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Abstract: Fatalities and serious injuries still represent a significant portion of run-off-the-road (ROR)
collisions on highways in North America. In order to address this issue and design safer and more
forgiving roadside areas, more empirical evidence is required to understand the association between
roadside elements and safety. The inability to gather that evidence has been attributed in many cases
to limitations in data collection and data fusion capabilities. To help overcome such issues, this paper
proposes using LiDAR datasets to extract the information required to analyze factors contributing to
the severity of ROR collisions on a localized collision level. Specifically, the paper proposes a new
method for extracting pole-like objects and tree canopies. Information about other roadside assets,
including signposts, alignment attributes, and side slopes is also extracted from the LiDAR scans
in a fully automated manner. The extracted information is then attached to individual collisions
to perform a localized assessment. Logistic regression is then used to explore links between the
extracted features and the severity of fixed-object collisions. The analysis is conducted on 80 km
of roads from 10 different highways in Alberta, Canada. The results show that roadside attributes
vary significantly for the different collisions along the 80 km analyzed, indicating the importance of
utilizing LiDAR to extract such features on a disaggregate collision level. The regression results show
that the steepness of side slopes and the offset of roadside objects had the most significant impacts on
the severity of fixed-object collisions.

Keywords: LiDAR; run-off-the-road collisions; fixed-object collisions; flat side slopes; geometric
elements; roadside safety; feature extraction

1. Introduction

Run-off-the-road (ROR) collisions account for a third of serious collisions on rural
roads [1,2]. The reason these collisions often result in serious injuries or fatalities is that a
large portion of them end in vehicles either overturning or colliding at high speeds with
fixed objects. In fact, statistics show that fixed-object collisions represented 30.3% of the
fatal collisions and 17.7% of serious injury collisions on US highways in 2016 [3].

In attempts to mitigate the severity of ROR collisions, there have been attempts to make
the roadside environment more forgiving. This includes having traversable clear zones
where the roadside area is clear of any hazards and where side slopes are recoverable [4].
Such practice maximizes the chance of recovery for errant vehicles. Although some roadside
objects could be removed to clear up the roadside area, other objects such as luminaire
support poles and structures supporting high load powerlines are challenging to relocate.
In fact, luminaire poles actually have important positive impacts on safety due to their
role in reducing nighttime collisions [5,6]. As a result, design guides including AASHTO
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and the Transportation Association of Canada’s (TAC) design guide recommend that, if
objects were to be placed in the clear zone, these objects are shielded to provide sufficient
protection to drivers. Furthermore, in cases where clear zone requirements cannot be met,
design guides recommend providing sufficient lateral offset.

Despite the importance of the information included in roadside design guides, some
of it was added several decades ago. For instance, information in the AASHTO’s design
guide on clear zones has not changed since 1977. Furthermore, a significant portion of
this information is based on qualitative measures and best practices as opposed to actual
relationships between substantive safety measures and roadside hazards [7,8]. When
referring to recommendations on clear zone design, the AASHTO guide acknowledges
that the recommendations “ . . . are based on limited empirical data that were extrapolated
to provide information for a wide range of conditions” [4]. One challenge to updating
design guides with more recent information is limited data collection capabilities. Manual
collection of all the relevant roadside assets, including side slopes, poles, and trees, to
analyze the relationships between these assets and the severity of fixed-object collisions is a
tedious process. Lee and Mannering [9] describe this as a “chronic lack of data” that has
represented an obstacle to the development of statistical models relating roadside features
to collision frequency and severity. As a result, most analysis in this area has been limited
to information extracted from police reports of varying reliability.

One technology that has been extremely valuable in this regard due to its ability to
produce highly detailed maps of road infrastructure is mobile Light Detection and Ranging
(LiDAR) technology. LiDAR datasets consist of closely spaced points that form an accurate
3D model of a highway. Unlike static laser scanning and other conventional surveying
methods, a Mobile Laser Scanner (MLS) can collect data while traveling at highway speeds.
This makes detailed maps of road infrastructure readily available to transportation agencies
with minimal effort. Research has shown that, if properly utilized, LiDAR datasets could
be used for the extraction of multiple features, including signposts, roadside poles, trees,
and many other elements of roadside infrastructure [10–14].

