considerations of distance from the object of interest, as well as the time taken to set up the
inspection environment [56].

There are many different image processing algorithms to segment the delaminated
areas based on the temperature difference between the two, such as thermal contrast [30,38],
k-means clustering [33,34], temperature gradient [24,31], and machine learning [37]. Among
these methods, the gradient-based method appears to be a robust and more reliable
method [19,24], and it is not significantly affected by the temperature accuracy of the sensors.

1.3. Scope of Work

In this paper, the performance comparison between the cooled and uncooled sensors
used a gradient-based method to take advantage of the uncooled sensor’s high thermal
sensitivity, as shown in Table 1. It takes time for the concrete surface temperature to develop
a significant enough contrast under solar irradiance so that the 0.05 K thermal sensitivity of
the uncooled sensor can differentiate delamination areas. Therefore, the timing of the filed
data collection is an essential factor. We follow the recommended best timing by [19].

This study focuses on the delamination detection of concrete bridge decks using an
uncooled thermal sensor camera under passive IRT conditions compared to the results
of a research-grade thermal camera. Passive IRT was selected as the source of thermal
excitation for the experiment. Passive IRT was selected as the mode of investigation to
provide a simplified inspection process while avoiding the need to introduce external
heating sources/equipment. Furthermore, while this study focuses on bridge decks as the
element of interest for delamination detection, IRT applications can extend to other bridge
components or defects. However, that is beyond the scope of this study.

2. Background

Multiple studies and intensive research have been developed in the application of
IRT in the delamination detection of concrete bridge decks. Each method used a different
approach regarding data collection time, choice of the thermal camera, and post-image
processing methods. All the other strategies were aimed at countering the method’s
limitations. The following paragraphs investigate different papers, their approach, and
their results.

2.1. Cooled vs. Uncooled Infrared Camera

The choice of thermal camera specifications depends on the application type and the
purpose of the collected data. Infrared cameras with a cooled detector are typically cooled
down to cryogenic temperatures [57,58]. The cooling technique minimizes interference of
the detector’s temperature with the recorded temperatures of the target object. Additionally,
they tend to have a faster capture rate, allowing for consistent results [57,58]. They also
tend to have higher resolutions as well (Table 1). All these advantages enable them to have
accurate detection abilities with reduced noise impact from the surrounding environment.
Yet, this comes at the expense of higher costs, bulky products, and a short life span.
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On the other hand, uncooled thermal cameras’ temperature reading accuracy is signif-
icantly reduced compared to cooled thermal cameras [57,58]. However, while they do not
have all the listed superior specifications, the assumption stands that if enough sensitivity
and resolutions are present for detection, the uncooled thermal camera should be able to
provide sufficiently accurate detection of delamination. This allows for more cost-effective
alternatives that are easier to handle.

Therefore, the choice of infrared would depend on the scope of the application and
the specific purpose the collected data will serve. In the case of an application with the
subject of the study or object being relatively small (e.g., microchip), constantly moving, or
needing very accurate temperature readings, a cooled thermal camera would be the best
choice [58]. However, in the case of delamination detection, the object is usually assumed
to be sufficiently large and static, where temperature recording accuracy is not significant.
The critical factors would be resolution and sensitivity [27]. Uncooled thermal cameras
have a few options with acceptable accuracies and sensitivities, such as the one used in this
study (Table 1), that would satisfy the scope of delamination detection in concrete bridges.

2.2. Studies Utilizing a Cooled Sensor Thermal Camera

In a report dedicated to the Nebraska Department of Transportation, thermal images
were collected from 33 in-service concrete bridge decks [19]. Significant advances were
achieved in countering the limitation of IRT’s sensitivity to noise and surface conditions.
Three different methods were applied for image processing, hoping to evaluate the accuracy
of the developed methods in detecting delamination, while managing and filtering noise
and outliers. In addition, a 3D model was developed using Autodesk CFD 2017 to provide
noise-free data, as well as test delamination detectability at different depths and sizes,
and anticipate the best time for data collection. The numerical simulation concluded that
the best time windows for data collection are 2:00–5:00 p.m. during the summer and
2:00–4:00 p.m. during the fall.

The gray-scale method applies a top-down approach utilizing a decay function to
regularize the gray-scale morphological reconstruction for regional maxima extraction. This
approach addresses the issue of missing delamination areas within the regional maxima
area [31]. Data collection was completed with a FLIR A8300 thermal camera with a cooled
sensor. However, there is a limitation where human judgment is needed for selecting the
step size and number of iterations required.

Next is a method that utilizes a temperature gradient level-set method instead of
typical thermal contrast detection, in which a raw image is taken; a difference image is then
used to filter sparking areas caused by surface texture reflection from solar radiation [24].
The camera utilized in this study was a cooled sensor thermal camera (FLIR A8300). The
proposed method was superior to the k-means method at almost all time windows and
showed higher detection accuracy. The method showed a 68–79% accuracy and can deal
with the noise caused by environmental factors [24]. However, there is a limitation in which
the threshold value used for detection is based on the subjective opinion of the operator.

The third method is an alternative method applying a deep learning model based
on encoder–decoder architecture proposed to segment the delamination areas in thermal
images at the pixel level using a supervised learning method [37]. The thermal camera was
a cooled sensor camera (FLIR A8300). There are limitations with environmental noise, as
the model is sensitive to them, and there is a need for more training data to improve the
accuracy [37].

The following method is thermographic Laplacian pyramid filtering, which uses the
blob detection method to enhance delamination detection by applying a Laplacian of
Gaussian filter to achieve a multiscale detection of abnormal thermal areas [36]. Laplacian
of Gaussian (LoG) is used to detect brighter or darker regions from the surroundings,
which is applied in the medical field for cell identification [36]. The method utilized a
cooled sensor thermal camera (FLIR A8300). Yet, the method showed to still be sensitive to
environmental conditions.
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A common limitation with studies utilizing cooled thermal cameras is either the
subjectivity of the threshold or, more importantly, the camera choice itself. Despite the
breakthrough of reducing the noise effect on IRT delamination detection capability, the
issue of camera choice is yet to be resolved. Cooled research-grade thermal cameras, as
previously elaborated, are expensive, heavy, and impractical for field application.

