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Abstract: This paper presents an experimental investigation into the effects of porosity, dry density
and cement content on the unconfined compressive strength and modulus of elasticity of cement-
bound soil mixtures. A clayey sand was used with two different proportions of type IV Portland
cement, 10% and 14% of the dry mass of the soil. Specimens were moulded with the same water
content but using four different compaction efforts, corresponding to four different dry densities.
Unconfined compression testing was conducted at seven days of curing time on unsoaked samples.
The results showed that the compressive strength increased with the increase in cement content
and with the decrease in porosity. From the experimental data, a unique relationship was found
between the unconfined compressive strength and the ratio of porosity to volumetric cement content
for all the mixtures and compaction efforts tested. The equation developed demonstrates that it is
possible to estimate the amount of cement and the dry density to achieve a certain level of unconfined
compressive strength. A normalized general equation was also found to fit other authors’ results
for similar soils mixed with cement. From this, a cement-bound soil model was proposed for the
development of a mixing design procedure for different soils.

Keywords: cement-bound soil; clayey sand; cement-treated soil; porosity; unconfined compressive
strength; modulus of elasticity

1. Introduction

One of the most common soil improvement techniques for fine-grained soils is to
compact the in situ soil with cement, as adequate strength can be achieved quickly. Thus,
the beneficial effects of cement treatment, or other binding agents, on the engineering
properties of a broad range of soils have been widely documented [1–11]. Clayey sands
are fine-graded soils that are rich in silt and clay particles, whose physical state is highly
affected by the water content and therefore are expected to provide fair to poor subgrade
bearing capacity. The addition of a small amount of cement to the soil has proved to be
effective in decreasing moisture sensitivity and expansion/shrinkage, which allows better
control of workability during compaction and, ultimately, results in significant cost savings
compared to removal and replacement of fill material in some projects. Furthermore, the
environmental impacts of soil replacement are incompatible with the globally accepted
sustainable development goals.

The treatment process begins by mixing the soil with cement while relatively dry
and then adding the water specified for compaction. Compaction is needed to make soil
particles slip over each other and move into a densely packed state becoming suitable
earthwork material [12]. The mechanisms by which the cement improves the fine-graded
soil properties are the cation exchange between clay and cement (water sensitivity), the
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flocculation and agglomeration of particles (workability and compactability) and the
cement hydration and pozzolanic reactions that create cement–soil particle bonds (bearing
capacity) [13,14]. However, the engineering properties of the soil treated by cement may
vary widely because of differences in the microstructure formed, which will depend on the
soil properties, the cement and water added and the compaction energy applied [15]. A
similar trend has also been identified with different binders [16,17].

In Europe, soils treated by cement are divided in two groups [18]—cement stabilized
soil (CSS) and cement-bound soil (CBS)—depending on the amount of cement added to
the soil. For CSS, the cement is just enough to improve the engineering properties of
fine-graded soils to a level similar to that of good natural soil or untreated aggregate base.
In contrast, in CBS, when more cement is added to the soil, the soil–cement mixture attains
a level of structural integrity that can be directly measured by the unconfined compressive
strength, tensile strength and elastic modulus tests. CBS is a technical solution used to
improve the bearing capacity of subgrade of the overlaying structure (embankments, road
and railway structures and building foundations). Typical 7-day unconfined compressive
strengths (Rc) for CBS range from 0.7 to 2.1 MPa [19].

The placement process of this material usually includes compaction, as in an embank-
ment, and the soil–cement mixture needs to have a water content close to the optimum of a
Proctor compaction test for a given energy level. Recent literature indicates that the struc-
tural performance of CBS is essentially influenced by the cement type and content, porosity,
type of soil, age and degree of compaction [20]. A reliable evaluation of strength and defor-
mation characteristics of a CBS must take into account the characteristics of compaction in
order to seek the minimum amount of cement that can guarantee the required mechanical
performance. Although cyclic loading/dynamic tests are more suitable for evaluating
the mechanical properties of these materials when used in transport infrastructures [20],
monotonic tests are most often used in practice [18] and for research purposes [1,15,16].

The water content close to the optimum of CBS mixtures means that these mixtures
are cured in a non-saturated condition and the water content does not reflect the amount of
voids. Thus, in CBS mixtures, the water/cement ratio (defined as the water mass divided
by the cement mass) is inadequate for analysis, whereas in cement concrete, most of voids
are filled with water, so the water content reflects more accurately the volume of voids and
the concrete stress–strain behavior is related to the initial water content. In addition, in
deep soil mixing, with columnar inclusions in soils with a high natural water content, close
to the liquid limit, the water/cement ratio plays a fundamental role in the assessment of
target strength, like in concrete technology [21]. According to Consoli [22], the porosity
affects the strength by modifying the number of contact points between particles, i.e., the
soil microstructure.

