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Abstract: Structural health monitoring is effective if it allows us to identify the condition state
of a structure with an appropriate level of confidence. The estimation of the uncertainty of the
condition state is relatively straightforward a posteriori, i.e., when monitoring data are available.
However, monitoring observations are not available when designing a monitoring system; therefore,
the expected uncertainty must be estimated beforehand. This paper proposes a framework to evaluate
the effectiveness of a monitoring system accounting for temperature compensation. This method
is applied to the design process of a structural health monitoring system for civil infrastructure.
In particular, the focus is on the condition-state parameters representing the structural long-term
response trend, e.g., due to creep and shrinkage effects, and the tension losses in prestressed concrete
bridges. The result is a simple-to-use equation that estimates the expected uncertainty of a long-
term response trend of temperature-compensated response measurements in the design phase. The
equation shows that the condition-state uncertainty is affected by the measurement and model
uncertainties, the start date and duration of the monitoring activity, and the sampling frequency.
We validated our approach on a real-life case study: the Colle Isarco viaduct. We verified whether
the pre-posterior estimation of expected uncertainty, performed with the experimented approach, is
consistent with the real uncertainty estimated a posteriori based on the monitoring data.

Keywords: structural health monitoring; temperature compensation; monitoring system design;
monitoring capacity; pre-posterior analysis; long-term structural response; parameter estimation;
uncertainty quantification; Bayesian data analysis; prestressed concrete bridge

1. Introduction

When monitoring a civil structure, the purpose is to identify a number of key
parameters—including modal frequencies, long-term strain trends and damage indica-
tors [1,2]—which are representative of its health state. The monitoring is successful if
these parameters can be identified with an appropriate level of confidence, keeping their
uncertainty below an acceptable target value [3]. Acceptable uncertainty normally depends
on the nature of the physical problem that is being investigated and could be required
by the user of the monitoring information within the management framework of the in-
frastructure [4,5]. In any case, controlling parameter uncertainty is as important as the
identification of the parameter values themselves.

Estimating the uncertainty of key parameters is relatively straightforward a posteriori,
i.e., when monitoring data are available. Data analysis methods for the estimation of the
posterior uncertainty of parameters range from plain least squares [6] to more sophisticated
Markov-chain Monte Carlo sampling [7,8] and to other probabilistic machine learning
techniques [9]. However, monitoring observations are not yet available when designing a
monitoring system; therefore, in order to understand whether a monitoring strategy (the
choice of sensors, sensor placement and acquisition protocols) is suitable, it is necessary
to estimate an expected uncertainty of the key parameters beforehand. This expected
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uncertainty is indeed an a priori estimation (i.e., before acquiring any data) of posterior
uncertainty: it is sometimes referred to, in short, as pre-posterior uncertainty, and the
estimation process of this value is known as pre-posterior analysis [3].

The optimal sensor placement is a typical instance of bridge monitoring problems
solved through pre-posterior analysis: the problem is the choice of the optimal configuration
of a fixed number of sensors to maximize the acquired information. Papadimitriou et al. [10]
proposed a method based on the minimization of information entropy, defined as the
parameter that quantifies the uncertainty of a random variable; Udwadia [11] proposed
a method based on the maximization of the Fisher information matrix norm; Fedorov
and Hackl proposed the individuation of the optimal sensor configuration in the one
that minimizes the coefficients of the variance and covariance matrix [12]. In all of these
problems, the choice of the configuration and technical specifications of sensors is based on
the minimization of a value representing the expected uncertainty of the key parameters.

This paper focuses on a different typology of bridge monitoring problems, where
the key parameters to be identified are long-term response trends, e.g., strain (µε/year),
deflection (mm/year) or rotation (mrad/year) trends. Long-term response drifts are very
useful to predict the future behaviour of a structure, and to understand ahead of time
whether the bridge may transit towards a damaged state (e.g., cracking) or exceed the
value for the serviceability limit (e.g., excessive deflection). Sudden changes in the response
trends are also typical symptoms of the occurrence of damage (e.g., the failure of one or
more prestressing tendons) [13].

Long-term deflection trends are particularly evident in prestressed concrete bridges [14–16].
Hubler et al. [17] analysed the vertical deflection of 63 bridges with different structural
types, ages, and deterioration states. They pointed out that all of the bridges experienced
a long-term deflection trend and exceeded the design predictions. They also developed
a predictive model of creep and shrinkage, named Model B3 [18], for a more realistic
assessment of long-term concrete phenomena, which significantly affect the durability and
life-long functionality of bridges. This model better predicts the experimental evidence
than older ones commonly used in bridge design, such as ACI 209 [19], CEB [20], and
EN1992 [21]. In particular, it clearly explains the excessive deformation and deflection
of prestressed reinforced concrete bridges with box girder sections (e. g., Colle Isarco
Viaduct [22] and Koror-Babeldaob Bridge [23]). Another frequent parameter is the trend in
the loss of prestressing force [24].

Usually, the long-term response trends of bridges have a small entity, and their
typical values are lower than 30 µε/year for strains, 0.50 mm/year for deflections, and
10 µrad/year for rotations [17,25]. Hence, these trends are difficult to recognize in a data
record that is strongly affected by traffic loads and temperature variation. The use of
indirect measurement produces additional uncertainty and noise. For example, the loss
of prestress in the tendons is commonly estimated indirectly using strain sensors embed-
ded in the concrete [25,26], as direct measurement methods (e.g., using load cells) are
often unfeasible.

Among the different sources of uncertainty, temperature is usually the most important
by far [27]. Indeed, besides the complex phenomena that can occur at elevated temper-
atures [28,29], daily and seasonal temperature variations also have a relevant effect on
structural responses. For example, the value of the permanent contraction drift in a concrete
member due to creep or shrinkage typically ranges around a few µε per year, while the
sole daily thermal variation is in the order of 100–200 µε per day [30]. Extracting that
drift requires us to perform a thermal compensation on a signal dominated by the thermal
effect, and this will inevitably introduce some errors that must be controlled. When data
are available, thermal compensation can be performed by fitting monitoring data with a
model that considers the effects of temperature [31]. By fitting the monitoring data with a
probabilistic method [6], the posterior uncertainty introduced by the thermal compensation
can be quantified as well, in order to evaluate whether its magnitude is acceptable or not.
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However, at the design stage, no monitoring system is installed and no recording
is available. As such, how is it possible to predict the error introduced by the thermal
compensation? How can we design a proper monitoring system to keep the uncertainty
below the limit values?

This paper aims to answer these questions by introducing a logical approach for a
pre-posterior estimation of the expected uncertainty of a long-term structural response
trend. The proposed formulation considers the errors related to temperature compensation,
sensor performance, and the interpretation model. It allows the estimation of the expected
uncertainty before monitoring data are available, thus helping monitoring system designers
to answer the following design questions: (i) What sensor technology and measurement
accuracy are required? (ii) What should be the duration of the monitoring, in order to verify
the target uncertainty? (iii) What is the minimum sampling frequency to satisfy the target
uncertainty, given a certain monitoring duration?

