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Abstract: Simplified code provisions can be used for the analysis and design of straight slab bridges.
However, several studies question the appropriateness of simplified procedures for skewed geome-
tries. This paper provides practical insights to the designer regarding the effects of skewness in
reinforced concrete slab bridges by evaluating how simplified and more refined analysis procedures
impact the design magnitudes and resulting reinforcement layouts. The methods used for this study
are analytical and numerical case studies. Eighty case study slab bridges with varying lengths,
widths, and skew angles are subjected to the AASHTO HL-93 loading. Then, the governing moments
and shear forces are determined using the AASHTO LRFD simplified procedures with hand calcu-
lations, and using linear finite element analysis (LFEA). Afterwards, the reinforcement is designed
according to the AASHTO LRFD design provisions. From these case studies, it is found through
the LFEA that increasing skew angles result in decreasing amounts of longitudinal reinforcement
and increasing amounts of transverse flexural reinforcement. Comparing the reinforcement layouts
using AASHTO LRFD-based hand calculations and LFEA, we find that using LFEA reduces the total
weight of steel reinforcement needed. Moreover, as the skew increases, LFEA captures increased
shear forces at the obtuse corner that AASHTO LRFD does not. In conclusion, it is preferable to
design the reinforcement of skewed reinforced concrete slab bridges using LFEA instead of hand
calculations based on AASHTO LRFD for cost reduction and safety in terms of shear resistance in the
obtuse corners.

Keywords: AASHTO LRFD simplified procedures; linear finite element analysis (LFEA); live load dis-
tribution; main longitudinal reinforcement; reinforced concrete; secondary transverse reinforcement;
shear reinforcement; skew angle; slab bridges

1. Introduction

A decisive factor when selecting a bridge type is the required span distance. Reinforced
concrete slab bridges are chosen for short spans because avoiding girders can reduce labor
and formwork costs [1]. Despite their limitation in span length, slab bridges are widely
used. For example, in the U.S. 2020 National Bridge Inventory, nearly 10.5% of all highway
bridges are classified as concrete slab bridges [2].

Slab bridges can be straight or skewed. In straight slab bridges, the main longitudinal
direction of the bridge is perpendicular to the support line. In skewed slab bridges, there is
a deviation of the main longitudinal direction away from the vertical axis (see Figure 1).
In skewed slab bridges, the force flow is significantly more complex than in straight slab
bridges [3]. However, skewed slab bridges are common when urban or geographical
constraints prevent the design of straight geometries. Actually, the number of skewed
bridges is growing in developing and urban cities, and the number of cases of slab bridges
with a skew angle of more than 45 degrees is increasing as well [4].
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Figure 1. Geometric definition of length, width, and skew angle.

Numerous design codes cover the design of slab bridges [5–8]. In this work, the focus
lies on the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD). AASHTO LRFD
is employed for design, evaluation, and rehabilitation of highway bridges [5]. The safety
philosophy of this American standard is Load and Resistance Factor Design (LRFD), which
is a reliability-based methodology that uses statistics to determine the appropriate safety
factors for loads and resistance of components [5]. AASHTO LRFD allows the design of
simply supported solid slab bridges with main longitudinal reinforcement parallel to the
direction of the traffic using simplified procedures [5]. AASHTO LRFD does not prescribe
the maximum skew angle for which the simplified design procedures can be applied [5].

Limited attention has been paid to skewed solid slab bridges. They were simply treated
as one-way slabs where the main longitudinal moments are carried by the longitudinal
reinforcement and the transverse moments are handled with empirical expressions [9].
In 2006, the collapse of the Concorde Overpass [10,11] resulted in concerns with regard
to the capacity of existing reinforced concrete slab bridges. The event caused five fatal
casualties and the injury of six people. This failure drew attention to the shear strength of
skewed solid concrete slab bridges [12]. In the same decade, the shear capacity of existing
reinforced concrete slab bridges was questioned in the Netherlands [13]. Adopting the
Eurocodes [14–16] resulted in higher sectional shear forces and lower shear capacities than
those used in the Dutch national codes [17,18], so that assessment of these bridges became
a priority.

In recent years, efforts have been geared towards determining the effects of skew
on slab bridges. This paper provides practical and relevant insights on the effects of
skewness to the designer using AASHTO LRFD. More specifically, the aim is to answer
the research question: How does skew influence the amount of reinforcement and its
layout in reinforced concrete skewed slab bridges? To do so, the selected method is a
parametric study, where AASHTO LRFD simplified procedures are compared to more
refined linear finite element analyses (LFEA). This parametric study results in the main
longitudinal and transverse bending moments, as well as shear forces at the obtuse corner
using both approaches. These design magnitudes are then translated into reinforcement
layouts. Comparing the reinforcement layouts from both methods, we can identify when
larger, equal, or smaller amounts of reinforcement are found using the AASHTO LRFD
hand calculations as compared to LFEA. In addition, the reinforcement layout is further
translated into total steel weight to evaluate the cost. In parallel, the moment distribution
capacity of the slab bridges is assessed. This is performed to determine when the same
spacings or bar diameters for the main longitudinal reinforcement can be provided over
the entire width of the bridge, which enhances ease of construction. As such, this work
produces a tangible response on how skew influences the design of reinforced concrete



Infrastructures 2021, 6, 88 3 of 23

skewed slab bridges, and goes a step further than research from the literature, which
focused on the design moments and shear forces.

This paper is divided in two main sections following the literature review. First,
the case study bridges are described as well as the two methodologies used for analysis
(AASHTO LRFD simplified procedures and LFEA) and their application towards design.
Second, the results of the parametric study are presented. These are condensed within six
subsections: main longitudinal bending moment, distribution width, secondary transverse
bending moment, shear, influence of materials, and reinforcement comparisons based on
weight of steel.

2. Literature Review

Several methods for understanding the effect of skew are reported in the literature.
One of these is through load testing of existing bridges. Davids load tested 14 bridges and
compared the rating factors obtained with AASHTO LRFD and FEA. The study showed
that the rating factors increased up to 37.6% for bridges with skew angles between 15◦ and
20◦ when using FEA [19]. Other load tests of slightly skewed slab bridges have shown that
the procedures for rating existing reinforced concrete slab bridges using the European codes
are conservative for both shear and bending moment [20,21]. Load testing of highly skewed
concrete bridges is rare. However, Bagheri developed an artificial intelligence model that
can predict nondimensional frequency parameters related to the vibration modes of a slab
bridge. It operates in the ranges of 0◦ to 60◦ skew angles. The input parameters are span
length, deck width, deck thickness, and skew angle. With the nondimensional frequency
parameters, one can calculate the flexural rigidity. This magnitude is used in the load rating
and nondestructive evaluation of existing bridges; thus, the neural net is useful where
structural information is incomplete [22].