2.3. Studies Utilizing Uncooled Sensor Thermal Camera

In their research on applying IRT to detect delamination, Tarek Omar and Moncef
L. Nehdi collected thermal data using a UAV or a vehicle to expedite the data collection
method [33,34]. Both studies utilized uncooled thermal cameras for data collection of
two bridges (FLIR T650Sc and FLIR Vue Pro). K-means clustering was used for image
processing and identifying the delamination areas illustrated through delamination severity
maps. The results were determined to be close and of sufficient accuracy when compared
to hammer-sounding results. However, there are a few limitations to be addressed; the
accuracies of the research approach of data collection and camera choice were evaluated
qualitatively. Furthermore, the appropriate number of clusters needed depends on the
subjective expertise of the analyst. Thus, different inputs would lead to different results.
Additionally, k-means are sensitive to outliers, which could cause inaccuracies in detection
results [33,34].

Ali Sultan and Glenn Washer investigated delamination detection using IRT by collect-
ing data from a mimicked slab and an in-service bridge deck [38]. An uncooled sensor FLIR
T620 thermal camera was chosen for data collection. The thermal images were processed
by converting them to binary coded values of 0 and 1. Then, the images were analyzed
by identifying a threshold of a sound area and delamination areas. The limitations of this
method are that it requires subjective interpretation of the best threshold setting for assign-
ing the delamination and sound areas, and it only performs well with shallow delamination
detection. In addition, the method is susceptible to boundary conditions and surface noise.

A common limitation among studies utilizing an uncooled consumer-grade ther-
mal camera is the significant sensitivity to noise and surface conditions, as well as the
inconsistency of temperature recording of the test subject.

2.4. Studies Utilizing Both Uncooled and Cooled Sensor Thermal Cameras

An automated detection method was investigated and developed to increase the
accuracy of delamination detection while eliminating the need to depend on subjectively
set thresholds of concrete bridge deck thermal images [41]. A deep learning classification
approach was applied, then a training dataset was developed by collecting thermal images
from other studies. Two data collection cameras were chosen: a cooled thermal camera
(FLIR SC600) and an uncooled thermal camera (FLIR SC660). Yet, the method still has a few
limitations, such as the limited data to build a comprehensive training set. Another limita-
tion is that the uncooled thermal camera was deemed an unacceptable choice early in the
study. Its application was not further explored or compared to the cooled thermal camera.

A group of researchers conducted several studies on the applicability of IRT as an
NDE delamination detection method [26–30,35]. Three thermal cameras were selected
for investigation purposes: FLIR T420, FLIR T640, and FLIR SC5600 [27]. The first two
cameras have an uncooled detector, while the last one has a cooled detector. Additionally,
the SC5600 and T640 had matching resolutions, which are higher than the T420 thermal
camera. A MATLAB script was developed to process the collected images where the value
of each pixel was read, and a threshold was set based on the temperature data collected
from the specimens. Regarding camera specification, the SC5600 detected the shape of
delamination most clearly, and the SC5600 and T640 were able to detect delamination faster
than the lower-resolution T420. Therefore, the camera specification plays a critical role in
the detection, with more attention paid to resolution and thermal sensitivity [27]. Yet, the
comparison of the cameras’ detection accuracy was qualitatively based, and no regard was
paid to the applicability of the research approach. In addition, the paper presented the issue
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of environmental noise throughout the study. The method was sensitive to noise despite
being conducted in a controlled environment. Furthermore, the image analysis method
was highly dependent on a subjectively preset threshold dependent on the analyst’s choice.

In the subsequent study, different camera specifications, along with times and speed
of data collection, are investigated [28]. Four concrete specimens were built for the study,
with delamination placed at different depths. Data was collected using all three thermal
cameras simultaneously from a moving vehicle at varying speeds and other times. The
images collected were then analyzed using infrared image processing software [28,59].
The study determined that the thermal-cooled camera (SC5600) consistently showed the
highest detection accuracy and data collection speed. In contrast, the uncooled thermal
camera (T650) performed better than the other lower-resolution uncooled thermal camera
(T420). The developed method for image analysis showed to be significantly affected
by environmental conditions and other factors, such as speed of data collection, where
accuracy significantly degraded if optimal conditions were not possible for data collec-
tion. Additionally, detection capabilities were determined visually rather than utilizing a
quantitative measure of detection accuracy.

Despite those studies comparing cooled and uncooled sensor thermal cameras, they
depended on visual evaluation of the results without quantitative assessment of the de-
tection accuracy. Furthermore, those studies seemed to neglect the practical part of the
application. For instance, the case study in [41] automatically disregarded the uncooled
sensor thermal camera for its inability to detect deeper delamination compared to its
competitor, the cooled thermal camera. However, this neglected the possible benefits the
uncooled thermal camera might add despite the reduced accuracy of detection, which, if
inspected, might not have been as severe to disregard it as an option altogether. A possible
solution is to explore an image analysis method that can overcome the limitation of an
uncooled thermal camera and still maintain an acceptable detection accuracy.

2.5. Purpose of the Research

As mentioned above, researchers of [24] have taken a big step towards more accurate
concrete delamination detection using UAV-IRT by employing a gradient-based detection
method. However, the results were primarily based on the high-resolution (1280 × 720),
high-sensitivity (0.02 K), and significant temperature accuracy (2 ◦C) of thermal images
acquired by an expensive and heavy camera with a cooled-infrared sensor (FLIR A8303sc),
as illustrated in Table 1. The camera requires an external power source and collects imagery
on an onboard computer, so the UAVs need to be customized to be able to carry the
necessary devices. These may limit the widespread use of the developed methodology.