Our paper contributes to the existing literature in three different areas. Firstly, we
propose a new method for the segmentation of pole-like objects and tree canopies from
LiDAR. The method involves voxelizing the point cloud to isolate non-ground objects.
A longitudinal analysis of point spread is then conducted to distinguish poles from the
tree canopy.

Secondly, our paper demonstrates the feasibility of utilizing mobile LiDAR datasets
when conducting advanced roadside safety assessments. Besides poles and tree canopy,
our assessment involves automated extraction of other roadside features (e.g., traffic signs
and sideslope information) on 80 km of collision-prone highways. We adopt a localized
approach for feature extraction whereby roadside features within the local vicinity of every
collision recorded on the analyzed highway segments were extracted automatically. It
is worth noting here that even in situations where such extractions are performed from
LiDAR using off-the-shelf products, this is conducted manually and involves hours of
user interaction.

Finally, our paper explores potential links between extracted features and the severity
of fixed-object ROR collisions along with the analyzed segments. The paper extracts
roadside information specifically for a selection of collision-prone segments considered in
the assessment, as opposed to selecting the road segments based on data availability.

2. Literature Review
2.1. Pole-Like Object Extraction from LiDAR

Several different studies have attempted extracting roadside assets and design ele-
ments from mobile LiDAR data [15–21]. This includes multiple attempts that focused on
the extraction of pole-like objects [22,23]. Yang and Dong [24] employed a radius search
group of neighboring points within the point cloud. The authors then used a supervised
classification method to classify the points into linear, planar, and spherical points based
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on local geometric features. Lehtomäki et al. [25] proposed a scanline-based algorithm to
extract pole-like objects from mobile LiDAR data. Poles sweeps within scanlines were de-
tected, and longitudinal clustering was employed to combine different pole layers. Clusters
that constitute the same pole were merged using principal component analysis (PCA).

Pu et al. [26] employed a surface growing algorithm to remove ground surface and then
assessed different quartiles to detect poles. El-Halawany and Lichti [27] used DBSCAN
to detect high-density clusters in local neighborhoods with a radius of 25 cm. Vertical
region growing was then used to extract upright objects. Object height range, the normal
surface direction, Yan et al. [28], and the largest normalized eigenvalue were then used to
classify the upright objects and proposed a four-step procedure to extract poles and towers
from LiDAR. The method involved ground filtering using a statistical skewness balancing
algorithm, unsupervised clustering using DBSCAN, and classification based on a set of
geometric decision rules.

In more recent work [12,29–31], multiple voxel-based methods, where the point cloud
is converted into a 3D grid before processing, were proposed. The subsequent process-
ing pipeline varied between the papers and included plane filtering, region growing, a
combination of supervised and unsupervised classification, and clustering.

Li and Cheng [32] employed super voxels over-segmentation followed by region
growing to detect the vertical component of pole-like objects. Other parts of the pole were
then detected using uphill clustering, and spatial correspondence between the vertical
poles and their attachments were analyzed to combine different elements of the pole-like
object. The authors reported a recall of 92.4%.

Although many methods were developed to extract pole-like objects from LiDAR,
the majority of those methods were developed for urban environments where distinguish-
ing between tree canopy cover and pole-like objects was not critical. To address this
gap, the method proposed in this paper introduces a lateral layer-based assessment to
distinguish poles and tree canopy. The method also differs from previous techniques in
that the ground-non-ground segmentation also is also voxel-based, reducing the need for
additional processing.

2.2. Data Sources in Previous Roadside Safety Assessments

Several studies have analyzed the relationship between roadside assets and collision
frequency or severity, each utilizing data from different sources. In an early study, Jones and
Baum [33] used data in police reports from 1975 to analyze the impact of factors including
speeds, grades, pole density, and pole offset on the likelihood of a single-vehicle (SV)
collision involving pole contact. They found that poles were the objects most frequently
struck in SV collisions and that pole density and pole offset had the most significant effects
on the severity of pole collisions.