Skewed slab bridges can also be studied through computational models. For example,
nonlinear analysis has been used in the past [23] and in recent years [24] to study the
behavior of skewed slab bridges at the ultimate limit state. Cope [23] determined that
the first load that generates cracking drives the response of the slab, so that nonlinear
analysis can only yield approximations of the slab’s actual behavior. Hassan [24] also
studied cracking load and observed that for skew angles up to 30◦, the cracking load
remained the same as for straight bridges, but there was a decrease when the skew reached
45◦. Additionally, computational approaches have also been combined with probabilistic
approaches to determine the seismic fragility of various types of skewed bridges [25].

Experimental work on skewed slab bridges is limited. Laboratory testing dating back
to the eighties focused on the effect of shear in reinforced concrete slabs. One of these
studies was conducted at the University of Liverpool and considered specimens with skew
angles ranging from 30◦ to 60◦. One of the main objectives of the study was to determine
how to predict shear forces and evaluate shear capacity of skewed slabs. The study showed
that Mindlin plate theory, with appropriate mesh refinements, can predict skewed slab
behavior to a certain extent. The experiments showed that the failure mode changes from
flexure to shear, and then to punching as the skew angle increases [26]. Another study,
with a much more limited scope, tested two 50◦ skew angle scaled bridge models. The
failure mode for the first specimen was flexure, and that of the second specimen, which had
increased flexural reinforcement, was punching shear. Additionally, this study determined
that thick plate theory could predict the initial distribution of shear stress at the obtuse
corner [27]. More recently, Sharma developed a theoretical formulation to predict the
ultimate flexural strength of skewed slab bridges. The outcome of the formulation was
compared to results obtained from scaled test specimens with skew angles from 15◦ to 60◦,
and yielded accurate results [28].

Parametric studies provide an additional way of comprehending the response of
skewed slab bridges. Some parametric studies have focused on the development of skew
factors. For example, Théoret conducted a parametric numerical study on 390 simply
supported slabs. This study resulted in a series of expressions for moment reduction factors
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and shear magnification factors as a function of the skew angle. These factors compensate
for skewness when using the simplified analysis procedures from AASHTO LRFD [9].
Similarly, skew factors that increment load effects were developed in the Netherlands for
bridge assessment [29].

Other parametric numerical studies have focused on force distribution and concentra-
tion in skewed slab bridges. Menassa analyzed 96 case study bridges using the AASHTO
Standard Specifications, AASHTO LRFD, and LFEA. The research, which focused on
bending moments, confirmed that skewed slab bridges can be designed as straight for
skew angles smaller than 20◦ [30]. Likewise, Hulsebosch developed a parametric study
with a focus on the influence of skew towards the magnitudes of bending moments and
shear forces. He determined that the addition of ATS (additional triangular segments)
adjacent to the free edges of the slab bridge reduces the governing shear forces at the
obtuse corners [12], and recommended this practice for the design of new skewed slab
bridges. Additionally, Fawaz analyzed 96 case study bridges with a special attention on the
influence of railings on bending moments. The parametric study showed that the presence
of railings, on top of the skew angle, can further reduce the main longitudinal bending
moments obtained with AASHTO LRFD in skewed slab bridges [31].

From the literature review, we identified the research gap as a parametric study on the
resulting reinforcement layout in reinforced concrete skewed slab bridges. By focusing on the
resulting reinforcement, this paper provides the designer with practical insights. Additionally,
since there is no clear consensus on how to evaluate the shear capacity of slab bridges [14], the
application of a new approach is presented herein. The selected procedure comes from Lipari,
who proposed variations to extend shear design code provisions for straight geometries to
skewed geometries [32]. These procedures will be elaborated in Section 3.2.2.

3. Materials and Methods
3.1. Design of the Parameter Studies

The three geometric parameters studied are length (L), width (W), and skew angle
(α). The length is taken as the dimension of the free edge, the width is considered as the
dimension perpendicular to the free edge, the skew angle is measured as the angle between
the vertical axis (dotted line) and the free edge (see Figure 1), and the driving direction is
parallel to the free edge.

Additionally, the cross-section includes the design lane(s), one shoulder and one
concrete barrier at each edge, and a 50 mm thick future wearing surface covering the design
lane(s) and shoulders. The cross-section is kept the same for all case study bridges, and
only the number of lanes is varied. Figure 2 shows the layout for the case study bridge
with one lane. Case study bridges with more lanes follow a similar layout.

1 
 

 
Figure 2. Cross-section for case study bridge with one lane. All dimensions are in millimeters.

To design the reinforcement, we used 500 MPa steel and concrete with a compressive
strength of 35 MPa. The length, L, is varied from 7.5 to 15 m in increments of 2.5 m,
representing a typical range of lengths used for solid slab bridges. The width is varied
from 5.6 (one lane) to 16.4 m (four lanes) in increments of 3.6 m (one design lane). Finally,
the skew angle is varied from 0◦ to 60◦ in increments of 15◦, representing a typical range of
skew angles used for skewed solid slab bridges. In the Netherlands, skew slab bridges of
approximately 15◦, 30◦, 45◦, and 60◦ skew angles represent roughly 56%, 26%, 14%, and 4%
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respectively, of the total skewed slab bridges registered in the country [33]. Every possible
parameter combination is modeled, resulting in 80 different case study bridges.

Additionally, the parametric study is extended by studying the influence of the mate-
rial parameters using two case study bridges as a reference. The yield strength of the steel
is taken as 500 and 220 MPa, and the concrete compressive strength is taken as 25, 35, and
60 MPa. The lower yield strength of the steel represents the steel grade that is found in ex-
isting slab bridges. The lower concrete compressive strength represents both a deteriorated
concrete as well as a regular low-strength concrete. However, existing slab bridges often
have a higher concrete compressive strength as a result of the ongoing hydration of the
cement, which is represented in this case study by using the 60 MPa concrete [34,35]. This
higher strength is also explored for the design of new reinforced concrete slab bridges with
high skew angles [12]. The first reference case study bridge that is used for evaluating the
effect of material parameters has a 7.5 m span, 4 lanes, and a 15◦ skew. The second one is
the 15 m span, 2 lanes, and 45◦ skew case study bridge.

The resulting total number of case study bridges is 90. All parameters are summarized
in Table 1. The 80 configurations of geometry are illustrated in Figure 3. All configurations
are analyzed with the AASHTO LRFD simplified procedures, using hand calculations, and
with LFEA. The governing load combination comes from the AASHTO LRFD for the limit
state Strength I.

Table 1. Overview of parameters studied.