This research aims to explore the practical angle of IRT application while employing the
level-set method previously presented in [24]. Through this application, the authors evalu-
ate the effectiveness of IRT in detecting concrete delamination using a consumer-grade ther-
mal camera and the level-set method in [24]. For the purpose of this research, an uncooled
camera, Zenmuse XT DJI, was used, with lower specifications of 640 × 512 resolution,
sensitivity of 0.05 Kelvin, and temperature accuracy of 20 ◦C, as highlighted in Table 1.

The goal is to investigate whether a consumer-grade camera can be used whilst still
providing acceptable accuracy of delamination detection by applying the proposed level-
set method in [24]. The assumption is that when the temperature differences between
the delamination and sound areas are greater than 0.1 Kelvin under certain boundary
conditions, the delamination can still be segmented by the infrared sensor using the level-
set method. Thus, the accuracy of 0.05 Kelvin can provide sufficient sensitivity to the
temperature gradient between sound and delimitated areas. If successful, this contributes
to making IRT and the level-set method more accessible by allowing the use of more
affordable equipment. The camera itself is small, does not require a laptop connection, and
is easy to operate.

A new set of field data was collected in Delaware to supplement the Nebraska data
in [19,24]. Moreover, a numerical simulation was conducted to determine the local area’s
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highest detection accuracy achievable during the day. The hypothesis is that, despite the
temperature accuracy of the consumer-grade thermal camera being significantly lower than
that of the research-grade thermal camera, it does not affect detectability. This is because
IRT and the level-set method [24] mainly depend on the temperature gradient between the
sound concrete and delamination areas, not their recorded temperatures.

3. The Proposed Approach
3.1. Research Framework

To complete the research, a framework was adopted, as shown in Figure 1. First, a
literature review covering the state-of-the-art methods of thermal image processing with
the goal of delamination detection in concrete bridge decks was developed. Then, a mockup
slab with mimicked delamination [15] was used for preliminary data collection and analysis.
The purpose is that, since the location of delamination within the slab is already known, it
would provide a reference for the level-set method accuracy. The data was collected using
a UAV on a sunny day between the period of 2:30 p.m. to 5:30 p.m. on the 24 June 2021.
The data collection time of a summer afternoon was selected based on the time window
recommended in [5]. Intersection over union (IoU), which is discussed in Section 3.6,
was utilized to provide a quantitative comparison between detected delamination and
the known ground truth location. This is to identify the accuracy of detection acquired
using an uncooled consumer-grade thermal camera combined with the level-set method
for image analysis.
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Figure 1. Research framework.

Next, a numerical transient simulation of 24 h was performed using Autodesk CFD
2021, so as to provide a theoretical basis for the maximum detectability under noise-free
conditions and as another means of validating the outdoor experiment results. Then,
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the data from the mockup slab and simulation were analyzed using IoU (Section 3.6) to
compare with the known delamination location as validation of the collected and simulated
data, as shown in Step 4.

In addition, data were collected for two in-service bridge decks in Delaware and
Nebraska and analyzed using the same method applied in the preliminary test. A consumer-
grade thermal camera (DJI Zenmuse XT) was used for data collection in Delaware. In
contrast, both consumer-grade (DJI Zenmuse XT) and research-grade (FLIR A8300sc)
thermal cameras were used in Nebraska (Table 1). As for the real bridge inspection,
hammer-sounding was used for validating IRT results for the Delaware bridge case. Due
to the limited resources, the authors did not proceed with further validation through
other evaluation methods. For the Nebraska bridge, hammer-sounding and core sampling
were used for the validation analysis results. The coring samples were considered as
the ground truth as they were more reliable than the hammer-sounding results. For the
Nebraska bridge case, a research-grade camera was also used to collect thermal data.
Thus, the performance of the consumer-grade infrared camera could be benchmarked by
the performance of the research-grade infrared sensor through the same case study. IoU
(Section 3.6) was applied to provide a quantitative metric for measuring both thermal
cameras’ performance. In this way, the authors were able to assess whether the accuracy of
consumer-grade thermal cameras is comparable to that of research thermal cameras.

For the purpose of simplification of collected data, Table 2 summarizes the validation
method used for each dataset in this study.

Table 2. Datasets and validation methods.

Dataset Validation Method

Outdoor experiment * Current literature accuracies and numerical
simulation [24]

Transient numerical simulation * Current literature accuracies [24]
Apple Rd bridge (Delaware) Hammer-sounding

US-77 bridge (Nebraska) * Hammer-sounding, core sampling,
and research-grade thermal camera dataset

* Intersection over union (IoU) was calculated (see Section 3.6).

3.2. Level-Set Method (LSM)

The collected data for both the outdoor experiment and bridge were analyzed using
DelamKing [60], an image processing software [19,24]. The software was designed for
detecting, locating, and quantifying delamination in concrete bridge decks and was devel-
oped based on the level-set method. In the case of the outdoor experiment, the size and
location of the mimicked delamination are known. Thus, a comparative study between
the detection results and the ground truth can be efficiently conducted. In the case of the
in-service bridge deck data, both were analyzed in reference to hammer-sounding results.
Additionally, coring samples were collected for the Nebraska bridge.

The level-set method was chosen for post-image processing due to its high accuracy
and reliability of delamination detection [24]. As shown in Figure 2, the process follows the
general framework of first preprocessing the thermal image to filter noise, adjusting the
size, and edge-preserving smoothing. Then, the normalized gradient map and the initial
contour generation module are generated using the edge indicator generation module to
have the initial level set function. Finally, iterations are used to update the level-set function
using the edge indicator function to upgrade the initial contour following the PDE-based
GAC model [24]. The purpose behind preprocessing the image was to provide better and
more accurate results. Thus, a difference image was used to remove outliers which were
then replaced by the nearest neighbor. Then, after all the necessary steps were taken, a few
evaluation metrics, such as the intersection over union (IoU), were used to determine the
accuracy of delamination detection that the level-set method offered [24]. Figure 3 shows
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the framework applied for collecting and analyzing the data. The outdoor experiment and
the in-service bridge decks followed the same methodology and data analysis steps.
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Figure 3. Level-set method application framework.