The influence of the volumetric properties on unconfined compressive strength of soil–
cement mixtures was established by Larnach in the 1960s [8]. More recently, in [2], the ratio
of porosity to cement volumetric content (n/Civ) has been proposed for evaluation, with n
being the porosity and Civ the cement volumetric content (unhydrated cement, immediately
after compacting the specimen). Thus, it was reported that a relationship between Rc and
n/Civ could be found for the soil–cement mixture. Some studies that investigated other
cementitious materials have also found similar relationships, even with different soils [8].
Hence, the relationship Rc-(n/Civ) can play a fundamental role in the determination of the
cement content for a CBS design mixture to meet a target unconfined strength.

Cement is an effective chemical stabilizer for improving both the index and strength
properties of soils, but the optimum percentage of cement varies from one soil type to
another [23]. Therefore, further research must be carried out in order to verify if similar
relationships Rc-(n/Civ) can be used with other soils, from different regions, and with
variable percentages of cement and porosity values. In this study, a natural clayey sand
treated with Portland cement, collected in Almada, Portugal, is investigated. The soil–
cement mixtures were fabricated with two different cement contents (10% and 14% of dry
mass of the soil) and compacted with four different compaction efforts to evaluate the effect
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of the cement content and the volumetric properties on compressive strength and stiffness
of the CBS mixtures, tested after the specimens had been cured for 7 days at 23 ± 2 ◦C
and relative humidity of 55%. The relationship found between Rc and (n/Civ) enabled the
determination of the conditions required in the field to attain a target Rc value for the type
of soil studied, and its normalized form was found to be in good agreement with other
authors’ results. Furthermore, a simple laboratory testing procedure is proposed for CBS
with different soils.

2. Materials and Experiments
2.1. Experimental Plan

The experimental plan is summarized in the diagram presented in Figure 1. A fine-
graded cohesive soil was selected for this study to investigate the effect of the ratio of
porosity to volumetric cement content on the unconfined compressive strength of cement-
bound soil mixtures. The soil was first characterized in terms of the most important
physical properties, followed by a compaction test with an adequate compaction effort to
support the definition of the characteristics of the moulding points of the CBS specimens.
The CBS mixtures were fabricated with a single water content and compacted at four
different compaction levels to obtain different volumetric properties, as explained in the
following sections. Two different cement contents were used. The unconfined compressive
testing method was used to evaluate the mechanical properties of different CBS mixtures.
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2.2. Materials

For this study, a sample of a clayey sand was taken from a cut slope running along
a local road in Almada, south of Lisbon (see Figure 2). The area comprises an upland on
the smooth south-facing slope of the Almada hills, where clayey soils are abundant. In
the collection site are “Xabregas blue clays” [24], a geological unit from the Miocene about
15 m thick in the westernmost part of the region [25].
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Figure 2. Identification of the collection site on different scales (world; country; local site on an extract of the Geological
Map of Portugal, 34-D sheet [24]).

The soil sample was collected in its natural state by digging with a hand tool to carry
out all characterization and mechanical strength tests. Once obtained, the sample was
stored and transported in suitably sealed plastic boxes. During the collection and transport,
all care was taken to avoid any kind of contamination. Although there are no homogenous
soils in nature, the soil sample was divided into smaller samples with the quarter technique
to ensure homogeneity of the samples tested.

The particle size distribution of the soil was determined by sieving, following the
protocol defined in the European standard (EN ISO 17892-4 2016 [26]). The particle size
distribution is shown in Figure 3. The Atterberg limits of the soil followed EN ISO 17892-12
2016 [27]. The studied soil contained 40% fine particles (<# 200 sieve).
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The physical properties of the soil are summarized in Table 1. The soil is classified as a
clayey sand (SC) in the unified soil classification system [28], and as an A-6 (14) clayey soil
with a group index equal to 14 according to the AASHTO classification system [29]. This
soil category comprises granular soils with high contents of clay and silt, and provides fair
to poor subgrade conditions for infrastructures. When clayey particles are predominant,
the soil is sensitive to expansion and shrinkage with the variation in water content. Mixing
cement in this type of soil contributes to the reduction of the plasticity index and the
potential for expansion/shrinkage, to attain higher compaction in the field, and increases
the bearing capacity [30].

Table 1. Physical properties of the soil.