This paper is organized as follows. Section 2 outlines the underlying assumptions of
the approach, and the development of the formulation for the evaluation of the uncertainty
of the trend parameters. Section 3 contains the analysis of the variation of the expected
uncertainty of the trend parameters according to the sensor performance, model uncertainty,
sampling frequency, monitoring duration and start date of the monitoring acquisition.
Section 4 introduces the Colle Isarco Viaduct case study [32] and describes the monitoring
system that is currently installed on it. The Colle Isarco Viaduct is one of the longest
statically determinate, prestressed concrete highway bridges in the European Alpine region.
An abnormal progressive deflection of the main span has been observed on it, due to a
combination of creep effects and the loss in prestressing force; recently, a drastic retrofit
intervention was performed on the structure [22]. In Section 5, the approach for the
estimation of the pre-posterior uncertainty of the long-term local-strain trend is applied on
the concrete box girders of the Colle Isarco Viaduct. Furthermore, a pre-posterior calculation
is performed by the analysis of different approaches: (1) in the first, the temperature is
modelled as a sine function; (2) in the second, the temperature is modelled as a sine function
with the addition of Gaussian noise. The uncertainty of the trend parameter is calculated a
posteriori based on the monitoring data, then the pre-posterior and posterior results are
compared in order to validate the approach used. Finally, in Section 6, some conclusions
are drawn.

2. Problem Statement and Formulation

Assume that we are monitoring the response y (e.g., displacement, deflection, rotation,
stress, strain, modal frequency) of a structural element, and that this response is strongly
affected by temperature T. Assume that the monitoring consists of a total number of N
samples, and indicate with yi and Ti the response and temperature sample simultaneously
recorded at time ti, with index i = 1, . . . ,N. Let us indicate with N × 1 vectors y, T, and t,
respectively. Assume that the measurements are independent, and that a daily thermal
compensation has been performed, while the measurements are not compensated for the
seasonal thermal variations.

It is often convenient to express time and temperature in relative terms: label ∆t = ti − t0
and ∆T = Ti − T0 where t0 and T0 are an arbitrary reference time and temperature. For
instance, t0 could be the starting time of the monitoring, and T0 could be equal to 0 ◦C.

Let m be the permanent trend of variation over the time of the response y(t) (e.g., the
deflection trend of a cantilever bridge, the local contraction or expansion trend of concrete),
purged from the seasonal temperature effect. The goal is to identify the most probable
value of m and its uncertainty σ, given the monitoring observations. For this purpose, we
define a probabilistic interpretation model, stating the relationship between measurements
yi, temperature Ti and time ti.

1. Assume a linear interpretation model, in the form:

yi = y0 + m·∆ti + α·∆Ti + zi (1)
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where:

• y0 is an offset parameter representing the ideal strain at time t0 and temperature T0.
• α is the apparent thermal expansion coefficient. Because the thermal expansion coef-

ficients of common building materials do not show significant variations within the
range of temperatures where they are designed to be used [21], α is assumed to be a
constant value regardless of the temperature changes.

• m is the variation trend over time, which is the object of the estimation. It is the
gradient of the linear model with respect to time. It expresses the linear trend over
time of y(t) purged from temperature effects, and includes all long-term effects. We
model the long-term effects with a linear trend because we consider the measurements
acquired during a relatively short time interval (one–two years of monitoring) [7].

• zi is the residual, the difference between the statistically independent observation yi
and the nominal value of the model, y0 + m·∆ti + α·∆Ti.

• In practice, the interpretation model that connects the temperature, time, and response
measurements is controlled by three unknown parameters, clustered into the vector θ
= {y0, m, α}.

• Let us label D the Jacobian matrix of the interpretation model with respect to the
parameters:

D =
[

∂y
∂y0

∂y
∂m

∂y
∂α

]
=

 1 ∆t1 ∆T1
...

...
...

1 ∆tN ∆TN

 =
[

1 ∆t ∆T
]

(2)

As a result, Equation (1) can be written in a matrix form:

y = D·θ + z (3)

2. A priori model parameters are Gaussian independent random variables with a mean
value µθ and covariance Σθ equal to

Σθ =

 σ2
y0 0 0
0 σ2

α 0
0 0 σ2

m

 (4)

3. Residuals vector z is distributed as zero-mean Gaussian noise with known variance
σLH

2.

The goal is to estimate the most probable value of parameter m and its uncertainty
σm|y based on monitoring observation y; to do so, the prior distribution of the model
parameter p(θ) is updated into the posterior distribution p(θ|y) through Bayes’ rule [33]:

p(θ|y) = p(y|θ)·p(θ)/p(y) (5)

where p(y|θ) is the likelihood function, i.e., the probability of observing measurement
y given the interpretation model and the parameters vector θ; p(y) is a normalization
constant referred to as evidence.

According to Hp. 2 and Hp. 3 (linear Gaussian model), the joint probability distri-
bution p(y|θ)· p(θ) over parameters vector θ is Gaussian [33]. The aim is to estimate the
mean values of the model parameters that maximize the posterior probability distribution
p(θ|y), θMAP, and their covariance matrix Σθ|y.

θMAP = argmax
θ

p(θ|y) = argmax
θ

{p(y|θ)·p(θ)} (6)

In practice, it is more convenient to maximize the log of a Gaussian posterior distribu-
tion p(θ|y) than the Gaussian distribution itself. Indeed, the logarithm is a monotonically
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increasing function of its argument, and the maximization of the log of a function is
equivalent to the maximization of the function itself [33]. As a result, Equation (6) becomes:

θMAP = argmax
θ

{log p(y|θ)+ log p(θ)} = argmin
θ

{
1

2·σ2
LH

zTz+
1
2
(θ − µθ)TΣ−1

θ (θ − µθ)
}

(7)

The value of θ that maximizes p(θ|y) can be calculated by setting as equal to zero
the derivative of the log-posterior with respect to θ, while the inverse of the a posteriori
covariance matrix can be calculated as the second-order derivative of the log-posterior with
respect to θ. As a result, by combining Equations (3) and (7), we arrive at θMAP= µθ + 1

σ2
LH

Σθ|yDT(y − D·µθ)
Σ−1
θ|y = 1

σ2
LH

DTD + Σ−1
θ

(8)

We can explicitly compute matrix Σθ|y
−1 in Equation (8) with the matrices D and Σθ

defined in Equations (2) and (4):

Σ−1
θ|y =

1
σ2

LH

 1T1 1T∆T 1T∆t
1T∆T |∆T|2 ∆TT∆t
1T∆T ∆TT∆t |∆t|2

+


1

σ2
y0

0 0

0 1
σ2
α

0

0 0 1
σ2

m

 (9)

where |∆v| = ∆vT∆v indicates the Eulerian norm of the generic vector v. It is convenient
to express the relative time and temperature ∆t and ∆T with respect to the mean values
¯
t= 1T∆t/N and