3.3. Experimental Validations of the Mimicked Slab (Outdoor Experiment)

The slab used for the outdoor experiment is a reinforced concrete specimen used
in [15]. The slab is a bridge deck specimen with multiple artificial delamination areas
that was designed as a normal-weight concrete specimen with a compressive strength of
34.5 MPa. Furthermore, its dimensions are shown in Figure 4. In addition, according to the
original research, the slab has two mimicked delamination areas, including a shallow one
that is 54 mm (2.13 inches) from the top surface, which is the targeted detection area and is
plastic and hollow. Then, the second one is at a depth of 197 mm (7.76 inches) and is plastic
and solid.

Figure 5 shows the slab while collecting the data with the sun’s orientation throughout
the day (sunrise to sunset). The thermal and RGB pictures of the slab top were collected
using a DJI Inspire 1 drone [61] with a FLIR Zenmuse XT camera [62] and Zenmuse X3
camera [63], respectively. The utilized equipment is compared to the equipment used
in [16], which included a DJI M600 Pro drone [64], FLIR A8300 camera [65], and Zenmuse
X5 camera [66]. Table 1 shows the specifications for the thermal camera; Table 3 shows the
RGB cameras’ specifications, while Table 4 shows the drones’ specifications.
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Table 3. RGB cameras specifications.

RGB Camera Size (mm) Imaging
Sensor (mm)

Image
Resolution

(pixels)

Focal Range
(mm) ISO Range Spectral Bands Weight (kg)

Zenmuse X3 75 × 95 × 105 CMOS 6.17 × 4.5 4000 × 3000 3.6 100~3200 RGB or
Converted-NIR 0.215

Zenmuse X5 120 × 135 × 140 CMOS 18 × 13.5 4608 × 3456 Variable 100~25,600 RGB or
Converted-NIR 0.530

Table 4. Drone specifications.

Drone Size (mm) Hovering
Accuracy (m) *

Max Flight Time
(min)

Maximum Weight
of Payload (kg) Weight (kg)

DJI Inspire 1 438 × 451 × 301 V: ±0.5, H: ±2.5 18 3.5 3.06
M600 Pro 1668 × 1518 × 727 V: ±0.5, H: ±1.5 16 5.5 10

* V: Vertical, H: Horizontal.

The data was collected on the 24 June 2021, a clear summer day, within the time frame
of 2:30–5:30 p.m., where each picture was taken at 30 min intervals. A sunny day was picked
to provide images with minimal interference from environmental factors such as clouds
and rain. The data collection period was selected based on conclusions of previous research
that the afternoon period provides the best detectability accuracy [19,24,36]. Furthermore,
the camera was set in high gain mode, as this mode has a more effective detection accuracy
of thermal contrasts within small ranges [62]. The level-set image analysis results were then
compared to the known ground truth location of the delamination through IoU values.

3.4. Numerical Simulation

A transient numerical simulation was conducted on the data collection day for the
mimicked slab to evaluate the theoretical highest achievable detection accuracy during the
day within the study region (Newark, Delaware) under ideal conditions as a supplement to
the field dataset. The numerical simulation provides a dataset with minimal noise, unlike
field data, as it is not affected by wind, shade, or other possible errors arising during field
data collection [19,36]. The numerical simulation results will be analyzed in reference to the
collected data for the slab on the same date, the 24 June 2021. The analysis was conducted
to compare and validate the results from the outdoor experiment.

Figure 6 summarizes the steps followed for developing the numerical simulation. A
virtual model of the slab and mock delamination placed within it were modeled using
Autodesk Revit 2021. The model was then imported to Autodesk CFD 2021, where the ma-
terials and boundary conditions were set up to represent real-life conditions most closely, as
shown in Table 5. The model requires the assignment of both emissivity and transmissivity
values, which all were assumed to be the default values assigned by Autodesk CFD 2021.

In a study by Hiasa, Birgul, Matsumoto, and Catbas, they applied a similar concept of
developing a finite element model simulation for detecting favorable time windows for
delamination detection [35]. In their simulations, the ambient temperature was given a
specific value, and the simulation was assumed to be in a steady state. As opposed to the
steady-state simulations, a 24-h transient model was developed in this study. The selection
of a transient simulation was to provide more accurate simulations of realistic conditions
considering the dynamic change of the environment, thus giving more accurate results
compared to field data. The hourly temperature and solar radiance data were retrieved from
the Delaware Environmental Observing System database [67] and are shown in Figure 7.
The simulation was conducted for a period of 24 h with a time step size of 60 s and ten
iterations within each time step. Additionally, a surface mesh was assigned and refined
in Autodesk CFD 2021, which applies a pyramidal mesh. This resulted in a mesh with a
total of 208,409 nodes. This was determined to be a sufficient number of nodes, as a mesh
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sensitivity was conducted compared to the model with 10,000 and 100,000 nodes [36]. It
was found that there were negligible differences in results when the number of nodes was
changed, thus concluding that the generated mesh is of acceptable size.
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Figure 6. Numerical simulation framework.

Table 5. Boundary conditions of the model.

Parameter Unit Value

Ambient Air Temperature ◦C DEOS [67]
Film Coefficient W/m2/K 5

Latitude and Longitude - 39◦40′ N, 75◦45′ W
Solar Flux Constant W/m2 350

Then, the slab top temperature data were exported from the simulations to determine
the period in which the delamination seemed most visible. A MATLAB script was applied
to further process the results of the CFD simulation. The script consists of cropping the
thermal image, identifying its color scale, and resetting the temperature range. The script
produces images with a temperature gradient showing the contrast between sound areas
and delamination areas.