Properties Values

Liquid limit (EN ISO 17892-12 2016) 32%
Plastic Limit (EN ISO 17892-12 2016) 21%
Plastic index (EN ISO 17892-12 2016) 11%

Particle density (ρss) (EN ISO 17892-3 2016) 2.64 Mg/m3

Coarse sand (2.0–4.75 mm) (EN ISO 17892-4 2016) -
Medium sand (0.42–2.0 mm) (EN ISO 17892-4 2016) 34.5%
Fine sand (0.074–0.42 mm) (EN ISO 17892-4 2016) 25.9%
Fines content (<0.074 mm) (EN ISO 17892-4 2016) 39.6%

Mean particle diameter (D50) (EN ISO 17892-4 2016) 0.2 mm
Unified soil classification (ASTM D 2487) SC

ASHTO soil classification (AASHTO M145-42) A-6 (14)

In this research, a commercial Portland cement type CEM IV/A(V) 32.5R-SR (SECIL,
Outao plant) was used, which, according to [31], is a pozzolanic cement, containing
64–79% clinker (K) and 21–35% fly ash (FA), is greyish (due to the ferrous component)
and has high chemical resistance. An equivalent cement type could be also obtained by
mixing cement types I and II with additives type II (pozzolana/fly ash). This cement
type is suitable for the manufacture of concretes and mortars with specific durability
requirements, namely those used on road pavements, soil–cement mixtures and structures
located in aggressive environments, such as the marine environment. As opposed to
natural soils, Portland cement is an industrial product which is manufactured under strict
standards, ensuring uniformity of quality and performance and has advantages that make
it economical and easy to use. The cement properties are listed in Table 2. This cement is
very fine, with 100% of its particles passing through the 0.074 mm sieve, and has a particle
density of 3.15 Mg/m3.

Table 2. Properties of Portland cement [32].

Properties Values

Constituents
>69% K

>26% FA
Ignition loss 2.3%

Insoluble residue 26.3%
Specific surface area (Blaine) (cm2/g) (EN 196-6) 4292

Compression strength 28d (MPa) (EN 196-1) 44.3
Setting time (min) (EN 196-3) >75

In the soil characterization tests, distilled water was used, but in soil–cement mixture
specimens, tap water was used.

2.3. Definition of the Moulding Points

The moulding points of the CBS test specimens are established by the water content
and compaction effort used in the laboratory. To investigate possible variations in field
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construction operations, the moulding points used in this study were defined by varying
the compaction effort at the parent soil’s optimum water content. For this purpose, a soil
compaction test was performed.

The soil was compacted in a Proctor stainless steel mould measuring 102 mm in
diameter and 117 mm high, using a modified compaction effort with a heavy hammer of
45.4 N, in 5 layers, with 25 blows per layer, from a height of 475 mm. This compaction
effort is representative of the compaction process adopted in road construction, and is
determined as:

E =
B·N·W·h

V
, (1)

where E is the compaction effort (MN.m/m3); B is the number of blows per layer; N
is the number of layers; W is the weight of the hammer (N); h is the height of fall of
the hammer (m); V is the volume of the mould (m3). For the above conditions, E is
2.5 MN.m/m3. The water content was measured immediately after each compaction test,
and determined by the oven drying to constant mass (105 ◦C for 24 h).

In Figure 4, the effect of the water content (w) on the dry density of soil (ρd) is demon-
strated with the compaction curve fitted to the plotted compaction results. The optimum
water content (wopt) of the parent soil (without cement) is 13%, and the corresponding
maximum value of dry density (ρd,max) is 1.74 Mg/m3.
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The moulding points, with less or equal compaction energy than the modified Proctor
energy, were chosen at the previously determined optimum water content level of the soil.
These moulding points consisted of applying an increasing number of blows per layer: 10
(E1), 15 (E2), 20 (E3) and 25 (E4) blows on CBS mixtures with a water content of 13%, as
explained in detail in Section 2.4.

2.4. Moulding the Specimens for the Unconfined Compression Tests

The amount of cement mixed with soil varies with the characteristics of the soil and
the modification goal, and can be as low as 2% or as high as 16% of the dry mass of soil [33].
For the soil used in this study, A-6 (14) soil type, 3–6% of cement should be enough to
provide long time material modification [30], such as a decrease in shrink/swell potential
and an improved/stable bearing capacity, whereas the recommended percentage of cement
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is between 9% and 15% to obtain cement-bound soil characteristics [33]. In this study, two
different cement contents were used, 10% and 14%, to obtain CBS-like characteristics.