Fox, Good, and Joubert [34] conducted site visits to locations where collisions had
occurred to collect site characteristics. Among other variables, the authors analyzed the
impacts of pole offset on the likelihood of pole-related collisions. The study found that
when offset was minimized to 0 m (i.e., the pole was placed on the edge of the road), the
likelihood of a pole-related collision was 3.5 times as high when compared to an offset of
3 m. This led the authors to conclude that poles must be placed at least 3 m away from
the edge of the road. Max and Mason [35] combined data from police reports with data
collected in site visits to analyze the impact of utility poles on collisions. The authors also
found that pole-related collisions were overrepresented at offsets of 3 m or less from the
edge of the road.

In a comprehensive earlier study, Zegeer and Parker, Jr. [36] used several statistical
techniques to model utility pole collisions. The authors extracted most variables, including
pole offset information and pole positions from photologs. For some variables, trained
technicians had to inspect the photos and estimate the information, while for others,
such as pole offset, distances were obtained by using a calibrated grid placed over the
photolog viewing screen. The authors found that lateral pole offset, pole density, and
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road slopes were primary geometric factors related to utility pole collision frequency. The
study also found that utility pole collisions decreased significantly as pole offsets and pole
densities increased.

Good, Fox, and Joubert [37] used data collected from tow-truck operators and site
visits from a research team to analyze factors impacting utility pole collisions. The authors
reported similar findings in terms of greater pole offset leading to a reduction in utility pole
collisions. Furthermore, the authors also found that the relative risk of utility pole collisions
increased dramatically for pole offsets under 3 m. No additional decrease in relative risk
was found for pole offsets of greater than 3 m.

Lee and Mannering [9] combined data collected in GPS surveys with information
extracted from the Washington State database to investigate the effects of fixed objects on
ROR collisions. The authors developed a zero-inflated negative binomial model to assess
the impacts of roadside features on collision frequency and a multinomial logit model to
assess collision severity. The authors found that increasing light pole offset and reducing
the density of isolated trees helped decrease the frequency of ROR collisions. It was also
found that multiple roadside features, including poles and slopes, contributed to increasing
the severity of ROR collisions.

Holdridge, Shankar, and Ulfarsson [38] used information in Washington State police
reports to develop multivariate nested logit models to analyze the relationships between
roadside objects and the severity of fixed-object collisions. Large wooden poles, including
utility poles and trees, were found to increase the likelihood of fatal injuries. Schneider,
Savolainen, and Zimmerman [39] also developed a multinomial logit model to assess the
impacts of roadside objects on ROR collision severity. Trees were found to be the highest
contributor to incapacitating and fatal injuries in ROR collisions, although most other
roadside objects were also associated with significant increases in injury severity.

El Esawey and Sayed [7] used data from BC Collision Information System (CIS)
and developed safety performance functions to analyze the relationship between pole
placement and density and pole collision frequency. The authors found that increasing the
offset of poles and decreasing their density both had positive impacts on safety. In addition,
increasing pole offset was reported to have more significant impacts on reducing collision
frequency than reducing pole density.

Xie, Zhao, and Huynh [40] utilized a latent class logit model to analyze injury severity
in SV collisions on rural roads. The data were acquired from the Florida Traffic Crash
Database, and the results showed that trees, utility poles, and concrete barriers were
all contributing factors to the severity of SV ROR collisions. Park and Abdel-Aty [41]
combined data from Florida DOTs Roadway Characteristic Inventory and Crash Analysis
Reporting System databases to assess the impacts of several roadside treatments on safety.
The authors found that increasing the offset of poles and trees resulted in a reduction in
collision frequency.

Roque, Moura, and Cardoso [42] utilized data from the police force, Guarda Nacional
Republicana, to develop multinomial and mixed logit models and analyze the impacts
of unforgiving roadside areas on the severity of ROR collisions in Portugal. The authors
found that critical slopes were high contributors to fatalities.