L (m) Number of
Lanes W (m) α (◦) fy (MPa) F′c (MPa)

7.5 1 5.6 0 500 25
10 2 9.2 15 220 35

12.5 3 12.8 30 - 60
15 4 16.4 45 - -
- - - 60 - -

1 
 

 
(a) 

 
(b) 

 Figure 3. Illustration of the 80 case study bridges. (a) Parameters considered, and (b) geometric
properties of the case study bridges.
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3.2. Analysis and Design Procedures
3.2.1. AASHTO LRFD with Hand Calculations

The simplified method from AASHTO LRFD allows single-span, reinforced concrete,
solid slab bridges to be analyzed as a number of simply supported beams [5]. The following
loads are considered:

• DC is the self-weight of the slab bridge and the concrete barriers, using a unitary
weight of 24.52 kN/m3. The self-weight of the slab is uniformly distributed over the
whole surface. The self-weight of the concrete barriers acts on the exterior strips [36].

• DW is the self-weight of the future wearing surface, using a unitary weight of 22.78
kN/m3. The self-weight is uniformly distributed over the design lanes and shoulders.

• LL uses the AASHTO HL-93 combination for the vehicular live load. The lane load
is uniformly distributed over a 3.05 m (10 ft) width. The design truck or tandem is
applied as point loads so that it generates the most critical moment or shear, depending
on the considered failure mode. A dynamic load allowance is considered as well [5].

The simply supported strips are analyzed as beams. The self-weight from DC and
DW is applied as a uniformly distributed line load. The procedures for calculating the
equivalent strip widths for slab bridges are as follows:

• The equivalent width for interior strips considering one loaded lane is taken as [5]:

E = 10.0 + 5.0
√

L1W1 E(in); L1( f t); W1( f t) (1)

where E is the equivalent width, L1 is the span of the bridge taken as the lesser of the
real span and 18.29 m (60 ft), and W1 is the width of the bridge taken as the lesser of
the real width and 9.14 m (30 ft).

• The equivalent width for interior strips considering multiple loaded lanes is taken
as [5]:

E = 84.0 + 1.44
√

L1W1 ≤
12.0W

NL
E(in); L1( f t); W1( f t); W( f t) (2)

where E is the equivalent width, L1 is the span of the bridge taken as the lesser of the
real span and 18.29 m (60 ft), W1 is the width of the bridge in feet taken as the lesser
of the real width and 18.29 m (60 ft), W is the total width of the bridge taken from
edge-to-edge, and NL is the number of design lanes.

• The reduction factor applied to interior strips of skewed bridges is taken as [5]:

r = 1.05− 0.25 tan(α) ≤ 1.00 (3)

where the angle α is the skew angle in degrees. The reduction factor is then multiplied
by the equivalent strip widths calculated with (1) and (2). The larger result is taken
as the interior equivalent strip width. Afterwards, the maximum design moment or
shear for live load is divided by the equivalent strip width, resulting in the design live
moment or shear for the interior strip [5].

• The equivalent width for exterior strips is taken as the distance between the inside
face of the barrier and the edge of the deck, plus 305 mm (12.0 in), and plus a quarter
of the strip width. This value should not exceed 1829 mm (72.0 in) or half the full
interior strip width. Then, the maximum design moment or shear for live load is
obtained by considering one line of wheels from the vehicle in the HL-93 load model
and a tributary portion of the design lane load. Afterwards, this magnitude is divided
by the equivalent strip width, resulting in the design live load moment or shear for
the exterior strip [5].

The midspan moment for the DC, DW, tandem, and lane load is used for the flexural
design. For the truck, the maximum moment follows from positioning the vehicle so that
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the midspan point of the bridge bisects the distance between the nearest 142 kN (32 k) axle
and the center of gravity of the vehicle [2].

For shear design, the moments and shears are taken at the critical shear section. This
location is measured perpendicularly at a distance, dv, from the support line (see Figure 4a
for reference). The distance, dv, is the effective shear depth, which is the distance between
the resultant of the compressive and the resultant of the tensile forces, not exceeding 0.72 h,
with h being the height of the cross-section [5]. The heaviest axle of the vehicle is positioned
at the location of the critical shear section.
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With these design magnitudes, the main longitudinal reinforcement is designed for
the Strength I limit state. The secondary transverse reinforcement is calculated with
the distribution steel provisions from AASHTO LRFD [5]. Finally, the need for shear
reinforcement is verified with the design procedures from AASHTO LRFD [5]. The shear
provisions are a simplified version of the Modified Compression Field Theory [37]. Detailed
calculations for each of the case study bridges can be found in the open access PDF
document titled Calculation Memories provided as part of the Supplementary Materials.

3.2.2. Use of Linear Finite Element Models

LFEA is performed using SCIA Engineer version 20.0 [38]. The solid slab bridges are
modeled with isotropic shell elements. The element size is 100 mm. While the majority of
FEM software offer Mindlin and Kirchhoff plate bending theory for the analysis, Mindlin
theory is chosen as suggested by Hulsebosch [12]. The slabs are supported on hinged line
supports on the sides adjacent to the free edges. Additionally, the loads are as described
for the simplified methods with a few modifications. First, the vehicle loading is applied
as uniformly distributed loads acting over the standard tire contact area [5]. Second, the
multiple presence factor m, which multiplies the magnitude obtained for the live loading,
is included (see Table 2) [5]. This multiple presence factor represents the limited probability
of having multiple lanes loaded simultaneously throughout the design life of the bridge.
Third, the barrier is modeled as a uniformly distributed load located along the base width
of the barrier on both edges (see Figure 2).

Table 2. Multiple presence factors [5].

Number of Loaded Lanes Multiple Presence Factors

1 1.2
2 1
3 0.85

>3 0.65



Infrastructures 2021, 6, 88 8 of 23

The design longitudinal bending moment for DC and DW is taken as the peak value
of the section cut performed perpendicular to the longitudinal direction of the bridge.
This section cut is done at the location of the maximum longitudinal bending moment
(see Figure 4). The design bending moment for LL is averaged over the effective width
(see Figure 5). The distance where the resisting action caused by the maximum stress
is distributed along the effective width is the same as the resisting action caused by the
variable stresses along the entire width [39,40]. The live load distribution width is obtained
as the weighted average between the distribution width and maximum moment for the
lane and vehicle loading cases.
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A section cut parallel to the longitudinal direction is used to determine the design
moments for transverse flexural reinforcement. This cut is made at the location of the maxi-
mum secondary transverse bending moment (see Figure 6). Then, the bending moment is
obtained by averaging the Strength I load combination over the effective width.
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The design moments and shear forces for shear design are taken at the location of the
critical shear section. They are resolved in the direction of the principal shear force, which
is calculated as follows [32]:

v0 =
√

v2
x + v2

y (4)

Then, the direction of the principal shear force, which is expected to be comparable to
the skew angle, is given by [32]:

θ0 = arctan
(

vy

vx

)
(5)



Infrastructures 2021, 6, 88 9 of 23

Finally, the moment in the direction of the principal shear force is calculated as [32]:

m0 = mx cos2 θ0 + my sin2 θ0 + 2mxy cos θ0 sin θ0 (6)

The magnitudes for shear and moment at the critical shear section are mesh-dependent.
Therefore, they are averaged over a width of 4 d, with d being the effective depth to the
main longitudinal reinforcement (see Figure 4). This distribution width is determined
by comparing LFEA models and shear tests on straight reinforced concrete slabs in the
laboratory [42]. It is also applied in the guidelines for the assessment of existing bridges in
the Netherlands [43].