Before the addition of water and the following cement hydration reaction, prepared
soil–cement mixtures are finer than the initial soils because of the increase in fines induced
by the addition of the cement [34]. As mentioned earlier, the cement used in this study has
100% of particles smaller than 0.065 mm, which gives the CBS theoretical gradations of soil
cement mixtures presented in Figure 5.
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The laboratory program was conducted for CBS with the optimum water content of
the parent soil determined earlier by the modified Proctor compaction test. This allowed the
research of the effect of the compaction effort on the volumetric and mechanical properties
of CBS to be carried out under the same moisture content conditions.

To prepare the CBS, the soil was oven-dried and sieved using a 2 mm aperture sieve
to eliminate coarser material. Afterwards, the amount of cement, by dry mass of soil, was
added to achieve the percentages required: soil with 10% cement (C10), and soil with 14%
cement (C14). The dry soil and the cement were mixed and then the water was added to
obtain the 13% water content. All components were thoroughly mixed until a homogenous
paste was obtained. Then, the mixture was compacted, in the same way as in the soil
compaction tests in the Proctor mould, in 5 layers, but varying the number of blows per
layer, in order to create the different compaction efforts corresponding to the four moulding
points (E1, E2, E3 and E4).

Table 3 summarizes the fabrication conditions of the eight CBS mixtures tested. The
CBS are referred to in the paper by their cement content and compaction effort (e.g.,
“C14-E2” refers to a CBS mixture with 14% cement compacted at E2 (15 blows per layer)).

The time it took to prepare (mixing and compaction) was always less than an hour,
which is much shorter that the initial setting time (75 min, see Table 2) of the Portland
cement used. After compaction, the specimen was immediately extracted from the mould
using a hydraulic device. Then, the specimens were weighed on scales accurate to the
nearest 0.01 g and their diameter and height were measured using a 0.1 mm error calliper.
Figure 6 shows two specimens after extraction from the mould.
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Table 3. Compaction of cement-bound soils.

CBS C (%) wopt (%) Blows Per Layer E (MN.m/m3)

C10-E1

10

13

10 0.98
C10-E2 15 1.47
C10-E3 20 1.97
C10-E4 25 2.50

C14-E1

14

10 0.98
C14-E2 15 1.47
C14-E3 20 1.97
C14-E4 25 2.50
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Then, the specimens were wrapped with transparent plastic film and were cured for
7 days in a humidity and temperature control room at 23 ± 2 ◦C and relative humidity
of 55%. The samples were considered suitable for testing when they met the following
tolerances: (1) required optimum water content, wopt (within ±1% of the target value
defined for soil only); (2) dimensions: diameter 102 ± 1 mm and height 117 ± 1 mm.

The 24 specimens prepared (3 specimens for each mixture) met the specimen prepara-
tion and dimensions requirements of [35].

In order to calculate the porosity of specimens, the particle density of each mixture,
ρsm, must be calculated from the particle density of the soil, ρss, and the particle density of
the cement, ρsc:

ρsm =
C + 1

C
ρsc

+ 1
ρss

, (2)

where C is the cement content of CBS mixtures (0.10 and 0.14 for 10% and 14% cement,
respectively). Using Equation (2), the particle density is 2.68 Mg/m3 and 2.69 Mg/m3 for
the CBS mixtures with 10% and 14% cement, respectively.

The porosity is the ratio of the volume of voids (Vv) to that of the sample (V), where
the volume of voids can be calculated as the difference between the total volume of the
sample and the volume of soil solids (Vs) and the volume of cement (Vc). From this, the
porosity (n) is given by:

n = 1 − ρd
ρsm

, (3)

where ρd and ρsm are the dry density and particle density, respectively, of CBS in (Mg/m3).

2.5. Unconfined Compression Tests

The unconfined compressive strength Rc is the index used in the European specifica-
tions [18] to quantify the improvement given to the soil by the cement in CBS mixtures.
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Unconfined compression tests (UCT) were conducted on soil specimens (only E4) and
cement-treated specimens in accordance with the procedure defined in [36]. All tests were
conducted on unsoaked specimens, which had been cured for 7 days. The tests were carried
out on a universal testing machine (Zwick) [37], with a maximum load capacity of 50 kN,
and under constant displacement control (load plate speed of 1 mm/min). The vertical
deformation of the specimen was monitored with a displacement transducer installed on
the top plate. The axial strain (ε) was determined from the vertical deformation and the
initial height of the specimen, and the average stress (σ) from the load measured during
the test and the average initial cross section of the specimen. Based on the requirements
defined in [18], the individual strength of the three specimens, moulded with the same
characteristics, should not deviate by more than 20% from the mean strength. These
requirements were met with all tested materials.