¯
T= 1T∆T/N of the vectors time t and temperature T: ∆t = t−

¯
t

∆T = T−
¯
T

(10)

As a result, Equation (9) becomes

Σ−1
θ|y= DTΣ−1

y|θD + Σ−1
θ =

1
σ2

LH

 N 0 0
0 |∆T|2 ∆TT∆t
0 ∆TT∆t |∆t|2

+


1

σ2
y0

0 0

0 1
σ2

α
0

0 0 1
σ2

m

 (11)

The posterior uncertainty σm|y of the trend-parameter m is the third diagonal element
of the posterior covariance matrix Σθ|y. After a simple mathematical manipulation of
Equation (11), the posterior uncertainty can be expressed as:

σm|y(T, t) = σLH·
1√

σ2
LH
σ2

m
+ |∆t|2

· 1√√√√√1 −

 |∆t|2
σ2

LH
σ2

m
+|∆t|2

 |∆T|2
σ2

LH
σ2
α

+|∆T|2

ρ2
tT

(12)

where ρtT is the Pearson correlation coefficient [34] between the time and temperature, i.e., the
ratio between the covariance of the two variables and the product of their standard deviations:

ρtT =
∆t·∆T√
|∆t|2|∆T|2

=
∑N

i=1(t i −
¯
t )(T i −

¯
T
)

√
∑N

i=1 (t i −
¯
t
)2
√

∑N
i=1 (T i −

¯
T
)2

(13)
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The Pearson correlation coefficient ranges between −1 and +1, with +1 meaning
perfect direct correlation, −1 being perfect inverse correlation, and 0 being independency
between the two data records. In this specific case, ρtT is close to 1 if the temperature history
can be approximated to a straight line, and it is close to 0 if the temperature and time are
far from a linear relationship.

Equation (12) provides an explicit expression of the posterior uncertainty of a linear
trend m, which depends on the prior uncertainty σ2

m of m, monitoring noise, the extension
of time sampling |∆t|, and the correlation between temperature and time ρtT, although the
dependence on these quantities is not exactly intuitive.

When the prior parameters are highly uncertain (σm → ∞ and σα → ∞), or the prior
information is negligible, Equation (12) is particularly simple and easy to read:

σm|y(T, t) = σLH·
1
|∆t| ·

1√
1 − ρ2

tT

(14)

This equation clearly shows that the posterior uncertainty of parameter m is the
combination of three different factors:

• The monitoring noise σLH, accounting for the measurement of the noise and the
uncertainty of the hypothesized linear model.

• The term 1/|∆t|, which effectively depends on the monitoring duration and the
sampling rate.

• The term 1/
√

1 − ρ2
tT, which depends on the extent to which the temperature history

is close to a straight line.

3. Application to Monitoring System Design

Equations (12) and (14) allow the calculation of the uncertainty σm|y of a linear fit a
posteriori, i.e., after monitoring data are acquired. In the design stage of the monitoring
system, the goal is to predict the uncertainty of m that is expected in the monitoring, even
if no data are currently available. Let σm,pp be the a priori estimate (i.e., before data is
acquired) of the posterior uncertainty of parameter m. This quantity is also referred to as
pre-posterior uncertainty (hence the “pp” in the symbol), in order to distinguish it both
from the prior uncertainty σm (the uncertainty of the parameter if no monitoring is carried
out) and the posterior uncertainty σm|y (the uncertainty after monitoring data are acquired).

A notable feature of both Equations (12) and (14) is that the posterior uncertainty
is completely independent from the response recording y. Therefore, it is possible to
estimate the pre-posterior uncertainty σm,pp by making reasonable assumptions on the
time sampling vector t, the expected temperature record T, and the value of the residual’s
noise σLH.

3.1. Pre-Posterior Estimate of Time and Temperature Vectors

Assuming that the monitoring sampling is uniform, the time vector only depends on
the total monitoring time ttot and the design sampling frequency fs. The total number of
measurements N acquired during the monitoring is

N = ttot · fs + 1 (15)

and the timestamps of the measurements are defined as

ti =
1
fs
(i − 1), i = 1, 2, 3, . . . , N (16)
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For design purposes, the expected temperature measurements Ti can be expressed
through a sine function with a period τ = 365.25 days, or 1 year [24]:

Ti= a· sin
(

2π
τ

ti+b
)
+c, i = 1, 2, 3, . . . , N (17)

where a is the amplitude of the temperature sinusoidal function, b is the phase, and c is an
offset corresponding to the temperature’s seasonal mean value.

3.2. Pre-Posterior Estimate of the Residual Noise Σlh

Assume that sensor measurements yi and Ti are approximations of the corresponding
true physical values ŷ(ti) and T̂(ti), and that the scatter between the two is zero-mean
random noise nj(σ2). Let the variances of the measurements be σy

2 and σT
2, depending on

sensor accuracy: {
yi = ŷ(ti) + niσy

2

∆Ti = ∆T̂(ti) + niσT
2 (18)

Given the linear interpretation model defined, we assume that the true values satisfy

ŷ(ti) = y0 + m·∆ti + α·∆T̂(ti) + ni

(
σ2

model

)
(19)

where ni(σ2
model) is zero-mean normal noise with variance σ2

model that represents the dif-
ference between the true physical quantity and the model prediction. The model uncer-
tainty σ2

model derives from approximations and idealizations made in the formulation of
the interpretation model, as well as in the choice of the probability distribution of the
model parameters.

Then, Equations (18) and (19) can be merged into a single equation:

yi − ni(σ
2
y) = y0+m · ti+α · (T i − ni(σ

2
T)) + ni(σ

2
model

)
(20)

and all of the zero-mean Gaussian errors can be merged into one zero-mean Gaussian error
ni(σLH

2), which corresponds precisely to the residual zi between the observation yi and the
nominal value of the model:

ni(σ
2
LH) =zi= ni(σ

2
y) + ni(σ

2
model) + α · ni(σ

2
T

)
(21)

As a result, variance σLH
2 includes both the noise of the sensors and the uncertainty

of the model, combined with the propagation of uncertainty through the square root of the
sum of squares, assuming statistically uncorrelated errors [34]:

σLH
2= σ2

y+α2·σ2
T+σ2

model (22)

3.3. Impact of the Time–Temperature Correlation

The term 1/
√

(1 − ρ2
tT
)

in Equation (14) depends on the linear correlation coeffi-
cient ρTt between the time and temperature vectors. Given the definition of Ti(a,b,c) in
Equation (17), the coefficient ρTt, in turn, depends on the phase-parameter b. In practice,
this parameter allows the setting of the start date of the monitoring period. On the other
hand, both the parameters amplitude a and offset c do not have any influence on ρTt;
therefore, they can be set arbitrarily.