In summary, most previous studies were limited to information in police reports site
visits when collecting data for the analysis of fixed-object collisions. Although one study
used photologs for some feature extraction, those photologs were manually inspected.
Accordingly, most studies in this area have been limited by extremely tedious and error-
prone data collection techniques. Furthermore, many studies performed the assessment
on an aggregate level where the roadside attributes of the entire segment are considered
as opposed to information in the vicinity of the collision. This paper aims to demonstrate
the feasibility of overcoming such challenges by utilizing mobile LiDAR technology and
automatically extracting roadside information.
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3. Data Collection and Test Segments

Data considered in this study included the LiDAR scans and collision information. Li-
DAR data were collected by Alberta Transportation (AT) in surveys conducted on multiple
highways across the province. In mobile laser scanning (MLS), a vehicle mounted with a
scanning system travels highway corridors at highway speeds to collect data. The product
is a 360◦ representation of the road’s environment. The MLS system used in this study is
the RIEGL VMX-450, which is equipped with two VQ-450 scanners as well as an Inertial
Measurement Unit and a Global Navigation Satellite System. The VQ-450 scanner has a
scan rate of up to 1.1 million points per second and a scan speed of 400 lines per second, a
precision of 5 mm, and an accuracy of 8 mm [43].

Collision data were extracted from the AT collision database for the period (2009–2014).
The database includes information about collision severity (Fatal, Injury, PDO), the collision
location (highway control segment and coordinates), and the type of collision (fixed-object
ROR, in case of this paper).

Analysis was conducted on a set of collision-prone highways distributed among
different parts of Alberta (see Figure 1). All segments considered in this paper were
identified as collision-prone segments in an Empirical Bayes (EB) assessment of 17,355
two-way-two-lane segments in Alberta by Tawfeek and El-Basyouny [44]. The EB method
is considered the most consistent collision-prone identification method and provides the
most reliable results when compared to the other methods [45]. In total 80-km of roads from
10 different crash-prone highways were considered in the analysis. On those segments,
100 fixed-object collisions were recorded in the analysis period.

Figure 1. Map of highways assessed for fixed-object collisions.
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The next section includes a detailed description of the algorithms that were developed
and used to automatically extract roadside features from the LiDAR scans.

4. Methodology

The analysis in this paper was split into 2 different phases. Phase I involved the
extraction of roadside objects from the LiDAR datasets. In Phase II, logistic regression was
used to explore the relationships between the severity of fixed-object ROR collisions and
roadside characteristics.

4.1. Feature Extraction

Although LiDAR scans create a highly detailed representation of the roadside area, the
size and the unorganized nature of those datasets make efficiently extracting information
from them a highly challenging and time-consuming process. To overcome such challenges,
Phase I of this work focused on the development and employment of fully automated
algorithms to extract features of interest. Features considered in this study included the
density of roadside objects and their offsets, horizontal alignment information, and side
slopes steepness. The remainder of this section includes details of the feature extraction
methods. Before discussing the details of the extraction algorithms, it is worth noting that
the computational requirements for running the extraction algorithms are relatively low.
All the extraction algorithms were run on an Intel i7 CPU with 16 GB of RAM.

4.1.1. Pole-Like Object Extraction

The first step of the pole extraction involves voxelizing the data into 3D voxels of
0.4 m. A 0.4 m voxel size ensures that the majority of pole-like objects would fall in a single
voxel or at least in 3 × 3 neighborhood of voxels. Assuming v(i, j, k) denotes a voxel and
v(I, J, k) denotes all voxels in layer k. If V represents the voxel grid system consisting of K
layers, then the V can be defined as the union of all voxel layers:

V =
K
∪

k=0
k (1)

A point P(x, y z) is assigned to a voxel v(i, j, k) as follows. If ∆x, ∆y, and ∆z denote
the dimensions of a single cell (v) in the x, y, and z directions and xo, yo, and zo denote the
origin of the voxel grid (V), then the ID of the voxel, v(i, j, k), in which the point P(x, y, z)
falls can be computed as follows:

i =
int(x− xo)

∆x
(2)

j =
int(y− yo)

∆y
(3)

k =
int(z− zo)

∆z
(4)

After voxelization, a search for stacks of foreground (occupied) voxels in z was con-
ducted. A minimum threshold of 15 foreground voxels was specified as a cut-off point
for a stack of voxels to be considered as one where a pole-like object potentially exists.
A 15-voxel threshold was used because the Alberta Highway Lighting Guide specifies
the standard luminaire mounting height for pole placement as 6.0 m, which translates to
15 voxels [46].