3. Results
3.1. Physical Properties of CBS Specimens

Table 4 presents the average values and coefficient of variation (CV) of the physical
properties of fabricated specimens.

Table 4. Properties of specimens.

Material

w ρd n

Mean (%) CV (%) Mean
(Mg/m3) CV (%) (%)

C10-E1 12.2 3.9 1.61 0.5 39.8
C10-E2 12.4 6.5 1.68 0.7 37.4
C10-E3 12.1 2.7 1.72 1.5 35.8
C10-E4 12.6 1.7 1.74 0.1 35.1

C14-E1 11.9 2.2 1.60 0.5 40.7
C14-E2 11.5 3.4 1.67 0.4 38.2
C14-E3 12.4 2.7 1.71 0.7 36.6
C14-E4 12.4 4.1 1.74 0.5 35.3

3.2. Unconfined Compression Tests

Figures 7 and 8 show the stress–strain curves of unconfined compressive tests for the
specimens of cement-bound soil with 10% and 14% cement by dry mass of soil.
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Figure 7. UCT stress–strain curves for CBS specimens with 10% cement.
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The modulus of elasticity (E30) was obtained from the stress–strain curves according
to [38], with E30 being the secant modulus for the stress range from 0% to 30% of Rc. The
values of E30, Rc and axial strain at Rc value are summarized in Table 5 for the soil (E4) and
the CBS mixtures.

Table 5. Results of unconfined compression tests.

Specimen
Rc ε at Rc E30

Mean
(MPa) CV (%) Mean (%) CV (%) Mean

(MPa) CV (%)

Soil-E4 0.22 11 1.62 7.7 2 14

C10-E1 1.80 11 1.62 4 111.4 14
C10-E2 2.35 14 1.96 7 102.0 2
C10-E3 2.52 1 1.84 6 137.4 13
C10-E4 3.37 1 1.91 2 196.5 14

C14-E1 2.35 5 1.73 3 136.4 16
C14-E2 2.65 1 1.82 3 147.0 8
C14-E3 3.21 2 2.01 1 172.4 12
C14-E4 3.86 10 1.91 4 215.8 5

4. Discussion
4.1. CBS Specimens

The dry density of specimens, listed in Table 4, increased significantly with the appli-
cation of a higher compaction energy, and this was more important for the lower levels.
For instance, the increase was on average 4.1% from 10 to 15 blows while only 1.7% from
20 to 25 blows. The porosity of compacted specimens varied between approximately 35%
and 40%. Good compaction of CBS layers is important to ensure in service higher stiffness
and less accumulation of permanent deformation with static and cyclic loadings in the
field. Considering the highest dry density (obtained for E4) as the reference, the degree of
compaction obtained for E1 was about 92%, which is not sufficient to guarantee adequate
in-service behavior. The lowest compaction effort applied in the laboratory to comply with
normal field requirements, which is a minimum of 95% maximum dry density [30], is E2
(15 blows per layer).

Preparation and compaction of different CBS mixtures at the soil optimum water
content influenced the obtained results. Water is required in CBS to aid in the dispersion
of cement particles in the soil and to achieve a high dry density (low porosity), and for
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the hydration of the cement to create the bonds with natural soil particles. The optimum
water content varies with the material (soil or CBS) and the compaction effort applied.
It is expected to decrease with increased compaction effort and with decreased cement
content [2,39]. In this situation, the water content used was likely lower (dry side) than the
optimum value for the CBS mixtures. However, it was significantly higher than required
for full hydration of cement [40]. Moreover, the average water content of all fabricated
specimens (see Table 4) was below the target of 13% because the water lost to evaporation
was higher than initially predicted.

4.2. Unconfined Compressive Strength

From Figures 7 and 8, it can be seen that, as the compaction effort increases, the peak
axial stress increases, as expected. The maximum unconfined compressive strength ranges
from 1.80 MPa to 3.37 MPa (mean values) for 10% cement, and from 2.35 MPa to 3.86 MPa
(mean values) for 14% cement. These values (see Table 5) are much higher than the strength
(0.22 MPa) obtained for the natural soil, compacted in E4 conditions. According to the
European standard [18], with the exception of C10-E1, the CBS specimens are classified in
C1.5/2 (minimum Rc in MPa for cylinders of slenderness ratio 2 and 1, respectively). The
class of compressive strength is higher than the typical values suggested in the literature
for CBS specimens (0.7 to 2.1 MPa [19]). Hence, this demonstrates the potential of the
technique to improve the bearing capacity of subgrades with (poor) fine-graded soils.