Given two sine temperature functions like Equation (17), if their differences with
regard to phase-parameter b are equal to π, e.g., T(b = 0) and T(b = π), the results in terms of

σm,pp are the same. This is due to the presence of the square value of ρTt in 1/
√

(1 − ρ2
tT
)
,
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which makes it irrelevant whether the time and temperature vectors are directly or inversely
correlated:

σm,pp(T b=0) = σm,pp(T b=π

)
(23)

In contrast, if the difference in the phase-parameter b is equal to π/2, e.g., T(b = 0)
and T(b = π/2), the result is the maximum difference ∆max between the values of σm,pp
estimated with those two temperature vectors:

σm,pp(T b=0) − σm,pp(T b=π/2) =∆max (24)

Because the sinusoidal function T has a period of τ = 365 days, a difference in b equal
to π corresponds approximately to 6 months (τ/2 = 182.5 days ~ 6 months); in contrast,
a difference in b equal to π/2 approximately corresponds to 3 months (τ/4 ~ 91.25 days
~3 months).

Figure 1 shows the impact of the time–temperature correlation on σm,pp; specifically,
it shows the comparison between the two limit cases, b = 0 and b = π/2, in terms of ρTt,

1/
√

(1 − ρ2
tT
)
, and σm,pp.

Figure 1b shows the absolute value of ρTt as the monitoring duration increases, while

Figure 1c,d show the effect of |ρTt| on 1/
√

(1 − ρ2
tT
)

and σm,pp; different values of the
phase parameter b in the temperature function T(b) determine different outcomes.

When b = 0 (red curves), the absolute value of the correlation coefficient ρTt decreases
to 0 after approximately 183 days from the monitoring start date. Then, it increases until
320 days, when it decreases again; it reaches 0 for the second time after around 540 days
from the monitoring start date. In contrast, when b = π/2 (blue curves), |ρTt| increases
until 180 days from the monitoring start date. Then, from 180 to 360 days, |ρTt| decreases
monotonically. It is interesting to highlight that for longer monitoring durations, the linear
correlation between the time and temperature increases and decreases periodically, without
zeroing permanently. However, such variations in |ρTt| do not have a great influence

on 1/
√

(1 − ρ2
tT
)
, or consequently on σm,pp. Indeed, after approximately 450 days of

monitoring, 5τ/4 ~ 457 days ~15 months, the term 1/
√

(1 − ρ2
tT
)

is approximately equal
to 1. Therefore, the impact of the time–temperature correlation on σm,pp is negligible for
long monitoring periods (more than 15 months).

Figure 1d shows that the difference between the two limit cases σm,pp(Tb = 0) and
σm,pp(Tb = π/2) also becomes negligible after around 15 months of monitoring; therefore,
the start date of the monitoring does not influence the monitoring effectiveness.

From Figure 1d, it can also be noted that the red curve σm,pp(Tb = 0)/σLH has a constant
plateau from day 183 to day 320; the expected uncertainty remains constant without de-
creasing for a long interval of the monitoring period due to the increasing linear correlation
ρTt

2 during such an interval. The practical meaning of this observation is that increases in
the monitoring period within this interval will not produce an improved knowledge of the
structural state in terms of the measurement trend, due to the effect of temperature.

It may be observed that a theoretical sinusoidal function like T(ti,a,b,c) in Equation (17)
might not be representative of experimental temperature measurements. Real temperature
measurements can be better simulated by adding Gaussian noise ni(σnoise) to the sinusoidal
temperature, which represents the observed variation in real temperature between one day
and the following one:

Ti,noise = Ti + ni(σnoise) (25)

where σnoise can be set, for instance, as 5% of the temperature range of the sine function.
Figure 2 shows the impact of temperature variation simulated as Gaussian noise ni(σnoise)
on the pre-posterior uncertainty σm,pp.



Infrastructures 2022, 7, 5 9 of 24
Infrastructures 2022, 7, x FOR PEER REVIEW 9 of 25 
 

 

Figure 1. Impact of the time–temperature correlation on the pre-posterior uncertainty as the moni-

toring duration ttot increases from 1 to 730 days in the limit cases b = 0 (red lines) and b = π/2 (blue 

lines). (a) Time t with N = 730 and fs = 1/day, and temperature T with a = 20 °C and c = 0 °C; (b) the 

absolute value of the linear correlation coefficient ρTt between t and T; (c) term 1/√(1 –ρ
tT
2 ) of Equa-

tion (14); (d) the ratio between the pre-posterior uncertainty σm,pp and the likelihood uncertainty σLH. 

Figure 1b shows the absolute value of ρTt as the monitoring duration increases, while 

Figure 1c,d show the effect of |ρTt| on 1/√(1 –ρ
tT
2 ) and σm,pp; different values of the phase 

parameter b in the temperature function T(b) determine different outcomes. 

When b = 0 (red curves), the absolute value of the correlation coefficient ρTt decreases 

to 0 after approximately 183 days from the monitoring start date. Then, it increases until 

320 days, when it decreases again; it reaches 0 for the second time after around 540 days 

Figure 1. Impact of the time–temperature correlation on the pre-posterior uncertainty as the monitor-
ing duration ttot increases from 1 to 730 days in the limit cases b = 0 (red lines) and b = π/2 (blue lines).
(a) Time t with N = 730 and fs = 1/day, and temperature T with a = 20 ◦C and c = 0 ◦C; (b) the absolute

value of the linear correlation coefficient ρTt between t and T; (c) term 1/
√

(1 − ρ2
tT
)

of Equation
(14); (d) the ratio between the pre-posterior uncertainty σm,pp and the likelihood uncertainty σLH.
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Figure 2. Impact of the day-by-day variation in temperature simulated as Gaussian noise ni(σnoise)
on the pre-posterior uncertainty as the monitoring duration ttot increases from 1 to 730 days in
the limit cases b = 0 and b = π/2. (a) Comparison between Tnoise and T; (b) comparison between
σm,pp(T,t)/σLH and σm,pp(Tnoise,t)/σLH. Temperatures with a = 20 ◦C, c = 0 ◦C, and σnoise = 2 ◦C.

Figure 2b shows that the pre-posterior uncertainty calculated with the simulated
experimental temperature function Tnoise is smaller than the pre-posterior uncertainty
calculated with the theoretical temperature function T. Indeed, the random variability
ni(σnoise) in Tnoise reduces the linear correlation between the temperature and time. As a
result, the evaluation of σm,pp/σLH based on the theoretical temperature T provides safer
results compared to the scenario where it is based on some real temperature data affected
by day-by-day variability.

3.4. Impact of the Sampling Frequency

Term 1/|∆t| in Equation (14) is the reciprocal of the absolute value of vector ∆t, i.e.,
the reciprocal of the standard deviation of vector t. We can express 1/|∆t| as

1
|∆t| =

1√
∑N

i=1

(
1
fs
(i − 1) − ttot

2

)2
=

1
1
fs

√
N
12 (N2 − 1)

(26)

The term 1/|∆t| depends on both the number of samples N and the sampling fre-
quency fs, and behaves as the inverse of an inertial factor: as the monitoring duration and
sampling frequency increase, 1/|∆t| and σm,pp decrease. Figure 3 shows the impact of

the monitoring duration and sampling frequency on 1/
√

(1 − ρ2
tT
)
, 1/|∆t| and σm,pp; it

clearly shows that 1/
√

(1 − ρ2
tT
)

does not depend on fs, unlike 1/|∆t|.
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1/|∆t|, where b is set equal to π/2; (c) impact on σm,pp/ σLH.