After the images were processed to highlight the contrast in temperatures, the images
were processed through another MATLAB code with the purpose of producing a boundary
around what was assumed to be the delaminated area based on the simulation results. The
boundary was designed to threshold pixels that were lighter in color in contrast to the
remaining surface of the slab. Then, a box is placed around the identified delaminated
area, and the intersection over union value is calculated in relevance to the ground truth
location of delamination, as shown in Figure 4. Finally, to further illustrate the contrast
in temperature of the delaminated area compared to the sound areas, the temperature
of each pixel across the centerline of the mimicked delamination along the length of the
slab was exported. Then, the temperatures of said pixels were plotted in reference to their
location on the cross-section of the slab, as well as highlighting the contrast between the
delaminated area and the sound areas.
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Figure 7. Temperature and solar radiance trends for the 24 June 2021, in Newark, Delaware [67].

3.5. In-Service Bridge Data Collection Dates, Times, and Framework

Once a satisfactory result was obtained in Sections 3.3 and 3.5, the research group
proceeded to the next phase to detect delamination of the in-service bridge decks. Data were
collected for two in-service bridge decks, one located on Apple Road, Newark, Delaware,
and the other on US-77 Lincoln, Nebraska, as shown in Figure 8. The field data for the
Apple Road bridge was collected on the 30 July 2021. As for the US-77 bridge, data was
collected on the 9 March 2018. For both bridges, a sunny, clear day was selected, and the
data analysis followed the same framework presented in Figure 3. The environmental
conditions of temperature and solar data are highlighted in Figures 9 and 10 for both
bridge cases.

For the case of the bridge in Delaware, data was overlaid on known delamination
areas’ locations provided by the Delaware Department of Transportation (DelDOT) using
the hammer-sounding method for validation [68]. As for the Nebraska bridge, the data
were compared to both hammer-sounding and coring samples. The coring samples were
intended to validate the hammer-sounding dataset. That is because they are more reliable
than the hammer-sounding, where it is not dependent on the subjective opinion of the
inspector. Data was also collected using a research-grade thermal camera (Table 1). The
research-grade cooled thermal camera dataset was demonstrated to highlight the detectabil-
ity abilities of an uncooled consumer-grade thermal camera by comparing IoU values of
both cameras’ detectability. Both cameras’ results were compared to the hammer-sounding
dataset as the ground truth. The goal of the comparison is to benchmark the consumer-
grade thermal camera performance with respect to delamination detection against that
of the research-grade thermal camera. The comparison was completed to evaluate if the
consumer-grade camera will produce detection accuracy that matches or is close to the
research-grade thermal camera as proof of its applicability for delamination detection.
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Figure 8. Field data collection location: (a) Apple Rd bridge; Bridge ID: 1696-360; GPS location:
39◦40′44.1′′ N 75◦45′50.5′′ W, (b) US-77 Bridge, Bridge ID: S077-05693R; GPS location: 40◦44′23.9′′ N
96◦43′00′′ W.
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Figure 9. Temperature and solar radiance data for data collection day of Apple Rd bridge (30 July
2021) Newark, Delaware [67].
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Figure 10. Temperature and solar radiance data for data collection day of US-77 bridge (9 March
2018) Lincoln, Nebraska [69].

3.6. Evaluation Method: Intersection over Union (IoU)

To provide a quantitative comparison of the applied level-set method, IoU detailed in
Equation (1) is used to evaluate segmentation accuracy. IoU is a commonly used metric
for comparing similarities between two shapes by looking into the shape’s properties,
such as width, height, and location [70]. It will return a value of 0 if the images do not
overlap and a 1 if there is complete overlap [24]. Therefore, the higher the value of IoU, the
higher the detection accuracy. An IoU threshold of 0.65 falls within the acceptable ranges of
0.5–0.95 [71,72]. Thus, it was selected for the purpose of this research to indicate acceptable
detectability and accuracy.

IoU =

∣∣AP ∩ Ag
∣∣∣∣AP ∪ Ag
∣∣ , (1)

where Ap is the predicted delamination area, and Ag is the ground truth delamination area.

4. Results and Discussion
4.1. Outdoor Experiment Results

Figure 11 shows the IRT results for the specified period on the 24 June 2021, utilizing
the level-set method [24]. The detected delamination using the IRT method is shown in
red boundary lines, which result from applying the level-set method using the software
DelamKing. The ground truth box highlighted in yellow was produced using a MATLAB
code to calculate intersection over union values. Only the shallow delamination at a
depth of 54 mm (2.13 inches) was found, and the deep delamination at a depth of 197 mm
(7.76 inches) was not detectable at any time during the data collection window. In this
specific case, the slab contains a considerable amount of noise on the surface, which consists
of a metal bar and hooks, as shown in Figure 11. When calculating the IoU, the metal bars
on the slab were ignored, as they were known conditions and could be easily identified as
noise. The results of the IoU analysis were used to provide quantitative comparison rather
than approximate qualitative evaluation.
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Figure 11. IoU analysis IRT results of data collected on the 24 June 2021.

As shown in Figure 11, the detectability (IoU) of the IRT method using a consumer-
grade camera peaked at a value of 0.72 at 2:30 p.m., which then decreased to a value of
0.71 at 3:30 p.m. Then, the detectability was relatively maintained at a value of 0.70 at
4:30 p.m., which then reduced to a value of 0.55 around 5:30 p.m. The acquired detection
accuracies for the shallow delamination of 54 mm ranged from 55–72% while utilizing a
consumer-grade thermal camera with an uncooled sensor (FLIR Zenmuse XT), combined
with the level-set image analysis method. If the data were to be collected during the period
of 2:30–4:30 p.m., accuracies of 70–72% could be observed. The achieved accuracies are
considered of adequate accuracy because the IoU values are above 0.65, which is regarded
as above the adequate level of accuracy achievable [71,72]. Those values are comparable to
those acquired in similar research studies using a research-grade cooled thermal camera
and level-set method [24], where the detectability for the shallow delamination of 44 mm
(1.73 in) ranged between 68–79% [24].