The axial strain sustained by the specimen at peak stress was, in general, similar in
all CBS specimens despite the different cement contents and being compacted in different
conditions. The only exception was for CBS mixtures compacted with E1, which broke at
a lower deformation level. Higher porosity in similar specimen sizes means larger pores
and a weaker particle structure. Thus, the cement bonds between soil particles should also
have been less effective in spreading the load in the bulk specimen. In the literature, similar
conclusions have been reported with different soils [3,5,8].

The values of E30 summarized in Table 5 show that compaction has the highest impact
on specimen stiffness. For C10 specimens, E30 rose by 76% when the compaction effort
increases from E1 to E4, whereas the effect of adding more cement (from 10% to 14%)
varied between 10% and 44%. The increase in compaction effort from E3 to E4 was the
most significant.

In addition, Figure 9 demonstrates the importance of both the cement bonding and
applied compaction effort to the mechanical properties of CBS, and that Rc and E30 pro-
vide the same information for assessing these materials. It can be observed that above a
certain porosity level (approximately 38%), the mechanical properties of CBS specimens
are affected by the cement content but not by the porosity. This demonstrates the impor-
tance of applying a high compaction effort to maximize the cement-bonding benefit in
CBS mixtures.

4.3. CBS Volumetric Normalisation

To assess the effect of the porosity and cement content on the mechanical properties of
CBS mixtures, the analysis of the voids to cement ratio has been proposed, as mentioned
earlier. Note that the two quantities have opposite effects on mechanical properties, i.e., the
cement–soil mixture is improved (increase in strength) with the decrease in porosity and
the increase in cement content. Thus, in [2], the ratio of the porosity to volumetric cement
content (n/Civ) was proposed as:

n
Civ

=
Vv
V
Vc
V

=
Vv

Vc
, (4)

where Vv is the volume of voids, Vc is the volume of (unhydrated) cement and V is the
total volume.
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Figure 9. Effect of porosity on unconfined compressive strength and modulus of elasticity.

The influence of the ratio of porosity to volumetric cement content on the unconfined
compressive strength is shown in Figure 10. The ratio n/Civ varies between 5.1 and 8.6 for
the different CBS specimens, and their strength varies in opposition to the n/Civ value. The
relationships between Rc and n/Civ are different for the CBS specimens fabricated with
different cement contents but the agreement with the experimental results is good. By
dividing the porosity by the volumetric cement content, it was assumed that an increase in
porosity could be counteracted by a proportional increase in the volumetric cement content,
keeping the unconfined compressive strength unchanged.
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Figure 10. Effect of the ratio of porosity to volumetric cement content on unconfined
compressive strength.

In fact, in order to keep the same value of Rc, an exponent might be applied to one
of the two variables, n or Civ, to make the effects of their variation on Rc [2] compatible.
It was found that by applying a power of 0.2 to the parameter Civ, a good adjustment is
reached, as shown in Figure 11.
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Figure 11. Effect of modified ratio of porosity to volumetric cement content on unconfined compres-
sive strength.

In [2], the authors reported an exponent value of 0.28 for fine-graded soils. The
empirical exponent applied to Civ defines the relative contributions of volumetric cement
content and porosity to the unconfined compressive strength. In addition, previous research
with different soils [41] suggests that this exponent is not greater than one, which means
that porosity is more important than cement bonding for the mechanical properties of
cement–soil mixtures. Thus, for the soil analyzed in this study, a clayey soil A-6(14),
modified with 10% to 14% Portland cement, the unconfined compressive strength after
7 days of cure can be estimated from the porosity and the volumetric cement content as:

Rc(MPa) = 3.4 × 105 ×
(

n
C0.2

iv

)−3.585

. (5)

In addition, to compare the results of cement–soil mixtures with different native soils
and binding agents, in [4], the authors proposed the normalization of the Rc-(n/Cα

iv) as:

Rc

Rre f
c

= A ×
(

n
Cα

iv

)−B
, (6)

where Rre f
c is the Rc value obtained at the reference (n/Cα

iv) value, and A and B are model
fitting constants. Thus, considering the reference (n/Cα

iv) value of 30 chosen in [3] for
silty/clayey soils, the results obtained in this study were compared in Figure 12 with those
of fine-graded cohesive soils found in the literature [2,3,8,34], and listed in Table 6. All
studies employed unconfined compressive testing of CBS specimens cured for 7 days. The
results obtained for different fine grained soils, with different cement contents compacted
to different effort levels align in a single curve. An excellent fit of a power law model
was obtained for these results. Hence, the normalized equation empirically supports the
estimation of the compressive strength of CBS mixtures with different soils with similar
geotechnical characteristics (i.e., granulometry, limits of consistency, dry density and
geological origin).
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Table 6. CBS research studies found in the literature.