Since the 15-voxel cut-off was the minimum threshold, the number of foreground
voxels for all pole-like objects detected was not the same. Hence, the next step was to
normalize the number of vertical layers for all non-ground objects. This was conducted by
splitting all non-ground objects into 10 layers of fixed height.
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After extracting the non-ground objects, they were classified into pole-like objects
and objects that belonged to a group of trees (i.e., tree canopy), which was conducted in
multiple stages. Stage 1 involved analyzing point spread in the mid-layers of the extracted
non-ground object with the aims of isolating pole-like objects and isolated trees from tree
canopy. It is expected that with pole-like objects, such as utility poles and isolated trees (i.e.,
trees that are not part of a canopy and stand-alone without any neighboring vegetation,
see Figure 2 left), points would spread no more than a single voxel in each direction of
the xy plane from the centroid of the object (see Figure 3). Therefore, it was assumed
that if all points belonging to the object at the mid-layer occupied a 3 × 3 voxel grid (i.e.,
1.2 m × 1.2 m) in the xy-plane, then it was highly likely that this object was an isolated
pole-like object, such as those in Figures 3a and 4c. In contrast, if there was a spread of
points beyond the 3 × 3 grid then the object was classified as either a pole-like object with
noise or a tree belonging to a forest canopy.

Figure 2. Isolated tree (Left) and group of trees/canopy (Right).

Figure 3. Spread of points across neighboring voxels (plan view): (a) Pole-like Object; (b) Tree Canopy
(Group of Trees).
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Figure 4. Non-ground objects: (a) full-segment; (b) tree canopy; (c) pole-like objects.

Stage 2 involved distinguishing between pole-like objects with noise and tree canopy. To
achieve this, the lateral point density was analyzed across multiple vertical layers along
with the height of the non-ground object. If the spread was consistent across multiple
layers and occupied a 2D area of more than 3 × 3 voxels, then it was highly likely that the
object was part of a forest canopy seen in Figure 3b. All other objects that did not meet this
criterion were classified as potential pole-like objects with noise or other non-ground objects
(e.g., building facades . . . etc.).

Stage 3 involved removing noise from pole-like objects with noise. To achieve this
noisy pole-like objects were clustered using DBSCAN, which is a Density-Based Clustering
algorithm for Applications with Noise. Here, if more than 2 neighboring objects were
clustered into a single cluster, these objects were considered large objects (e.g., building
facades) and were not considered as poles anymore. In contrast, if points surrounding the
pole-like object were eliminated by the algorithm, they were noise points.

DBSCAN was also used to group trees within close proximity. A hit count of 4 and
ε = 30 m were used for clustering since it is highly unlikely for any object that has a lower
hit count (number of points) and higher voxel spacing to be part of the same tree canopy.

A sample of the extracted pole-like objects is shown in Figure 4c. Figure 5 shows a
summary of the segmentation steps.
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Figure 5. Segmentation method proposed for pole-like object and tree canopy extraction.

Table 1 shows the validity metrics computed after testing the algorithm on a 4 km
segment of AB-20-02. To collect ground truth information for the evaluation, the number of
pole-like objects along the were manually counted using google satellite imagery and the
LiDAR scan. The algorithm was then used to extract pole-like objects from the LiDAR scan
of segment, and the results were compared to the manual extraction. It is worth noting that
the highway 20 test segment was not used in developing the segmentation criteria it was
only used for validation. The recall was estimated at 79% with a precision of 98% on this
segment, which was an improvement on the results obtained by [12] after testing on the
same segment.

Table 1. Result validity assessment.

Metric 1 Results on AB-20-02

Precision (%) 98
Recall (Detection Rate) (%) 79

1 For information on how the metrics were computed see [12].

4.1.2. Side Slope Estimation

Side slopes were also extracted at locations where collisions had occurred. The algo-
rithm proposed by Gargoum [47] was used to estimate side slopes. The method is fully
automated and involves (i) extracting cross-sections along the highway, (ii) identifying the
edges of the cross-sections, and (iii) estimating the cross and side slopes.
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The algorithm first estimates the trajectory vectors parallel to the road’s axis by finding
the difference between position vectors. Let P̂1 be the position vector defining the start-
point of the trajectory vector. Similarly, let P̂2 represent the position vector representing the
end-point of the trajectory vector. In that case, the trajectory vector (V̂i) at a point i along
the road can be defined as follows:

V̂i = P̂2 − P̂1 (5)

where, P̂1 =

 x1
y1
z1

 and P̂2 =

 x2
y2
z2

, hence V̂i can be rewritten as follows:

V̂i =

 x2
y2
z2

−
 x1

y1
z1

 =

 x2 − x1
y2 − y1
z2 − z1

 (6)

The normal vector (Ni) a vector normal to the trajectory vector (Vi) was then estimated,
as follows

Ni =
[

vy −vx vz
]

(7)

where, vx, vy, and vz are the components of the trajectory vector (Vi).
Points within close proximity of the plane parallel to Ni are then retained and extracted,

representing the cross-section. Once the cross-section was extracted and rotated, the extents
of the cross-sections side slopes were defined, and the slope was estimated. Readers
interested in more detailed information about the procedure are referred to [47].

4.1.3. Traffic Sign Post Extraction

Sign panel reflectivity was used to distinguish traffic signs from other pole-like ob-
jects. The method used for sign extraction was a fully automated algorithm proposed by
Gargoum et al. [48]. The method involved (i) intensity filtering (extracting points with high
reflectivity), (ii) density-based clustering, (iii) buffer-zone filtering (based on position from
the road’s edge), and (iv) geometric filtering. Readers interested in details of the procedure
are referred to [48].

4.1.4. Curve Detection and Radii Estimation

Other variables extracted from the LiDAR data included (i) the existence of a hori-
zontal curve on a crash site and (ii) the radius of the horizontal curve. Horizontal curve
information was extracted based on the algorithm proposed by Gargoum et al. [49]. The
method involved (i) trajectory vector definition (similar to that discussed as part of the
side slope estimation in Equations (5) and (6)), (ii) azimuth-based curve detection (where
changes in azimuth were analyzed to detect the endpoints of horizontal curves), (iii) curve
radius estimation, which was achieved by first locating the origin of the curve through the
intersection of the lines normal to the two tangents, then estimating the distance between
PC, PT, and the origin. Readers interested in details of the procedure are referred to [49]. It
is worth noting that other features could also have been extracted from the point clouds
including passing and stopping sight distance [50].

4.2. Logistic Regression

Since only 3 levels of severity (PDO, Injury, and Fatal) are coded into Alberta collision
data, and due to the limited number of fatal collisions, severity was coded as a binary
variable where a collision was either severe (1) or non-severe (0). Logistic regression was
used to analyze the effects of attributes of the road infrastructure on the severity of fixed-
object ROR collisions. Binary Logistic Regression is a form of logistic regression where
the dependent variable (DV) is a binary categorical variable that can belong to one of two
levels. The impacts of several independent variables on the DV are then estimated.
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Let Yi be the dependent variable that denotes the severity of collision i. In this case,
pi = P(Yi = k) represents the probability of collision i belonging to severity level k. The
log-odds of collision i belonging to category k can then be expressed using a logit model of
the following functional form:

ln
(

pi
pk

)
= βo + β1Xi1 + · · ·+ βnXin (8)

which can also be expressed as

pi
pk

= eβo+β1Xi1+···+βnXin (9)

where β0, β1 . . . βm are regression parameters of the model, and Xij are the covariates repre-
senting several factors that have alleged effects on a collision belonging to a certain level of
severity. The regression parameters are evaluated using an iterative maximum likelihood
(ML) procedure. All analysis was performed using IBM SPSS Statistics version 23.

4.3. Collision-Level Data Fusion Method

Since roadside information could vary along different parts of the same highway
segment, roadside information attributed to each collision was identified based on the
location of the collision on the segment. A buffer zone area where roadside features were
assumed to have potential impacts on the collision was defined based on what was assumed
to be high impact speed. Assuming that colliding with a fixed object would only impact
the severity of a collision if the impact was incurred at a speed greater than 30 km/h (v2),
the stopping distance was computed assuming an initial speed of 100 km/h (v1), using the
following equation:

SD = 0.278v1t +
v2

2 − v2
1

254(a/g)
(10)

where t (2.5 s) is the perception reaction time, a (3.41 m/s2) is the deceleration rate, g is the
gravitational acceleration (3.41 m/s2).

This results in a distance of 175 m. Hence it was assumed that, for each collision,
only objects that fell within the buffer zone area of 175 m radius could have impacted the
severity of that collision, as illustrated in Figure 6.