4.2. Numerical Simulation Results

As previously discussed, a 24-h transient simulation of concrete delamination was
run on the same day as the outdoor experiment in Newark, Delaware. First, the numerical
simulation is used to validate the results of the data collected from the outside experiment
with the mimicked slab. Second, once the simulation result is validated, it can also sup-
plement the conducted investigation, as the 24-h transient simulation extends beyond the
limited data collection time between 2:30 and 5:30 p.m. This way, the simulation results can
provide a general idea of the detectability during different times of the day. In addition to
the discussed utilizations of the numerical simulation dataset, it also serves as a noise-free
case under ideal conditions as a theoretical basis for delamination detection accuracy. This
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is because the numerical simulation is unaffected by the environmental conditions usually
faced during field data collection, such as clouds, wind, debris on the surface, or shade.

It was found that the simulation results closely matched those of the outdoor ex-
periment. The similarities appear with matching size and shape of delamination in both
datasets, as shown in Figures 11 and 12. In addition, the deep delamination was also
undetectable in the simulation as it was indistinguishable from the source of noise on the
slab’s surface, the same as the level-set result.
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Figure 12. Highlighted simulation results of the slab experiment.

Figure 12 shows the slab layout with the delamination location highlighted as a
cropped image to match the cropped areas of delamination illustrated. Hence, it is visually
possible to locate the most appropriate detection times while avoiding the noise elements
on the slab’s surface. In addition, since the deep delamination (depth of 197 mm) was
not detectable, that side of the slab was ignored, and the focus was directed to show the
detectable shallow delamination (depth of 54 mm), as illustrated in Figure 12.

The figure also shows the simulation results from 8 a.m. to 8 p.m. during the day.
The images were reproduced using MATLAB to highlight the thermal contrast. The time
window displayed was selected to highlight times that demonstrated detectability above
zero. After a quick visual inspection of the cropped images, it can be deduced that the
earlier hours of the day either have low detectability or high noise as the image appears
more pixelated. Then, as time progressed, the contrast of the delamination became more
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visible and closer in size and shape to that of the ground truth, until it again reduced in
size at the later hours of the day, when noise increased again.

Figure 7 illustrates the air temperature and solar radiance trends of the 24 June 2021,
where the ambient temperature peaks at 4:00 p.m., while solar radiance peaks at 1:00 p.m.
MATLAB was used to maximize the thermal contrast, highlight the location of the delami-
nation with a boundary, and then IoU analysis was conducted to investigate the simulation
results further. Figure 13 shows the IoU over time for the numerical simulation and outdoor
experiment. The threshold for an acceptable IoU value was determined to be 0.65, which
was comparable to or higher than the acceptable ranges in [71,72]. Thus, any values that fall
above that line will be considered adequate detection accuracy. For the case of the numerical
simulation, IoU reaches acceptable values around 11 a.m. to 5 p.m. (10:50 a.m.–5:10 p.m.),
with accuracies ranging from 0.65 to 0.89, as shown in Figure 13. There are two peaks of IoU
based on the simulation result. The assumption behind this phenomenon was that those
surges of detectability were influenced by the peaks in solar radiance and temperature,
respectively.
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Figure 13. The slab case IoU vs. time.

As for the outdoor experiment results, both Figures 11 and 13 indicate that detectability
was acceptable within the observation period of 2:30–5:00 p.m. Those conclusions overlap
with the numerical simulation results, where detectability was above the threshold. It was
also found that the results of the numerical simulation and outdoor experiment of the 24th
of June follow a similar trend, while the actual detectability is lower than the simulated
detectability. The reduced accuracy in the slab case compared to the numerical simulation
is because the latter is under the noise-free ideal case scenario.

A regression analysis of the data was conducted to investigate further the effects
of temperature and solar radiance over detectability throughout the day. Therefore, the
numerical simulation results were analyzed in reference to ambient temperature and solar
radiance, as shown in Table 6. The R-squared value for temperature and solar radiance were
0.56 and 0.84, respectively. Thus, the temperature and solar radiance models explain about
55.9% and 70.5% of the data variance, respectively, indicating that the model has adequate
prediction accuracy [73–75]. Additionally, the p-value of temperature and solar radiance
in relation to IoU were 1.74 × 10−5 and 1.54 × 10−7, respectively. The p-values indicate
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that temperature and solar radiance significantly impact IoU values when considering a
significance level of 0.05 [73–75]. However, the effect of solar radiance is more significant
than that of temperature. Indicating that solar radiance values directly influence IoU, as
they have the dominant impact on detectability. Therefore, this validates the results where
the peak in detectability occurred around the maximum temperature and solar radiance
values throughout the day.

Table 6. Model summary of IoU vs. temperature and solar radiance.

Variable Temperature (◦C) Solar Radiance (W·m−2)

R2 (coefficient of determination) 0.559 0.705
p-Value 1.74 × 10−5 1.54 × 10−7

The thermal images generated in MATLAB were further analyzed. The average
delamination temperature was compared to the average sound concrete temperature within
the bounds of the previously identified cropped region from Figure 12. The intention was
to represent the thermal contrast of the delamination area vs. the sound concrete area
throughout the period of interest 8:00 a.m.–8:00 p.m., as shown in Figure 14. In general,
the period of 12:00–4:00 p.m. shows higher thermal contrast, which is correlated to the
solar radiance and air temperature peaking at 1:00 p.m. and 4:00 p.m. Those results align
with the outcomes of Figure 13, where the peak of detectability was during the period of
12:00 p.m.–4:00 p.m.
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Figure 14. Thermal contrast during a day.