3.5. Impact of the Residual’s Noise σLH

The residual’s noise σLH works as an amplification coefficient on σm,pp: as it decreases,
σm,pp decreases. In order to reduce σLH, and thus to obtain a more accurate estimation of m,
we can choose high-performance sensors; in particular, the sensors’ accuracy (i.e., the small
random noise σε and σT) is critical when the model uncertainty σmodel is small. However,
under the assumption of statistically uncorrelated errors, the sensor accuracy can be less
critical: high model uncertainties σmodel strongly reduce the influence of sensor noise σy
and σT on σLH; therefore, using very accurate and expensive instrumentation does not
drastically improve the monitoring effectiveness in the estimation of the trend parameter.

3.6. Impact of Prior Distributions

Finally, we can analyse the difference between Equations (12) and (14). Figure 4 shows
a comparison between σm,pp with Gaussian prior parameter distributions (Equation (12)),
and σm,pp neglecting prior parameter distributions (Equation (14)).
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In Figure 4a, Equation (12) is plotted assuming different possible prior Gaussian
distributions of parameter m while the prior distribution of the thermal coefficient α is
neglected (σα/σLH → ∞). In Figure 4b, Equation (12) is plotted assuming different possible
prior Gaussian distributions of α while the prior distribution of m is neglected (σm/σLH
→ ∞). The standard deviations of the prior distributions range from highly uncertain to
very accurate values: from σm/σLH = 1000 year−1 to σm/σLH = 0.1 year−1 in Figure 4a, and
from σα/σLH = 10 ◦C−1 to σα/σLH = 0.001 ◦C−1 in Figure 4b.

When the prior distribution of the model parameters is highly uncertain (orange solid
lines), Equation (12) provides the same results as Equation (14) (black dashed lines), apart
from very short monitoring durations.

In contrast, when the prior distribution of m is very accurate (the purple solid line in
Figure 4a), σm,pp stays almost constant and slightly decreases as the monitoring duration
increases. Therefore, if the trend parameter m is accurately known a priori, structural health
monitoring is not necessary. When σm/σLH → 0, Equation (12) becomes

σm,pp(T,t) = 0 ∀ N (27)

On the other hand, when the prior distribution of α is very accurate (the purple solid line
in Figure 4b), σm,pp is completely independent from the linear correlation between the time and
temperature. Indeed, if the thermal coefficient α is accurately known a priori, we can compensate
the temperature effects deterministically. When σα/σLH→ 0, Equation (12) becomes

σm,pp(T, t) = σLH
1√

σ2
LH
σ2

m
+ |∆t|2

(28)

Generally, for typical values of the prior uncertainty of the parameters, the prior
Gaussian distributions affect the results of σm,pp only for short monitoring periods. Conse-
quently, as the monitoring duration increases, the prior distributions become less influential,
and Equation (12) resembles Equation (14).

4. Colle Isarco Viaduct Case Study

The Colle Isarco Viaduct [32] is an Italian prestressed concrete highway bridge. It
was erected in 1968, and opened to traffic in 1971. The viaduct consists of two structurally
independent decks, both with 13 spans, for a total length of 1028 m. The main span
is 163 m long, and is made of two symmetric reinforced concrete Niagara box girders,
which support a 45 m-long suspended beam. At the end of each box girder is a 59 m-
long cantilever, counterbalanced by a back arm with a length of 91 m. Each box girder is
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composed of 33 cast-in-place segments with a depth varying from 10.93 m at the pier to
2.57 m at the edge. The thickness of the top slab is constant, at 0.29 m, while the bottom
slab varies from 0.99 m to 0.12 m. A concrete with nominal class Rck = 450 kg/cm2 was
used for all of the cast-in-place elements of thepiers and girders. The initial prestressing
was applied through 32 mm diameter Dywidag ST 85/105 threaded bars, with an initial
jacking tension of 720 MPa. For each 59m-long cantilever, the longitudinal force above
the pier was about 120 MN, and was provided by a total of 266 cables. Figure 5a shows a
picture of the viaduct from pier 7 to 9. Figure 5b shows a longitudinal section of the viaduct
between piers 7 and 10, as well as two cross-sections of the box girders.
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Figure 5. (a) The main span and northernmost cantilever of Colle Isarco Viaduct; (b) a longitudinal
section of the viaduct between piers 7 and 10, and cross-sections of the box girders, with dimensions
in meters.

The Colle Isarco Viaduct has been subjected to excessive creep and shrinkage phenom-
ena since its construction. It has experienced a progressive abnormal deformation of the
top and bottom slab, resulting in an abnormal deflection of the cantilever beams, which are
mostly evident at the edge of the 59 m-long cantilever even several decades after its con-
struction. This high sensitivity to creep and shrinkage phenomena is experienced by many
other bridges of the same type, and has been investigated by several authors [23,35,36].
They suggest that the cause of such behaviour is the combination of creep phenomena,
prestress tension losses, the huge difference between the top and the bottom slab in terms
of thickness, the variation of the load condition during the construction phase, and mainte-
nance works. Just a few years after its construction, the main span showed an excessive
deflection trend, which resulted in a deflection of 100 mm in 1976 and 200 mm in 1984,
while the design prediction was less than 20 mm. In 2014, through a retrofit work, the
four box girders were equipped with an external post-tensioning system, which provides
additional prestress through 212 0.6” diameter compact strands, with a jacking load of
213 kN. The additional longitudinal force produced above the piers was about 45 MN,
which is almost 40% of the original prestress. The thickness of the top slab of the box girder
was increased from 260 mm to 290 mm, to compensate for the additional post-tensioning
force. This retrofit work reduced the deflection by 80 mm and changed the deflection drift
from negative to positive. Details of the retrofit work can be found in the relevant design
documentation [37].