The variables considered to impact the severity of fixed-object ROR collisions in this
paper are summarized in Table 2.

Table 2. Descriptive Statistics of Variables.

N Min Max Mean Std.
Deviation

Severity 100 0 1 0.26 0.44
Number of Poles 100 0 24 6.95 5.64
Average Pole Offset (m) 94 13 40 25.65 5.80
Average Pole Spacing (m) 93 15 230 61.24 41.97
Tree Canopy Existence 100 0 1 0.72 0.45
Average Tree Canopy Offset (m) 72 17 45 30.07 6.37
Number of Sign Posts 100 0 9 3.21 3.03
Average Sign Spacing (m) 59 1 278 56.11 46.84
Existence of a Curve 100 0 1 0.12 0.33
Curve Radius (m) 10 599 1614 972.11 300.42
Side Slope Flatness (1:x) 100 0 37.8 6.57 7.32

All segments were two-lane undivided highways with a speed limit of 100 km/h,
therefore features such as the number of lanes and speed were not included in the analysis.
Furthermore, since traffic volume was not a characteristic of the immediate roadside area
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around the collision nor is it expected to impact the severity of a collision, this variable was
not included in the models.

Figure 6. Roadside features within the buffer zone of collision: (a) collision with high density of
roadside objects; (b) collision with low density of roadside objects.

5. Results and Discussion
5.1. Variability in Extracted Features

Features extracted from LiDAR included attributes of poles, trees, side slopes, and
traffic signs. This information was extracted in the vicinity of every fixed-object ROR colli-
sion that occurred on the crash-prone segments analyzed. Figure 7 shows the histograms
of all the features that were extracted for each collision on the 80 km of highway analyzed.
The plots demonstrate that roadside attributes within the vicinity of each collision event
vary significantly across the different events. This indicates the importance of collecting
data at a disaggregate collision level when performing safety diagnostics. Nevertheless,
collecting this information using conventional surveying techniques on such a localized
scale is often impractical. For instance, measuring side slopes, horizontal curve radii, or the
offset of each utility pole at every collision location would be extremely challenging using
conventional tools. As a result, some variables gathered in police reports are collected
using visual inspection as opposed to actual measurements.
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Figure 7. Variability in extracted features across different collision events.

This paper demonstrates that combining high-resolution data capture using LiDAR
with efficient data extraction algorithms allows for the large-scale extraction at a higher
level of accuracy and in a more efficient manner. This helps safety analysts (i) work with
more accurate information, (ii) constantly update their database with missing roadside
information, and (iii) explore relationships between collisions and variables that had not
been considered in the past due to data limitations.
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5.2. Safety Assessment

To demonstrate the potential applications of the LiDAR extractions in roadside safety
assessments, a secondary aim of this paper was to use the extracted information to explore
links between the extracted attributes and the severity of ROR collisions. Table 3 shows the
results of the logistic regression that was performed for that purpose. Before discussing
the specific relationships, it is worth noting that goodness-of-fit statistics show that the
model was a good fit for the data. Although the model was not intended for prediction, fit
statistics also show that the model has very good predictive ability at 74% accuracy. The
omnibus test shows a significant p-value of 0.000, which indicates that the independent
variables are good predictors of the response.

Table 3. Final Regression Model.

Estimate S.E. a Wald df b p-Value OR c

Minimum Roadside
Object Offset −0.043 0.021 4.123 1 0.042 * 0.958

Side Slope Flatness −0.086 0.047 3.326 1 0.068 * 0.918
a S.E: Standard Error, b df: Degrees of Freedom, c OR: Odds Ratio, * Statistically significant at 90% confidence level.

For the specific relationships, the model shows that the offset of the nearest roadside
object to the collision and the flatness of side slopes were the variables with the most
statistically significant impacts on collision severity. It is worth noting here that the model
was fit using a backward elimination strategy, where variables with insignificant effects
were eliminated in a stepwise manner. Therefore, variables such as the number of poles,
the existence of a tree canopy, and the spacing of pole-like objects were not found to
have statistically significant impacts on the severity of fixed-object collisions. Since the
model was testing the impacts on the severity of fixed-object ROR collisions as opposed to
frequency, this finding is reasonable. In other words, although the increase in the number
of roadside objects might impact the frequency of fixed-object ROR collisions, this is not
expected to impact severity.