Using the values obtained from processing the LFEA results, the reinforcement is
designed for the Strength I limit state. Then, it is checked if the distribution steel fulfills the
transverse moment demands as the skew increases. Finally, the need for minimum shear
reinforcement is determined. To do so, the area of the main longitudinal reinforcement is
resolved in the direction of the principal shear force as follows [32]:

Ascalc ,αx (θ0) = As,αx cos4(θ0 − αx) (7)

where the angle θ0 represents the direction of the principal shear force, and the angle αx is
the skew angle with respect to the x-axis. The nominal shear capacity is calculated twice.
First, it is assumed that the main flexural reinforcement is parallel to the direction of the
traffic. Then, a virtual rotation of the main flexural reinforcement is assumed. These two
magnitudes are compared to validate the design procedure of taking moments and shears
in the direction of the principal shear stress and using an equivalent reinforcement area [32].
Detailed calculations for each of the case study bridges can be found in the open access PDF
document titled Calculation Memories provided as part of the Supplementary Materials.

4. Results and Analysis
4.1. Analysis Methodology

We first compare the maximum longitudinal bending moments from AASHTO LRFD
and LFEA, as well as the resulting reinforcement using LFEA and interior strip AASHTO
LRFD. Then, the distribution widths for live load from LFEA are compared to the total
width of the cross-section. Subsequently, a similar comparison is made for the transverse
bending moments. Next, shear demand and shear capacity are compared for both AASHTO
LRFD and LFEA to determine when minimum shear reinforcement is needed. Afterwards,
the results are compared for the case study bridges with varied material parameters. Finally,
the designed reinforcement is compared in terms of weight of steel.

All comparisons are based on the Strength I limit state. For the Service I limit state,
we would need to place the reinforcement in two layers in some cases or use a higher slab
depth. Changing reinforcement layout and depth would have impeded the one-on-one
comparisons of the study, and thus we did not include these changes in our designs.

4.2. Maximum Main Longitudinal Bending Moment

Figure 7 compares the results of LFEA and AASHTO LRFD in terms of maximum
longitudinal bending moment as a function of the skew angle. Figure 7a–d show the results
for the different span lengths. The data points for LFEA are specific for each case study
bridge. Those for AASHTO LRFD represent upper and lower bounds. AASHTO LRFD
design moments are higher for exterior than interior strips. As a result, the dash-dotted
line in Figure 7 for the exterior strip provides the upper bound design moments, and the
dashed line for interior strip provides the lower bound.
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 Figure 7. Comparison of LFEA and AASHTO LRFD maximum longitudinal bending moment. (a) L = 7.5 m, (b) L = 10 m,
(c) L = 12.5 m, (d) L = 15 m. Circled data indicates that the same reinforcement was provided with LFEA and
AASHTO LRFD.

For the 7.5 m long bridges (see Figure 7a), the only cases where the same reinforcement
is provided using AASHTO LRFD and LFEA is for the one- and two-lane case study bridges
with a 15◦ skew angle. For the 10 m long bridges (see Figure 7b), the same reinforcement is
provided for the one-, two-, and three-lane case study bridges with a 0◦ and 15◦ skew angle.
This also holds true for the one-lane case study bridge with a 30◦ skew angle. Likewise,
for the 12.5 m long bridges, the same reinforcement is provided for the one-, two-, and
three-lane straight bridges. In addition, all the case study bridges with a 15◦ skew as well
as the one- and two-lane case study bridges with a 30◦ skew angle are designed with the
same reinforcement using both methods. For the 15 m span bridge (Figure 7d), the same
reinforcement is provided for all case study bridges with a 0◦ and 15◦ skew angle. Aside
from these, the one-, two-, and three-lane case study bridges with a 30◦ skew angle obtain
the same reinforcement using both methods.

As can be seen in Figure 7, for the majority of case study bridges, the resulting bending
moment with LFEA is less than the AASHTO LRFD interior strip. AASHTO LRFD only
captures a small reduction of resulting longitudinal bending moments as the skew increases.
In comparison, LFEA captures a small increase between 0◦ and 15◦ and then the bending
moment drops significantly as the skew increases between 15◦ and 60◦.

Table 3 summarizes the results from Figure 7. Columns two and three show, for the
straight case study bridges, the overestimation of the longitudinal bending moment using
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AASHTO LRFD as compared to LFEA, expressed as a percentage. Since this percentage
varies depending on the number of lanes, an average is presented in Table 3. The over-
estimation is larger for shorter spans, reaching 22.5% for interior strips and 39.8% for
exterior strips. The overestimation for the exterior strips is significantly larger than the
overestimation for interior strips.

Table 3. Interior and exterior strip Ml,max overestimation and Ml,max reduction (in percentage) using AASHTO LRFD
and LFEA.

Length (m) Interior Strip Ml,max
Overestimation (%)

Exterior Strip Ml,max
Overestimation (%)

Ml,max Reduction for 60◦ Skew
per AASHTO LRFD (%)

Ml,max Reduction for
60◦ Skew per LFEA (%)

7.5 22.5 39.8 27.9 75.3
10 13.9 33.3 24.0 69.8

12.5 8.9 28.9 20.6 65.1
15 5.5 25.1 18.1 61.8

Columns four and five in Table 3 indicate the percentage decrease between the 60◦

case and the straight case for Ml,max, using the AASHTO LRFD method (column 4) and
LFEA (column 5). For the AASHTO LRFD procedures, the results for the interior strip are
considered. Since the percentage varies depending on the number of lanes, an average is
presented in Table 3. As can be seen, the moment reduction that AASHTO LRFD is able to
capture is nearly 40% less than that attained by LFEA for all span lengths considered.

The reduction of longitudinal bending moment that occurs as the skew angle increases
is explained by the trajectories of the principal stresses. For straight bridges (see Figure 8a),
the direction of the principal stresses follows the longitudinal direction of the bridge.
This causes the main longitudinal bending moments to be higher. However, as the skew
increases (see Figure 8b), the trajectories shift from the longitudinal to the transverse
direction. The result of this change in trajectories is the reduction of the main longitudinal
bending moments shown in Figure 7.
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α = 60◦.