The recommended contrast between sound and delamination areas for accurate detec-
tion varies according to the researcher’s or inspector’s subjective opinion [20,76]. The rec-
ommended contrast values ranged from as low as 0.2 ◦C [26,29,50] to as high as 1 ◦C [77,78].
These values are used to determine the lower bound of whether the detected area is
considered as delamination or sound concrete, depending on the thermal contrast with
surrounding areas. In this case study, the contrasts in the numerical simulation varied
from 0.01 ◦C–1.65 ◦C, as shown in Figure 14. The 11:00 a.m.–5:00 p.m. window shows a
thermal contrast that is higher than 1 ◦C compared to other timings with lower contrasts.
Furthermore, the 12:00–4:00 p.m. timings display contrast values higher than 1.3 ◦C. The
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higher contrast led to relatively increased detectability, as highlighted in Figure 13. On the
other hand, the morning period, 9:00–10:00 a.m., and the evening period, 6:00–8:00 p.m.,
show thermal contrast lower than 1 ◦C. The reduced contrast values are reflected in the IoU
results, which showed almost minimal detectability. The thermal contrasts acquired within
the window of accurate detection of 11:00 a.m.–5:00 p.m. have a contrast that is sufficiently
above the contrast recommended by the literature [77,78].

However, despite thermal contrast being a variable of detectability, the tempera-
ture gradient can more accurately explain the detectability. For instance, the timings
1:00 p.m.–3:00 p.m. show the highest contrast (Figure 14) but do not have the highest accu-
racy in detectability for this specific case (Figure 13). The temperature gradient explains
the discrepancy, as it is a better identifier of IoU values. This is because the temperature
gradient considers the area of the detectable object and its location vs. that of the ground
truth. Thus, even when the delamination records the highest thermal contrasts, its area and
position might not perfectly align with the ground truth using LSM.

4.3. In-Service Bridge Results

Field data were collected for two bridges; the first is located on Apple Rd (tag: 1696-360)
in Newark, Delaware, on the 30 July 2021, between 1:00–1:30 p.m. [68]. The second bridge
is located on US-77 (tag: S077-05693R) in Lincoln, Nebraska, and data was collected on the
9 March 2018, between 4:30–5:00 p.m. Data collection days were chosen because they had
adequate environmental conditions for data collection, as it was sunny and warm, with no
clouds or rain. Then, the level-set method was applied (Figure 2), using different boundary
thresholds iteratively until an adequate threshold was determined.

For the case of the Delaware bridge, the threshold was adjusted multiple times until
a final value of 0.4 was determined to provide the most satisfactory results, as shown in
Figure 15. According to level-set method results, there is a 1% delamination with an area
of 10 m2 (108 ft2) of the total bridge area, which is indicated with red lines. Furthermore,
a hammer-sounding inspection was performed by DelDOT after the IRT inspection was
completed to verify the results of the level-set method, which are highlighted as blue boxes;
locations of hammer-sounding delamination are highlighted in Figure 15. There is a clear
overlap between the level-set and hammer-sounding results as to the approximate location
and size of the delamination areas, as shown in Figure 15.

The threshold for the Nebraska bridge was selected iteratively, same as the case for the
Delaware bridge, and a final value of 0.3 was chosen. The results of the level-set analysis
are shown in Figure 16a with the resulting thermal image. The analysis indicated that there
is 16% delamination with an area of 109 m2 (1173 ft2) of the total bridge area highlighted
in red lines. The hammer-sounding test and core sampling were performed to validate
the results of the IRT method. The hammer-sounding results are shown as blue areas, and
the core samples, considered as the ground truth of delamination locations, are indicated
in black arrows to their locations on the bridge. After inspecting the overlap between the
results of hammer-sounding and coring samples tests against the level-set method, there is
a clear overlap of delamination locations between all detection methods, as illustrated in
Figure 16a. In the case of both bridges, some areas were not detected by hammer-sounding.
They are either delamination that is not identifiable by hammer-sounding or outliers.
Further investigation, such as collecting and analyzing more core samples, is needed.

In order to investigate the accuracy a consumer-grade thermal camera provides, it
was compared to a research-grade thermal camera level-set analysis result of the same
bridge (Nebraska), which are illustrated in 16b. The IoU values were calculated for both
the consumer and research-grade thermal cameras to provide a quantitative comparative
measure, as highlighted in Table 7. The IoU of the cooled research-grade thermal camera,
as calculated in [24], was 0.4462. On the other hand, the uncooled consumer-grade thermal
camera was estimated to be 0.3923. There is a slight decline in the detection accuracy
of about 12.1% when utilizing the uncooled consumer-grade thermal camera. However,
this decline in accuracy is of little significance when comparing the prices and ease of use
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of the uncooled consumer-grade thermal camera compared to its competitor, the cooled
research-grade thermal camera. This indicates that a consumer-grade thermal camera is
able to detect delamination in concrete bridges with an accuracy that can match that of the
research-grade camera when employing the level-set method for image analysis. Therefore,
this increases the feasibility and applicability of IRT as an NDE method for delamination
detection of concrete bridge decks delamination.
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Figure 15. Delaware bridge level-set thermal image results with a boundary threshold of 0.4.

4.4. Consumer-Grade Thermal Camera Performance Evaluation

According to the selected evaluation metrics, acceptable results were obtained from a
field experiment of a concrete slab with mimicked delamination of 54 mm deep (2.13 inches).
Satisfactory results were obtained from the transient numerical simulation of the slab and
both concrete bridge decks. The deeper delamination of 197 mm (7.76 inches) was ignored,
as it was not detected by IRT or the numerical simulation.