Type of Soil Empirical Correlation Rref
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Clayey Sand SC Rc(MPa) = 5 × 104 ×
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C0.28

iv

)−3.32 0.62 [2]

Clayey Sand SC Rc(MPa) = 4 × 106 ×
(

n
C0.21

iv

)−4.266 2.00 [42]

Paraguay Clay
Red Silty Clay
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Rc(MPa) = 4.29 × 105 ×
(
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C0.28

iv

)−3.85

Rc(MPa) = 4.86 × 105 ×
(
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C0.28

iv

)−3.85

Rc(MPa) = 1.47 × 106 ×
(

n
C0.28

iv

)−3.85
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[3]

Silty Soil Rc(MPa) = 9.3 × 103 ×
(

n
C0.4

iv

)−2.64 1.17 [8]

Cohesive Soil CL Rc(MPa) = 3.4 × 105 ×
(

n
C0.2

iv

)−3.585 1.74 Present study

5. CBS Design Procedure
5.1. Description

The results obtained in this study support, firstly, the CBS design of the clayey sand
soil tested, and furthermore, enable the development of a CBS design method for different
soils. From a practical design point of view, the CBS design comprises the definition of
the cement content, the water content and the target dry density in the field to ensure a
defined mechanical performance, which is often evaluated with unconfined compression
testing at seven days of curing. The design mixture procedure relies on the evidence that,
as observed in Figure 11, the same value of Rc can be obtained either by using less cement
content and increasing the compaction effort, or it can be reached by increasing the cement
content and applying less compaction energy. Hence, this means that using Equation (5),
or a similar relationship if a different soil is used, the cement content and dry density can
be chosen to reach the target compressive strength value for a given project.

Thus, for a different soil to the one investigated in this study, Equation (5) is general-
ized to [3]:

Rc = A ×
(

n
Cα

iv

)−B
, (7)

where A, B and α are the model constants that vary with the soil and cement used.
The method to develop this model with less experimental effort than was used in this

study is described in the following section. To establish different combinations that can be
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used to reach a target compressive strength value, the porosity/cement ratio (n/Civ) must
be calculated. Combining Equations (2) and (3), the porosity is:

n = 1 − ρd
(C + 1)

(
1

ρss
+

C
ρsc

)
. (8)

For the calculation of Civ, the total dry mass of the CBS specimen (msm) is the sum of
the dry mass of soil (mss) and dry mass of cement:

msm = mss + C.mss = mss(1 + C), (9)

and
mss =

msm

1 + C
, (10)

The dry mass of the CBS specimen (msm) is the product of the dry density of specimen
(ρsm) by the volume (V) of the specimen, so the dry mass of soil becomes:

mss =
ρd·V
1 + C

(11)

and the volume of cement Vc is:

Vc =
mc

ρsc
=

C.V.ρd
ρsc(C + 1)

, (12)

Finally, Civ is:

Civ =
Vc

V
=

C.ρd
ρsc(C + 1)

. (13)

From Equations (8) and (13), the porosity and volumetric cement content in CBS are a
function of the dry density of mixture, of the cement content and of the densities of cement
and soil particles. For a certain soil and cement, their particle densities are fixed. Hence,
the dry density of the CBS is a function of the cement content for a defined n

Cα
iv

. However,

due to the exponent α in n
Cα

iv
, there is not an explicit solution to ρd = f

(
n

Cα
iv

, C, ρss, ρsc

)
.

To solve this, it is assumed that ρd and C can be modelled with a 2nd order
polynomial function:

ρd = a1·C2 + a2·C + a3 (14)

where a1, a2 and a3 are the model constants. Introducing Equation (14) in Equations (8) and (13),
the estimated values of the porosity (n*) and Civ

(
C∗

iv
)

are obtained as:

n∗ = 1 − a1·C2 + a2·C + a3

(C + 1)

(
1

ρss
+

C
ρsc

)
, (15)

C∗
iv =

C·
(
a1·C2 + a2·C + a3

)
ρsc(C + 1)

. (16)

In addition, combining Equation (15) with Equation (6), the porosity can be estimated as:

n∗∗ =

(
Rc

A

)− 1
B
·
(

C·
(
a1·C2 + a2·C + a3

)
ρsc(C + 1)