4.3. LFEA Live Load Distribution Width for Main Longitudinal Bending Moment

Figure 9 shows the effective width for live load from LFEA (Weff) to the width of the
bridge (W). By dividing these two magnitudes, the proportion of the width of the bridge
that carries live load is determined. This proportion is referred to as the width factor (Wfact)
(see Equation (8)). Continuous lines in Figure 9 signal the upper bound width factor for
case study bridges sharing a same number of lanes, and dashed lines signal the lower
bound. The data points indicate specific case study bridges, but no distinction is made as
to their specific span length. The horizontal line at Wfact = 0.5 identifies that the live load is
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distributed over half the width of the bridge. As shown in Figure 9, the majority of case
study bridges have an effective width larger than half of the bridge width. In fact, 68 of the
80 case study bridges carry live load width over a third of the width, 55, more than one
half, and 42, more than three quarters. Additionally, Figure 9 shows that wider bridges
tend to have a lower Wfact than narrower bridges. Moreover, shorter span bridges have
a lower Wfact than longer span bridges. For instance, 30 out of the 40 case study bridges
with span lengths of 12.5 and 15 m have a Wfact of more than 50%. On the other hand, only
11 out of the 20 case study bridges with span length of 7.5 m have a Wfact of more than 50%.

W f act =
We f f

W
(8)
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Figure 9. Relation of effective width to bridge width for live load bending moment from LFEA,
showing data of all 80 case study bridges.

As mentioned before, when the skew angle increases, the trajectories of the principal
stresses shift away from the longitudinal to the transverse direction (see Figure 8). However,
this is not the only effect that the trajectories undergo. In fact, skewness also causes the
trajectories of the principal stresses to concentrate towards the edges. This phenomenon
results in a reduction of Wfact for increasing skew angles. More concentrated live load
moment concentrations result in a smaller Wfact.

4.4. Maximum Secondary Transverse Bending Moment

Figure 10 compares the results of LFEA and AASHTO LRFD in terms of maximum
transverse bending moment as a function of the skew angle. Figure 10a–d show the results
for the different span lengths. The data points for LFEA are specific to each case study
bridge. The lines for AASHTO LRFD represent upper and lower bounds. Data from LFEA
represents the maximum transverse design moment. AASHTO LRFD requires a design
based on the distribution reinforcement provisions, so that Mtmax for these cases is the
capacity provided by the distribution reinforcement [5].
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Figure 10. Comparison of LFEA maximum transverse bending moment and AASHTO LRFD bending moment capacity
provided by distribution reinforcement. (a) L = 7.5 m, (b) L = 10 m, (c) L = 12.5 m, (d) L = 15 m. Circled data indicates that
the same reinforcement was provided as for AASHTO LRFD.

For the 7.5 m span bridges (see Figure 10a), the transverse reinforcement designed
with AASHTO LRFD is only able to match the demand determined with LFEA for the
one-lane and 15◦ skew bridge, besides the straight cases. For the 10 m span bridges
(see Figure 10b), the AASHTO LRFD distribution reinforcement is only sufficient for the
demand determined with LFEA for the one-lane and 15◦ skew angle case study bridge. For
the 12.5 m span bridges (see Figure 10c), the AASHTO LRFD distribution reinforcement
is insufficient for the demand determined with LFEA for all skewed cases. For the 15 m
span bridges (see Figure 10d), the AASHTO LRFD distribution reinforcement provisions
only match the demand for the one-lane and 15◦ skew bridge. While the transverse
bending moments with LFEA are influenced by the skew (see Figure 8), the distribution
reinforcement capacity from AASHTO LRFD is not. We can conclude that the AASHTO
LRFD distribution reinforcement is not sufficient for the majority of the skewed bridges.

Table 4 summarizes the results from Figure 10. Columns two through five indicate
the percentage increase of the Mt,max. The increase results from comparing the demand
from LFEA to the moment capacity achieved when only distribution reinforcement as
per AASHTO LRFD is provided. Since the percentage varies depending on the number
of lanes, an average is presented in Table 4. This increase is largest for the 30◦ and 45◦

skew angle case study bridges, where the percentage increase is around 100%. The highest
percentage is 162.6% for the 15 m span length and 45◦ skew angle. These values show that
AASHTO LRFD distribution reinforcement is not sufficient for skewed bridges.
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Table 4. Increase in LFEA Mt,max demand versus AASHTO LRFD capacity.

Length (m) 15◦ Skew
Angle (%)

30◦ Skew
Angle (%)

45◦ Skew
Angle (%)

60◦ Skew
Angle (%)

7.5 23.4 103.0 135.8 45.1
10 23.7 87.7 125.8 52.1

12.5 44.1 108.4 110.1 46.7
15 27.5 104.9 162.6 86.9

The increase of transverse bending moment for increasing skew angles is explained by
the trajectories of the principal stresses. For straight bridges (see Figure 8a), the direction
of the principal stresses follows the longitudinal direction of the bridge. As a result, the
transverse bending moments are minimal and can be resisted by minimum secondary
transverse reinforcement. When the skew grows, the trajectories shift from the longitudinal
to the transverse direction (see Figure 8b). In consequence, the transverse bending moments
increase and require more than minimum reinforcement.

4.5. Shear Demand versus Shear Capacity

Figure 11 shows the ratio (Unity Check, UC, see Equation (9)) of shear demand (Vu) to
factored concrete shear capacity (φVc) as a function of the skew angle. Shear reinforcement
is required when UC > 1, with UC defined as:

UC =
Vu

φVc
(9)
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Figure 11. Relation of shear demand to concrete shear capacity.

Continuous lines show the upper bound values determined from LFEA for the case
study bridges of the same span length, and dashed lines show the lower bound. Dash-
dotted horizontal lines show the maximum and minimum boundaries for the AASHTO
LRFD UC. The data points indicate specific case study bridges. The horizontal line at
UC = 1 signals the point in which shear reinforcement is necessary to fulfill the AASHTO
LRFD design provisions for shear [5].

As shown in Figure 11, none of the case study bridges analyzed with AASHTO LRFD
or with LFEA required shear reinforcement. The highest unity check in the obtuse corner
was 0.874 for the two-lane, 15 m span, and 45◦ skew angle case study bridge analyzed
with LFEA. The relation between the UC on the skew angle is different for the AASHTO
LRFD and LFEA approaches. The UCs for AASHTO LRFD are not influenced by the skew.
The UCs using the demand from LFEA increase from 0◦ to 30◦, then either increase or
decrease slightly from 30◦ to 45◦, and decrease from 45◦ to 60◦. This behavior is explained
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by the fact that skewness causes stress concentrations in the obtuse corners. These stress
concentrations are translated into substantial shear peak stresses that do not occur in
straight geometries. The straight case study bridges have significantly lower UCs than the
skewed ones. For the skewed bridges, a reduction in the concrete compressive strength
could lead to the need for shear reinforcement.