The Colle Isarco Viaduct is currently monitored by three different technologies [22].
First, a topographic network measures the 3D displacements of the decks between pier 7
and pier 10. It consists of two stations, Leica Nova TM50, which collimate GPR112 prisms:
60 measurement points and 12 benchmarks. The topographic system was installed in
2014 before the retrofit works. Second, a network of 82 resistance temperature detectors
(RTDs), TH-PT100, provided by Nova Metrix measures the local concrete temperature
of the top and bottom slabs of the four cantilevers. The RTD network was installed in
2016. Third, 56 long-gauge fibre optic sensors (FOSs) measure the concrete local strain
in the middle of the top and bottom slab. They are 12.1010 MuST deformation sensors,
provided by Smartec SA. The FOSs network was installed in 2016 to monitor the long-
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term effects of the 2014 post-tensioning intervention. In the present study, the focus
is on strain and temperature measurements: Figure 6 shows the positions of the RTDs
and FOSs on the northernmost cantilever of the northbound carriageway. The strain
and temperature sensors are placed next to each other, and take one measurement every
15 min simultaneously. The local strain measured in the concrete slabs allows the effective
calculation of the curvature of the girders, and the investigation of the causes of possible
excessive long-term deformation trends. Conversely, the curvature calculated from the
displacements provided by the topographic systems would be affected by severe errors
due to the propagation of uncertainty. The local temperature of the concrete allows the
compensation of the total strain measurements, which are severely affected by the response
of the structure to daily and seasonal temperature variations.
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5. Application to the Case Study

In this Section, we apply our approach to the Colle Isarco Viaduct case study; our
aim is the evaluation of the expected uncertainty of the long-term strain trend of concrete,
as compensated from temperature effects. In particular, we consider the strain and tem-
perature monitoring system currently installed on the structure. First, we play the role
of monitoring system designers, who chose the strain and temperature sensors and their
location on the concrete box girders in 2016; our goal is the pre-posterior estimation of
the expected uncertainty of the strain trend through Equation (12). Then, we play the role
of monitoring data analysts, and we analyse the local strain and temperature recorded
by the monitoring system; here, the goal is to infer a posteriori the posterior uncertainty
based on the monitoring data acquired from the structure from April 2017 to February 2019.
Finally, we validate the proposed approach by comparing the expected uncertainty with the
posterior uncertainty, and we discuss the impact of the monitoring duration, monitoring
start date, and temperature simulation.

5.1. Pre-Posterior Analysis: Expected Uncertainty in the Design Phase

Let us play the role of the monitoring system designer. It is the year 2016, and we are
designing a local-strain monitoring system for the concrete box girders of the Colle Isarco
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Viaduct. It must provide the local-strain linear trend m, as compensated from the seasonal
temperature changes. We have already chosen the tentative strain and temperature sensors:
their random noise is a zero-mean Gaussian variable with standard deviations σε and σT,
respectively. In addition, we have already defined the sensor placement, see Figure 6, and
the linear interpretation model, see Equation (1). Our goal is the pre-posterior estimation of
the expected uncertainty σm,pp of the local strain linear trend m, in order to verify whether
it is lower than a target value set by the viaduct manager, who oversees the infrastructure
operation. We assume that once the monitoring system is up and running, it will acquire
one local strain εi and one temperature measurement Ti per day, for N days.

5.1.1. Simulation of the Expected Time and Temperature

First, we must define the elements within the time ti and temperature Ti vectors.
We simulate time through Equation (16), and we set the sampling frequency as one

measurement per day, fs = 1 day−1. We obtain the same vector t in Figure 1a. We wish to
study how σm,pp changes with the monitoring duration ttot varying from 3 to 600 days.

Then, we simulate the expected seasonal temperature variation in two different ways:
a sine function T, defined as Equation (17), and a sine function with Gaussian noise
Tnoise, defined as Equation (25). In order to represent two different start dates of the
monitoring, we set two cases of the phase-parameter: b = π/2 and b = 0. In the first case,
the monitoring period starts when the seasonal temperature reaches approximately its
maximum stationarity point (during the summer season); in the second case, it starts in
proximity to its point of inflection (during the spring season).

5.1.2. Estimation of the Measurements and Model Uncertainties

We must calculate the likelihood-function uncertainty σLH through Equation (22),
where the measurement uncertainty σy is represented by the standard deviation σε of the
strain-sensors’ zero-mean Gaussian random noise:

σLH =
√

α2·σ2
T+σ2

ε+σ2
model= 21 µε (29)

where:

• α = 10 µε/◦C is the local-concrete thermal-expansion coefficient at 20 ◦C [21].
• σε = 2 µε is the accuracy of the strain sensors.
• σT = 0.5 ◦C is the accuracy of the temperature sensors.
• σmodel = 20 µε, based on similar case studies [7,22].

5.1.3. Expected Uncertainty

We perform the pre-posterior estimation of the expected uncertainty σm,pp of the local
strain linear trend m through Equation (12). We use the likelihood-function uncertainty
σLH defined in Equation (29) and the time and temperature vectors defined in Section 5.1.1.
In particular, we calculate σm,pp with the two simulated temperature vectors, T and Tnoise,
and we study how σm,pp changes as the monitoring duration N increases from 3 to 600 days.
Figure 7 shows the results, which we will discuss in Section 5.3, along with the results on
the real uncertainty σm|ε inferred a posteriori based on the monitoring observations.
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600 days.

5.2. Posterior Analysis: Real Uncertainty Based on the Monitoring Data

Let us play the role of the monitoring data analyst. The structural health monitoring
system has been running for 4 years. We analyse the measurements of local-strain ε and
the temperature acquired from April 2017 to February 2019 from the bottom slab of the
northernmost box girder C5-N by strain sensor FBG-2.10-N and temperature sensors C5-1-
N and C5-2-N (see Figure 6). We analyse the mean value of the temperature data recorded
by the two sensors, which we label Tstr. Our goal is now to infer a posteriori the posterior
uncertainty σm|ε of the local strain linear trend m, based on these monitoring data, and to
study how it changes when the monitoring duration N increases from 3 to 600 days.

Under the hypotheses Hp. 1 and Hp. 2 (linear-Gaussian model), we define the prior
Gaussian probability distribution of model parameters m and α: parameter m has prior
mean value µm = 0 and prior standard deviation σm = 365 µε/year; parameter α has prior
mean value µα = 10 and prior standard deviation σα = 3 µε/◦C. Moreover, we consider
σLH as an additional model parameter to be estimated a posteriori, and we assume its
prior probability distribution to be uniform. Then, we perform a Bayesian parameter
estimation through a Markov chain Monte Carlo method based on the Metropolis Hasting
algorithm [38]. Through an iterative process, this method estimates the posterior probability
distribution of parameters p(m|ε) and p(α|ε), as well as the distribution of the residual
p(z|ε), for any chosen monitoring duration. Finally, we perform temperature compensation
on the total strain measurements by removing the thermal-strain component of the model,
α·Tstr, and isolating the strain trend due to long-term effects m·t. Figure 8a,b show the
strain and temperature measurements recorded from 20 July 2017 to 17 February 2019,
respectively; Figure 8c shows the temperature-compensated strain-data ε − α·Tstr, as well
as the linear strain trend m·t.
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Figure 8. (a) 600 days of strain measurements from sensor FBG-2.10-N; (b) mean values of 600 days
of temperature measurements from sensors C5-1-N and C5-2-N; (c) temperature-compensated strain
measurements and the posterior local-strain linear-trend m·t over 600 days. Measurements of each
sensor are plotted subtracting the first value.