The existence of curve and curve radii (not in the final model) were also found to be
insignificant. It is worth noting here that only 5 of the 10 curves found on the analyzed
segment were sharper than 900 m, which is the radius considered to be critical in the
Alberta Roadside Design Guide (i.e., accounting for the existence of a curve in roadside
design only occurs if the radii exceed 900 m) [51]. Hence, there was limited variability in
the sharpness of the curves in this study.

In the case of side slopes, the model shows that using flatter side slopes results in
less severe ROR collisions. This is highly intuitive since steeper slopes often minimize
the chances of recovery for errant vehicles. The results show that, at fixed unit height,
increasing the width of a side slope by a single unit (i.e., moving from a 1:3 slope to a 1:4
slope) could reduce the chances of a fixed-object collision being severe by 8.2%. It is worth
noting here that the Alberta Highway Design Guide warns that slopes between 1:4 and 1:3
may be traversable but not recoverable while recommending against using side slopes that
are steeper than 1:4 [51]. Based on the assessment conducted in this study, only around 10%
of the collisions had a side slope steeper than 1:3 in their vicinity.

Another significant variable was the minimum offset to the collision location. This
variable was computed to overcome correlations between three different variables, namely,
the average offset of the tree canopy, the average offset of poles, and the average offset of
traffic signs within the vicinity of each collision. Hence, it represents the minimum average
offset of all three types of roadside objects. The fact that this variable was found to be
statistically significant shows that offsets seem to impact the severity of fixed-object ROR
collisions regardless of the type of object. The model shows that a reduction in the offset
(i.e., the closer the object is to the road) increases the likelihood of the collision being severe.
The odds ratio shows that the severity increases by 4.2% for every meter reduction in the
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offset of the roadside object. This finding is consistent with existing research on roadside
safety, which found that the utility pole offset had significant impacts on severity [9,33,38].
In addition, this paper shows that other roadside objects have an impact similar to utility
poles when placed closer to the roadway.

Although the developed models only explored factors impacting the severity of fixed-
object ROR collisions, work in this paper could be extended in many different areas. The
fact that the paper demonstrates the ease with which roadside object inventory could
be extracted from LiDAR means that further analysis of safety and design attributes
could be conducted. For instance, future work could consider extending the developed
models to include other features of the roadside environment or conducting a similar
assessment on urban roads. Future work could also assess factors impacting the frequency
of ROR collisions.

6. Summary and Conclusions

This paper utilizes LiDAR scans of highways for inventorying roadside information,
including pole-like objects, signposts, tree canopies, side slopes, and horizontal curve radii
for roadside safety assessments. The study then analyzes links between the extracted
roadside features and the severity of fixed-object ROR collisions. The extraction is per-
formed along 80 km of collision-prone highways in Alberta, where a total of 100 fixed-object
collisions occurred. Each collision record is matched with roadside features in its vicinity,
and logistic regression analysis is used to identify whether there is an association between
roadside features and the severity of the collisions. The paper demonstrates how LiDAR
data could be utilized for large-scale assessment of the impacts of roadside features on
safety. This helps overcome data limitations and helps enrich safety assessments with
recent information that reflects existing conditions on a roadway. The paper shows that the
severity of collisions was mainly affected by the steepness of side slopes and the offset of
roadside objects. In contrast, factors such as pole density and the existence of tree canopy
did not impact collision severity.

Although the models did consider the impacts of multiple roadside features and
their properties, collision-specific attributes were not considered, such as the driver’s use
of restraint and the speed of the vehicle at the time of the collision. The study also did
not consider the weather conditions at the time of the collision, which could impact the
severity of ROR collisions. Unfortunately, most of this information was not available in
collision reports and, hence, could not be included in the analysis, however, it is worth
considering in future work. Future studies could also consider extending work in this
paper to examine the feasibility of conducting a real-time collision risk assessment whereby
geometric information surveyed using the LiDAR scan is immediately fed into a collision
prediction model to assess collision risk.

That being said, the paper demonstrates the feasibility of utilizing LiDAR tech-
nology to perform comprehensive assessments of roadside safety for use in designing
forgiving highways.
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