4.6. Influence of Material Properties

Two case study bridges were designed for the six possible combinations of 500 and
220 MPa yield strength steel and 25, 35, and 60 MPa compressive strength concrete. The
aim is to determine how the materials’ properties influence the reinforcement design. The
case numbers for the 12 bridges from this section respond to the numbering adopted in the
Calculation Memories found in the Supplementary Materials. If for each skew angle (0◦,
15◦, 30◦, 45◦, and 60◦) we considered the aforementioned 6 possible material combinations,
96 case study bridges would result (see Equation (10)). Therefore, the 0◦ skew angle bridges
were numbered from 1 through 96, the 15◦ skew angle bridges from 97 through 193, and
so on.

Case study bridges per skew angle = 6 [material combinations]×
4 [width variations]× 4 [length variations] = 96 case study bridges

(10)

The selected base case study bridges are those with the highest and lowest shear UC
for the 35 MPa concrete and 500 MPa steel. These two case study bridges are identified in
bold in Tables 5 and 6. The bridge with the lowest shear UC was 7.5 m long, had 4 lanes,
and a 15◦ skew angle. The bridge with the highest shear UC was 15 m long, had 2 lanes,
and a 45◦ skew angle.

Table 5. Designed reinforcement for the 7.5 m long, four-lane, 15◦ skew case study bridge using LFEA when varying the
material properties.

Bridge Material Longitudinal Design Transverse Design Shear Design

Case f′c (MPa) fy (MPa) As,calc
(mm2/m)

Design
(mm @ mm)

As,calc
(mm2/m)

Design
(mm @ mm) UC Reinforcement

125 25 500 1621 ϕ 25 @ 250 591 ϕ 16 @ 300 0.489 Not needed
109 35 500 1598 ϕ 25 @ 250 588 ϕ 16 @ 300 0.406 Not needed
141 60 500 1576 ϕ 25 @ 250 585 ϕ 16 @ 300 0.305 Not needed
173 25 220 3684 ϕ 25 @ 100 1350 ϕ 20 @ 200 0.370 Not needed
157 35 220 3632 ϕ 25 @ 100 1343 ϕ 20 @ 200 0.308 Not needed
189 60 220 3581 ϕ 25 @ 100 1336 ϕ 20 @ 200 0.233 Not needed

Table 6. Designed reinforcement for the 15 m long, two-lane, 45◦ skew case study bridge using LFEA when varying the
material properties.

Bridge Material Longitudinal Design Transverse Design Shear Design

Case F′c
(MPa) fy (MPa) As,calc

(mm2/m)
Design

(mm @ mm)
As,calc

(mm2/m)
Design

(mm @ mm) UC Reinforcement
(mm @ mm)

312 25 500 2947 ϕ 28 @ 200 1721 ϕ 20 @ 150 1.054 2 ϕ 10 @ 15
296 35 500 2903 ϕ 28 @ 200 1706 ϕ 20 @ 150 0.874 Not needed
328 60 500 2860 ϕ 28 @ 200 1691 ϕ 20 @ 150 0.658 Not needed
360 25 220 6719 ϕ 32 @ 100 3952 ϕ 25 @ 100 0.696 Not needed
344 35 220 6618 ϕ 32 @ 100 3916 ϕ 25 @ 100 0.578 Not needed
376 60 220 6519 ϕ 32 @ 100 3881 ϕ 25 @ 100 0.435 Not needed

For cases with the same yield strength of the steel, the longitudinal and transverse
reinforcement is not influenced by the concrete compressive strength (see Tables 5 and 6).
The concrete compressive strength barely influences the theoretical area of required steel,
As,calc. The difference in As,calc between 25 and 60 MPa concrete is 3%. This observation
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is explained because the concrete compressive strength has only a small influence on the
height of the compressive stress block. As a result, the influence on the internal lever arm
at the ultimate limit state and flexural capacity is minimal. The shear unity check varies
significantly as the concrete compressive and steel yield strength change. This variation
can lead to the need for shear reinforcement, as can be in Table 6 for the UC marked in
red. The results in Tables 5 and 6 show that lower concrete compressive strengths and
higher steel yield strengths lead to higher unity checks. This observation can be explained
by the square root relationship between concrete compressive strength and concrete shear
capacity. A section that uses a higher yield strength steel requires less area of steel for
flexural reinforcement. The net longitudinal tensile strains thus increase, reducing the
parameter β used for determining the concrete shear capacity [5]. β is a shear parameter
that is a function of axial strain and level of applied shear stress [5].

4.7. Weight of Steel Reinforcement Comparison

This section provides a comparison between the steel needed for the flexural rein-
forcement of the 80 case study bridges designed with AASHTO LRFD and LFEA. The
weight calculation assumes that the same bar diameters and spacings are provided along
the whole width and length of the bridge for the longitudinal and transverse reinforcement.
In other words, for the longitudinal reinforcement, the comparison is based on the interior
strip only. Sixteen representative bridges are selected to illustrate the observations, and
their properties are given in Table 7.

Table 7. Description of bridge identifiers for Figures 12 and 13 and Tables 8–10.

Bridge Identifier Description Bridge Identifier Description

1 7.5 m span, 1 lane 9 7.5 m span, 3 lanes
2 10 m span, 1 lane 10 10 m span, 3 lanes
3 12.5 m span, 1 lane 11 12.5 m span, 3 lanes
4 15 m span, 1 lane 12 15 m span, 3 lanes
5 7.5 m span, 2 lanes 13 7.5 m span, 4 lanes
6 10 m span, 2 lanes 14 10 m span, 4 lanes
7 12.5 m span, 2 lanes 15 12.5 m span, 4 lanes
8 15 m span, 2 lanes 16 15 m span, 4 lanes

Table 8. Weight (in kg) of steel reinforcement for bending moment—longitudinal reinforcement. Bridge identifiers are
explained in Table 7.