)α

. (17)

Finally, considering various values of C in a defined range (Cmin–Cmax) and the target
Rc, the constants a1, a2 and a3 can be determined using the Solver function in Microsoft
Excel to minimize the error:

error =
Cmax

∑
Cmin

(n∗ − n∗∗)2. (18)
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For the clayey soil investigated, considering the Rc − n
Cα

iv
model described in Equation (5)

the constants a1, a2 and a3 are 0.01, −0.35 and 19.09, respectively. Figure 13 shows the ρd-C
models for various Rc values. From this, project managers and contractors have a range of
options to explore. The decision on selected ρd and C depends on project requirements and
specific conditions, namely the construction time constraints, the availability of adequate
equipment to apply the desired compaction energy and the cost of cement.
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Finally, this methodology can also be useful to control compacted cement-bound soil
layers in the field. If poor compaction is detected, this can be readily taken into account
in the design, identifying through Equation (5) the expected compressive strength, and
adopting corrective measures accordingly, such as the reinforcement of the treated layer
or the reduction of the maximum vertical stress admitted in the structural design of the
overlaying structure [43]. For example, if Rc = 3.5 MPa is required in the project, the
minimum dry density is 1.79 Mg/m3 for 8% cement, and 1.72 Mg/m3 for 14% cement.

5.2. Determination of CBS Model

The CBS design procedure described considers that a fixed water content is used
regardless of the cement content and compaction effort adopted. Thus, in this study,
the compaction of CBS materials at the optimum water content determined for the soil
was investigated and it was observed that the unconfined compression strength obtained
varies with the cement content and compaction effort. The authors acknowledge that by
prescribing this water content, the maximum dry density of CBS is hard to achieve because
the optimum water content varies slightly with the content of cement. Nevertheless, this
method allows considerable savings in the laboratory to design a CBS that meets the
project requirements. To build the CBS model, Equation (7), the following procedure is
recommended:

1. Build the soil Proctor curve for the determination of the maximum dry density and
the optimum water content of the soil;

2. Establish the adequate limits of cement content for the soil type (minimum range 4%),
using, for example, recommendations in [33];

3. Establish the limits of laboratory compaction, for example, E4 and E2;
4. Produce CBS specimens with minimum and maximum values of cement content at

the soil optimum water content, compacted at E4 and E2;
5. Test CBS specimens cured for 7 days for unconfined compression strength;
6. Determine n and Civ;
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7. Fit Equation (6) to n
Cα

iv
versus Rc results to obtain A, B and α; in the literature, the best

fit model is obtained for an α between 0.18 and 0.4.

6. Conclusions

This paper describes a study investigating the effects of porosity, dry density and
cement content on the mechanical properties of fine-graded soils treated with cement. A
clayey sand (A-8 class) extracted in the Almada Municipality, Portugal, was mixed with
10% and 14% of Portland cement type IV of the dry mass of the soil, and compacted at the
soil optimum water content. To obtain different volumetric properties in cement-bound soil
specimens, the compaction effort used in the laboratory varied from 1.0 to 2.5 MN.m/m3.
The mechanical properties were evaluated on unsoaked specimens, cured for 7 days, using
unconfined compression testing. From the experiments and discussion of results, and
within the limits of test conditions, the following conclusions can be drawn:

• The unconfined compressive stress–strain behavior of CBS is affected by the cement
content and compaction effort used in the production of the specimens. Increasing ce-
ment content and compaction effort leads to higher peak stress (compression strength,
Rc) and less deformation at peak, which results in higher modulus of elasticity, E30,
values. For a certain cement content, the Rc and E30 had the same variation trend as
the specimen porosity.

• The compressive strength is strongly affected by the modified porosity to volumetric
cement content ratio (n/C0.2

iv ). The exponent value of 0.2 is in agreement with other
studies found in literature for different fine-graded soils. It was also found that by
normalizing the compressive strength of CBS to a certain n/C0.2

iv value, the results of
CBS with different parent soils and cements fit a single model.

• The Rc–n/C0.2
iv model allows the determination of the cement content and the dry

density required in the field to obtain a certain Rc value.

In addition, supported by these conclusions, a practical CBS design approach was
proposed for different soils. This approach allows the CBS conditions to be defined (cement
content, target dry density, water content) to obtain a minimum unconfined compressive
strength. A protocol was proposed to obtain the Rc–n/Ca

iv model for the soil with fewer
tests than usually required.

Finally, further studies are required (expanding tests to other cement contents and
water contents) in order to check the possibility of generalization of the present findings to
different soils and binding agents.
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