We are interested in studying the ways in which the model parameter m, its uncer-
tainty σm|ε, and the uncertainty of the likelihood function σLH|ε a posteriori change as
the monitoring duration increases from 3 to 600 days. In order to obtain the same initial
conditions as in the design phase (Section 5.1.1) in terms of the monitoring start date, we fit
Tstr with a sinusoidal function defined as Equation (17), and we identify the timestamps
corresponding to the maximum stationarity point and the inflection point: the first corre-
sponds approximately to 20 July, and the second corresponds to 20 April. Therefore, we
perform parameter estimation and temperature compensation with two sets of monitoring
data: the first starts on 20 April 2017, corresponding to setting b = 0 in the design simulated
temperature function, while the second starts on 20 July 2017, corresponding to setting
b = π/2 in the design simulated temperature function. We repeat the analysis multiple
times, changing monitoring duration ttot from 3 to 600 days. Figure 9a,b show the results
in terms of m and σLH|ε, with monitoring data starting on 20 July 2017. They are plotted
along with their 0.01 and 0.99 percentile to highlight the interval of confidence.
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Figure 9. (a) Mean value and percentiles 0.01 and 0.99 of parameter m a posteriori; (b) mean value
and percentiles 0.01 and 0.99 of the likelihood-function uncertainty σLH|ε a posteriori.

Figure 9a shows the posterior mean value of m, µm|ε, as the monitoring duration
increases. It varies as the monitoring duration increases during the first year of monitoring;
for longer monitoring durations, it settles around a constant value. The reason is that m is
affected by a higher uncertainty due to the time–temperature correlation during the first
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period of monitoring, while this correlation decreases and becomes uninfluential for longer
monitoring durations, as we observed in Section 3.3.

Figure 9b shows the posterior mean value of the likelihood-function uncertainty
µσLH|ε as the monitoring duration increases. Like the trend parameter m, σLH stabilizes at
an approximately constant value after around one year of monitoring; this indicates that
the linear interpretation model defined in Equation (1) is appropriate to approximate the
long-term structural response.

Figure 10 shows the posterior uncertainty σm|ε as the monitoring duration increases
for the two limit cases of the monitoring start date.
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5.3. Discussion of the Results

Here, we validate the proposed approach by comparing the expected uncertainty
with the posterior uncertainty, and discuss the impact of the monitoring duration, the
monitoring start date, and the temperature simulation. Finally, we compare our approach.

5.3.1. Expected vs. Real Uncertainty

Based on the case study results, we aim to validate the proposed approach for the
estimation of the pre-posterior uncertainty of the structural long-term linear response trend.
Therefore, we compare the expected uncertainty σm,pp with the posterior uncertainty σm|ε,
and we discuss their difference as we change the monitoring duration, monitoring start
date, and temperature simulation.

Figure 11 shows the comparison between the pre-posterior linear trend uncertainty
σm,pp estimated with T and Tnoise, and the linear trend uncertainty calculated a posteri-
ori, σm|ε. They are plotted against monitoring duration ttot; we reported both the limit
scenarios of monitoring start date: 20 April, corresponding to b = 0 in the design simu-
lated temperature function, and 20 July, corresponding to b = π/2 in the design simulated
temperature function. Here, σm is 1 µε/day = 365 µε/year, which is the value used in the
Bayesian parameter estimation described in Section 5.2.
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Figure 11. Pre-posterior σm,pp and posterior σm|ε linear trend uncertainty plotted against the
monitoring duration ttot. The monitoring start dates are (a) 20 April, b = 0, and (b) 20 July, b = π/2.
The monitoring duration ttot varies from 3 to 600 days.

We note that the expected—pre-posterior—uncertainty estimated with T tends to
overestimate the real—posterior—uncertainty for short monitoring durations, while they
become qualitatively similar for longer monitoring durations. In contrast, the expected
uncertainties estimated with both Tnoises is closer to the real uncertainty even for short
monitoring durations. Such results confirm what we observed in Section 3.3: the expected
uncertainty is smaller when calculated with Tnoise for short monitoring durations, because
the random variability ni(σnoise) in Tnoise reduces the correlation between the temperature
and time. As a result, within the calculation of the expected uncertainty σm,pp with Tnoise,
the posterior uncertainty of the trend-parameter σm|ε might be underestimated, depending
on the chosen value of σnoise. In contrast, the expected uncertainty σm,pp calculated with T
always slightly overestimates the posterior one, so that its use is safe for the design purpose.

In order to quantify the difference between the expected and real uncertainty of a
model parameter, and to validate the proposed approach, we use the concept of monitoring
system effectiveness [3] in the estimation of the model parameter m. The monitoring
effectiveness, η, expresses the extent to which the monitoring observations improve the
knowledge of the structure behaviour; in other words, the extent to which the parameter
uncertainty a posteriori is lower than a priori. We define the expected effectiveness of the
monitoring system, ηexp, as the ratio between the prior uncertainty σm and the pre-posterior
uncertainty σm,pp. We define the real effectiveness of the monitoring system, ηreal, as the
ratio between the prior uncertainty σm and the posterior uncertainty σm|ε.

ηexp = σm/σm,pp (30)

ηreal = σm/σm|ε (31)

The inverse of the monitoring effectiveness, 1/η, expresses the ineffectiveness of the
monitoring system: the closer 1/η is to zero, the higher the reduction in the parameter
uncertainty thanks to the monitoring data; the closer 1/η is to 1, the lower the reduction in
the parameter uncertainty thanks to the monitoring data. Figure 12 shows the expected
and real ineffectiveness of the monitoring system, 1/ηexp and 1/ηreal, respectively.
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Figure 12. Expected 1/ηexp and real 1/ηreal ineffectiveness of the monitoring system. The 1/ηexp

is calculated with T and Tnoise. The monitoring start dates are (a) 20 April, b = 0, and (b) 20 July,
b = π/2. The monitoring duration ttot varies from 3 to 600 days.

As the monitoring duration increases, both the expected and the real monitoring
ineffectiveness 1/η decrease. The monitoring start date influences the monitoring duration
required before 1/η stabilizes around zero. In particular, a monitoring system that starts
measuring in summer reaches 1/η ~ 0 after around 250 days; in contrast, a monitoring
system that starts measuring in spring reaches 1/η ~ 0 after around 150 days. A few days’
variations depend on the simulated temperature used.

Finally, we quantify the error em,pp in the pre-posterior estimation of the linear trend
uncertainty σm,pp as the difference between the expected and real ineffectiveness of the
monitoring system.

em,pp = 1/ηexp − 1/ηreal (32)

Figure 13 shows how the error em,pp changes as the monitoring duration increases.
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Figure 13. Error em,pp between the expected and the real uncertainty of the parameter m. The
expected uncertainty is calculated with T and Tnoise. The monitoring start dates are (a) 20 April and
(b) 20 July. σm = 1 µε/day = 365 µε/year.

The error em,pp may have negative values according to the simulated temperature
function used in the estimation of σm,pp [39]; for positive values of em,pp, the posterior
uncertainty σm|ε is overestimated, while for negative values of em,pp, the posterior uncer-
tainty σm|ε is underestimated. In our case, when the monitoring starts in the spring, em,pp
is mostly positive with any simulated temperature function; it progressively decreases
and zeroes after around 150 days. On the other hand, when the monitoring starts during
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summer, em,pp has some negative values in the evaluation with Tnoise; the value of em,pp
remains constantly equal to zero after a longer monitoring period of around 250 days.