Bridge Identifier LFEA 0◦ LFEA 15◦ LFEA 30◦ LFEA 45◦ LFEA 60◦ AASHTO LRFD 0◦ AAHTO LRFD 60◦

1 659 824 659 495 264 824 659
2 1275 1275 1275 879 484 1275 1099
3 2033 2033 2033 1374 989 2033 1703
4 3231 3231 2835 2440 1649 3231 2440
5 1083 1354 1083 812 433 1354 1083
6 2094 2094 1806 1444 794 2094 1806
7 3340 3340 3340 2257 1354 3340 2799
8 4658 5308 4658 3358 1950 5308 4008
9 1507 1507 1507 1130 452 1884 1507
10 2914 2914 2512 2010 1306 2914 2512
11 4647 4647 3894 3140 1884 4647 3894
12 6481 7385 6481 4672 2713 7385 5577
13 1931 1931 1448 1062 579 2414 1931
14 3219 3219 2575 1931 1159 3733 3219
15 4989 5954 4989 4023 2414 5954 4989
16 8304 8304 7145 5986 3476 9462 7145
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Table 9. Weight (in kg) of steel reinforcement for bending moment—transverse reinforcement. Bridge identifiers are
explained in Table 7.

Bridge Identifier LFEA 0◦ LFEA 15◦ LFEA 30◦ LFEA 45◦ LFEA 60◦ AASHTO LRFD 0◦

1 132 198 274 297 201 198
2 264 264 404 453 347 264
3 330 374 566 648 566 385
4 528 528 831 936 818 528
5 217 379 515 482 282 271
6 433 578 823 831 527 433
7 542 803 1201 1273 831 632
8 867 1094 1668 1842 1257 867
9 301 512 678 603 347 377
10 603 834 1156 1075 663 603
11 754 1218 1758 1670 1042 879
12 1206 1733 2547 2592 1658 1206
13 386 570 743 647 386 483
14 772 978 1313 1172 760 772
15 966 1513 2108 1915 1223 1126
16 1545 2221 3148 3013 1989 1545

Table 10. Difference (in kg) between total weight of reinforcement determined with LFEA and
AASHTO LRFD. The difference is determined as the amount of steel designed using LFEA minus the
amount required by AASHTO LRFD. Bridge identifiers are explained in Table 7.

Bridge Identifier 0◦ 15◦ 30◦ 45◦ 60◦

1 −231 0 −89 −231 −392
2 0 0 141 −207 −532
3 −55 −11 181 −396 −533
4 0 0 −92 −382 −501
5 −325 108 −27 −60 −639
6 0 144 101 −253 −917
7 −90 172 569 −442 −1246
8 −650 227 152 −975 −1668
9 −452 −241 −75 −151 −1085

10 0 231 151 −30 −1145
11 −126 339 126 −716 −1846
12 −904 528 437 −1326 −2412
13 −579 −396 −705 −705 −1448
14 −515 −309 −618 −888 −2073
15 −1126 386 16 −177 −2478
16 −1159 −483 −715 −2008 −3225

Figure 12a and Table 8 present the comparison for the longitudinal reinforcement.
For skew angles up to 15◦, the difference in weight between the two analysis methods is
about 350 and 150 kg for 0◦ and 15◦, respectively. Increasing skew angles result in larger
differences: 600, 1100, and 1500 kg for 30◦, 45◦, and 60◦, respectively. The AASHTO LRFD
approach resulted in larger amounts of longitudinal steel, with only a few cases equal
to LFEA. These cases corresponded to bridges with straight geometries or with a skew
angle of 15◦ (see Figure 7). Figure 12b and Table 9 present the comparison for transverse
reinforcement. For straight bridges, LFEA results in about 50 kg less of steel. As the
skew increases, the reinforcement design with AASHTO LRFD is insufficient to carry the
transverse bending moments. The difference with LFEA is in the order of 200, 550, 550, and
150 kg for 15◦, 30◦, 45◦, and 60◦, respectively.
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1 
 

  
(a) (b) 

 
Figure 12. Weight (in kg) of steel reinforcement for bending moment. (a) Longitudinal reinforcement, and (b) transverse
reinforcement, with bridge identifiers explained in Table 7.

Figure 13 and Table 10 show the total amount of flexural steel (sum of longitudinal and
transverse steel). This comparison allows us to determine the difference between the two
analysis approaches in terms of total steel weight. Positive values in Figure 13 and Table 10
indicate a lower total steel weight required by AASHTO LRFD than when using LFEA. For
most of the 15◦ and 30◦ case study bridges, the total steel weight designed with AASHTO
LRFD was slightly lower than when using LFEA. For the majority of the remaining skewed
cases, the total steel weight designed with AASHTO LRFD was much higher than when
using LFEA. As the skew angle increases, AASHTO LRFD overestimates the longitudinal
bending moments but underestimates the required steel for transverse moments since the
AASHTO procedures do not consider the effect of skew on the transverse reinforcement.
For the 15◦ and 30◦ skew angles, the differences between the two analysis methods nearly
balance out. For the 45◦ and 60◦ skew angles, the overestimation of main longitudinal
bending moments per AASHTO LRFD simplified procedures exceeds the underestimation
of secondary transverse steel, leading to higher total amounts of steel.
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5. Discussion

Slab bridges are widely used and form an important element in our infrastructure.
Even though straight geometries are preferable, urban or geographical constraints may
make the selection of skewed geometries necessary. This paper presents the results of a
parametric study to determine the applicability of AASHTO LRFD for simply supported
reinforced concrete skewed slab bridges. Ninety case study bridges with different span
lengths, skew angles, number of lanes, and material properties were used in this study.
The bridges were analyzed with the AASHTO LRFD simplified procedures using hand
calculations, and with LFEA using SCIA Engineer 20 [38]. In a final step, the required
longitudinal, transverse, and shear reinforcement were designed according to the AASHTO
LRFD for both analysis methods.

Our observed reductions in maximum longitudinal bending moments for skewed
geometries are aligned with the parametric study conducted by Menassa. Menassa found
a 50% bending moment reduction for the 50◦ case study bridges [30]. For the bridges
analyzed in our parameter study, a 45% and 65% bending moment reduction was obtained
for the 45◦ and 60◦ cases, respectively. A main difference between our study and the work
by Menassa lies in the magnitude of the bending moments for the exterior strips calculated
with AASHTO LRFD. In Menassa’s work, these moments were smaller than those of the
interior strips [30]. Contrarily, in our work, all exterior strip bending moments were higher
than those in the interior strip. This difference is explained by the fact that Menassa did not
consider concrete barrier loading. We considered concrete barrier loading and assumed
that it acted solely on the exterior strips when using AASHTO LRFD, as recommended by
Rodríguez [36].

The moment reduction coefficients developed by Théoret are not directly comparable
to the moment reductions observed in this study because Théoret’s values were computed
for the relation of width over length [9]. We can observe, however, that both Théoret’s work
and ours indicate a significant reduction of the longitudinal bending moment reduction as
the skew angle increases.