Overall, the results of the outdoor experiment and numerical simulation data coincide
and show agreement on the trend of detectability during the data collection time window
of 2:30–5:30 p.m. The theoretical detection accuracy attained from the numerical simulation,
which is under a noise-free ideal condition, is also acceptable. Both datasets are comparable,
where the detectability accuracy was higher during the beginning of the data collection
period rather than at the end. If this time window of the simulation were to extend to cover
periods before the start of the data collection period (noon) and stopped at a reasonable
detectability value occurring at 4:00 p.m., accuracies of 65–89% would be achieved at the
location of the experiment. Those accuracies are similar to the field data, where the accuracy
of detection (IoU) is 70–72% during that same period. The increased detectability range
of the numerical simulation is due to the numerical simulation being a theoretical dataset
unaffected by environmental conditions such as the field data. Thus, the detectability
accuracy of the consumer-grade thermal camera from the experiment is comparable to
the accuracies achieved with a research-grade camera, which ranged from 68–79% from
existing literature when utilizing the level-set method for analysis [12].
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Figure 16. Nebraska bridge level-set thermal image result. (a) results of the consumer-grade camera
with a boundary threshold of 0.3 (Partially adopted and modified from [31]), (b) results of the
research-grade camera (Adopted and modified from [24]).

Table 7. The Nebraska bridge inspection result: IoU values of both consumer and research-grade
thermal cameras.

Thermal Camera IoU

Cooled research-grade thermal camera (FLIR A8300sc) 0.4462 [24]
Uncooled consumer-grade thermal camera (DJI Zenmuse XT) 0.3923

Moreover, after analyzing the results of the Delaware bridge, it was found that delami-
nation locations identified using a consumer-grade thermal camera adequately matched
the locations of suspected delamination areas found by the hammer-sounding method
provided by DelDOT. The results of the Nebraska bridge, when compared to both hammer-
sounding results and core samples, were found to provide acceptable detectability. In
addition, the uncooled consumer-grade thermal camera was quantitively benchmarked
against results from a cooled research-grade thermal camera using IoU and showed com-
parable delamination detectability. The consumer-grade thermal camera recorded an IoU
of 39.23% compared to the research-grade thermal camera of 44.62%. These values are
comparatively much lower than the case of the outdoor experiment. The reduction is
because the delaminations were artificially placed in the outdoor experiment, and thus
their exact location was known. On the other hand, hammer-sounding results were used as
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the ground truth for detection accuracy evaluation in the case of the bridges. As previously
discussed, hammer-sounding has a relatively low detection accuracy [5,9]. Hence, the IRT
being compared to hammer-sounding is not a comprehensive indicator of its detection
accuracy, which might be much higher if compared to a more accurate method. But these
IoU values can still be indicators to compare the accuracy between the different cameras.

5. Conclusions

The study aimed to allow the application of the level-set method to become more
accessible by enabling the use of more cost-effective and lighter consumer-grade thermal
sensors. The accuracy of a lower-resolution uncooled consumer-grade infrared camera for
delamination detection was assessed quantitatively through field data from a slab with
mimicked delamination and two in-service bridge decks, respectively.

When inspecting the results of the outdoor experiment, the maximum accuracies of
detection were 70–72%. The achieved accuracies indicate that the uncooled consumer-
grade thermal camera can produce accuracies comparable to cooled research-grade thermal
cameras in literature. Additionally, when the results were cross-referenced to a transient
numerical simulation, accuracies of 65–89% were acquired, and the trends matched those of
the outdoor experiment. Furthermore, the results for the Delaware bridge were comparable
to the hammer-sounding dataset collected for the same bridge. As for the case of the
Nebraska bridge, the consumer-grade thermal camera was able to detect delamination
with accuracies comparable to that of hammer-sounding and core sampling. In addition,
the uncooled consumer-grade thermal camera results were compared to a cooled research-
grade thermal camera, where the detected delamination areas adequately matched in
location, size, and shape. Additionally, quantitative analysis utilizing IoU showed that the
consumer-grade thermal camera could provide an accuracy of 39.23%, which is comparable
to that of the research-grade thermal camera of 44.62%. The detection accuracy is relatively
low because IoU was based on the hammer-sounding test as the ground truth, which has
low detection accuracy.

This case study made several conclusions after investigating the results of the outdoor
experiment, numerical simulation, and two in-service bridge decks. First, the uncooled
consumer-grade camera provided accuracies that are on par with those of a cooled research-
grade thermal camera when utilizing the level-set method. The comparable results are
due to delaminations being detectable when the camera’s sensitivity is sufficient. Second,
the contrasts obtained in the numerical simulation within the period of accurate detection
were above 1 ◦C. The camera sensitivity of the utilized uncooled consumer-grade camera
(DJI Zenmuse XT) is 0.05 ◦C at 25 ◦C, which indicates that it is more than capable of
detecting temperature differences of 1 ◦C. Yet, thermal contrast is not the only variable in
delamination detection, and the temperature gradient presents a more accurate predictor of
detection accuracy. This is because the temperature gradient considers the detectable area
and its location versus that of the ground truth. Third, solar radiance has a dominant effect
on detectability. As for temperature, while it impacts detection, it has marginally less of an
impact. Those conclusions allow for the level-set method to be accessible and affordable.
Thus, it can be applied by different entities and departments of transportation for rapid
and efficient delamination detection of concrete bridge decks with significantly lowered
costs and efforts compared to the research-grade camera.

In the future study, more data collection is needed for different seasons for more
extended periods along with numerical simulations, as it would allow for better data
analysis and validation of temperature and solar radiance effect on detectability. As for
the data collection interval, the interval will be reduced from 30 min to a more appropriate
interval to further account for the environmental conditions’ effect on detection. In addition,
a more in-depth benchmark study of uncooled consumer-grade thermal cameras vs. cooled
research-grade thermal cameras must be investigated. Finally, there is ongoing research on
improving the detection accuracy of the software (DelamKing) utilized in this study.
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