We note that the expected uncertainty estimated with T is less accurate than the one
with Tnoise, but it is always positive; the expected uncertainty estimated with our approach
and with T always overestimates the real uncertainty. In this case, we may look at em,pp as
a safety factor: the monitoring system will never provide the key parameter with posterior
uncertainty higher than what is expected. In contrast, the expected uncertainty estimated
with Tnoise is more accurate, but can underestimate the real uncertainty; this confirms again
that the day-by-day variation of Tnoise reduces the time–temperature correlation.

5.3.2. Proposed Approach vs. Previous Studies

Our approach is in line with many previous studies in the literature regarding the use
of a linear interpretation model to combine the mechanical response with the temperature
effects. Such a model can be used to effectively perform the temperature compensation
of monitoring data: the effectiveness of this choice has been validated for mechanical
responses such as strain measurements [40], ultrasonic measurements [41], vibrational
measurements [27,31], and cracks opening [31]. The linear temperature compensation of
the monitoring data has proven to be necessary to detect whether damage is present or
not based on the measured dynamic or static characteristics of a monitored system [13].
Moreover, our approach is similar to that which is currently used for the temperature com-
pensation of the sensor response [39,42–44], rather than the structural response. Indeed,
the response of sensors is also sensible to temperature variation; therefore, sensor measure-
ments must compensate for temperature effects before being used for structural assessment.

As far as the design of a structural health monitoring system is concerned, there are
many previous studies regarding the optimal sensor placement based on the maximisation
of the information acquired or on the maximisation of the value of information acquired
for structural management purposes. However, to our best knowledge there aren’t any
previous studies regarding the estimation of the expected uncertainty of structural response
trends accounting for temperature compensation for monitoring system design purposes.

Concerning the design of structural health monitoring systems, there are many pre-
vious studies regarding the optimal sensor placement based on the maximisation of the
information acquired or on the maximisation of the value of information acquired for
structural management purposes. However, to our best knowledge there aren’t any pre-
vious studies on the estimation of the expected uncertainty of structural response trends
accounting for temperature compensation for design purposes.

The main advantage of our approach is its ease of use by the majority of civil en-
gineers, who typically have a solid background in structural design but not necessarily
in statistics and probability. They can apply our algorithm to predict the performance
of a tentative monitoring system in the design phase, even without being familiar with
Bayesian probability. This is an important step forward for the extension of structural
health monitoring to a higher number of bridges. Indeed, the effectiveness of a tentative
monitoring system can be practically evaluated by comparing the expected uncertainty
(the monitoring system capacity) resulting from the proposed algorithm with a target value
required by the infrastructure operator (monitoring system demand). This corresponds to
the comparison between the structural capacity and structural demand in structural design.

On the other hand, the main disadvantage of the proposed algorithm is its tendency
to overestimate the real uncertainty of the trend-parameter for short monitoring periods,
which might require a stronger performance of the sensors than is really necessary. This
issue can be mitigated by choosing the simulated temperature Tnoise, which models the
observed variation in the real temperature between two consecutive days, rather than the
sinusoidal temperature T. However, the use of Tnoise requires the statistical estimation of
an appropriate value of σnoise based on the values of the local temperature. Finally, the un-
certainty of the linear model σmodel should also be statistically estimated. It depends on the
trend parameter to be identified (e.g., the strain trend, displacement trend, frequency trend,
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crack amplitude trend) and on the structure to be monitored (e.g., prestressed concrete
bridge, cable-stayed bridge, arch bridge). Concerning prestressed concrete highway bridges
and long-term concrete strain trends, a value of σmodel = 20 µε is generally acceptable.

6. Conclusions

When designing a monitoring system, we need to predict beforehand the uncertainty
of the key performance parameters we expect to achieve after the monitoring is performed.
In this paper, we derived a simple-to-use formulation that allows us to calculate the
expected uncertainty of a long-term structural response trend based on monitoring data
compensated from temperature effects. This formulation does not depend on the response
measurements; therefore, it can be used by the designer to validate the performances
of a tentative monitoring strategy before the measurements are actually available. The
formulation only requires us to make reasonable assumptions on the sampling timestamp
vector, the expected temperature variation and the residual noise. The timestamp vector
depends on the sampling frequency chosen by the designers. The temperature can be
roughly, but effectively, simulated with a sine function with a period of 1 year. The
residual error can be predicted by combining sensor noise and the approximation error of
the interpretation model. According to the formulation, the uncertainty of a linear drift
depends essentially on these factors:

• sensor accuracy, usually provided in the technical datasheets of the sensors;
• the correctness of the interpretation model, i.e., how well the model fits the actual

structural response;
• the monitoring duration, and, to a minor extent, the sampling frequency;
• the degree of correlation between the time and temperature records, i.e., the extent to

which the temperature record confuses with a straight line.

The formulation predicts that, for monitoring periods of a few months, the uncertainty
is particularly sensitive to the linear correlation between the time and temperature, as
temperature can be approximated to a linear trend. In particular, the fitting quality changes
significantly depending on whether the monitoring start date is a solstice or an equinox.
Beyond the first year of monitoring, the confusion between the time and temperature is
negligible, and the quality of the monitoring primarily depends on the monitoring duration.

We validated our approach by applying the formulation to a real-life case study,
the Colle Isarco Viaduct. This is one of the longest prestressed concrete bridges in the
European Alpine region, and it is currently equipped with an optical fibre sensor network
and resistance temperature detectors. We focused on a cross-section of the box girder
of the bridge, and we estimated the expected uncertainty of the long-term strain trend,
purged of seasonal temperature effects, with our approach. Then, we verified whether the
pre-posterior estimation of uncertainty is consistent with its posterior estimation, based on
the actual monitoring data.

We observed that the expected uncertainty accurately predicts the posterior uncertainty
after 150–250 days of monitoring data. For shorter monitoring durations, the prediction
accuracy depends on the way in which the expected temperature record was been simu-
lated. In particular, the pre-posterior uncertainty estimated assuming an ideal sinusoidal
temperature record always slightly overestimates the actual posterior uncertainty; therefore,
its use is appropriate for the design purpose. Adding Gaussian noise to the simulated sine
temperature allows the prediction of the posterior uncertainty with a smaller error, but it
may underestimate it; therefore, its use could be less appropriate for the design purpose.

The proposed approach is an important step forward for the extension of structural
health monitoring to a higher number of bridges. Indeed, it can easily be used by civil
engineers to quantify the expected performance of a monitoring solution in its design
phase, and it does not require a solid background in statistics and probability. It allows the
verification beforehand of the effectiveness of a monitoring solution with the consolidated
logical approach for structural design: capacity > demand.
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Its validation for other types of structural response trends (e.g., displacement, rotation,
frequency variation, crack propagation) will be further investigated in future research
studies. Moreover, future research will address the estimation of the expected uncertainty,
accounting for temperature compensation with a number of temperature sensors.
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