Based on the width factor determined with LFEA, we can conclude that the assumption
of the barrier acting solely on the exterior strips can be overly conservative for exterior strip
design when the simplified procedures are used. The results from Section 4.2 show the large
distribution capacity for bending moments of concrete slab bridges. The reader should
note here that this distribution capacity is based on linear elastic calculations. In reality,
after cracking, the distribution capacity of these bridges is even larger. In consequence, we
recommend distributing the weight of the barrier over the entire slab width when using
simplified code procedures.

A common trend is observed for the transverse bending moments in the parametric
studies from Théoret and Menassa, which used more refined analysis than AASHTO
LRFD. While these moments are practically negligible for straight geometries, they increase
significantly as the skew increases [9,30]. In our study, we also found that the transverse
bending moments are negligible for straight geometries. The magnitude of these moments
increased from 0◦ up to 30◦ or 45◦, depending on the width and span length. We observed
a significant decrease at 60◦. This difference in trend can be explained by how the width
of the bridge is accounted for in the studies. Both Théoret and Menassa keep the overall
width constant as the skew increases. We considered the width to be dependent on the
skew as it is related to the actual lane layout and driving direction. In consequence, when
the skew increased, the trajectories of the principal stresses shifted towards the secondary
direction. However, they did not concentrate as much because the larger width allows for
more distribution.

For shear design, there is no clear agreement [32]. This study followed the design
provisions from AASHTO LRFD based on the Modified Compression Field Theory [37],
and applied the recommendations from Lipari [32] and Lantsoght [42]. We extended the
proposals from Lipari [32] to quantify the influence of his recommendations on the shear
reinforcement in simply supported reinforced concrete slabs. None of the 80 case study
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bridges analyzed require shear reinforcement. The LFEA procedure can capture the stress
concentrations close to the critical shear section at the obtuse corner in skewed bridges.
The design procedure from Lipari was also validated [32] for all case study bridges. Our
approach can be used in practice for the design of simply supported reinforced concrete
skewed slab bridges.

Our parametric study aimed at comparing AASHTO LRFD simplified procedures
and LFEA in a practical way. To quantify the differences between both approaches, we
analyzed the weight of steel resulting from each design. Such a practical comparison is not
provided in the parameter studies from the literature. In general, using LFEA allows us to
reduce the amount of longitudinal steel while fulfilling the transverse bending moment
demand in skewed slab bridges.

We identify a few topics of future research. The first topic to explore further is the
influence of the width. We used a practical lane layout to determine the width and defined
the width in terms of driving direction. Our parameter studies can be extended by looking
at geometries in which the width is defined parallel to the support line so that the support
line width remains constant. The results from this study suggest that transverse moments
as well as shear forces would further increase with this modification. A second topic for
future research is the critical position of the truck for shear. We used a position at 600 mm
from the barrier, as suggested in AASHTO LRFD. However, concentrated loads closer to
the edge result in larger stress concentrations in the obtuse corner. Therefore, it would be
interesting to verify the shear demand with a more critical truck positioning. Third and
most important, experimental research on skewed slab bridges is very limited. Therefore,
we recommend conducting experiments on skewed slabs to better understand the behavior
at the ultimate limit state. Such studies can validate if LFEA is adequate for skewed slab
bridge analysis or if a more refined analysis would be justified. The experimental results
can be used to verify the assumption of the shear distribution width of 4 d, which was
derived for straight slabs.

6. Conclusions

In this article, the results from a parametric study on the applicability of AASHTO
LRFD for the design of simply supported, reinforced concrete skewed slab bridges were
presented. We drew the following conclusions:

• AASHTO LRFD simplified procedures are unable to accurately capture the reduction
in magnitude of longitudinal bending moments as the skew angle increases. AASHTO
LRFD results are only comparable to LFEA for skew angles up to 15◦.

• Slab bridges have a large distribution capacity for the main longitudinal bending mo-
ment. This suggests that the same main longitudinal bending moment reinforcement
can be provided for the entire width of the bridge.

• For AASHTO LRFD hand calculations, we recommend distributing the barrier weight
over the entire width instead of over the exterior strip only.

• Distribution reinforcement per AASHTO LRFD cannot be used for the design of
skewed slab bridges. As the skew increases, additional transverse reinforcement has
to be provided to meet the moment demands.

• AASHTO LRFD simplified procedures do not capture skew effects for shear design.
Thereby, Lipari’s [32] and Lantsoght’s [42] suggestions are recommended for use in practice
with the AASHTO LRFD design provisions for skewed reinforced concrete slab bridges.

• Using AASHTO LRFD instead of LFEA for obtaining design longitudinal bending
moments is conservative for skewed reinforced concrete slab bridges. However, using
AASHTO LRFD instead of LFEA for obtaining design transverse bending moments
and shears can be unconservative or unsafe.

• Using LFEA for analysis instead of AASHTO LRFD simplified procedures generally
leads to a reduction in total reinforcement steel weight and can thus be considered
cost-effective. As such, we recommend the use of LFEA for the design of skewed
slab bridges.
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Notation:

As,calc Area of steel calculated from flexural design
E Equivalent width for interior and exterior strips
L Span length taken as the dimension of the free edge
L1 Modified span length
Ml,max Maximum main longitudinal bending moment
Mt,max Maximum secondary transverse bending moment
NL Number of lanes
UC Unity check defined as the ratio of ultimate shear demand to concrete shear capacity
Vu Ultimate shear demand
W Width taken as the dimension perpendicular to the free edge
W1 Modified width
Weff Effective width for main longitudinal bending moment

Wfact
Width factor defined as the ratio of effective width for main longitudinal bending
moment to width of the bridge

X Direction of the x-axis
Y Direction of the y-axis
b Full width of a section cut
beff Effective width of a section cut
d Effective depth to the main longitudinal reinforcement
dv Effective shear depth
f (x) Function describing the unitary bending moment along a section cut
fmax Peak unitary bending moment or shear force within a section cut
m Multiple presence factor
mo Magnitude of bending moment in the direction of the principal shear force
mx Magnitude of bending moment in the x direction
mxy Magnitude of torsion effects along the x direction
my Magnitude of bending moment in the y direction
r Reduction factor for main longitudinal bending moments
t Thickness of the slab in millimeters
vo Magnitude of principal shear force

https://doi.org/10.5281/zenodo.4741292
https://doi.org/10.5281/zenodo.4741292
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vx Magnitude of shear force in the x direction
vy Magnitude of shear force in the y direction

β
Resistance parameter that shows the ability to transmit both tension and shear from
diagonally cracked concrete [5]

α Skew angle in degrees formed between the y-axis and the free edge
αx Skew angle in degrees formed between the x-axis and the free edge
ϕ Bar diameter dimension
θo Angle between the x-axis and the direction of the principal shear force
φVc Concrete shear capacity
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