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Abstract: Modern machine learning methods, such as tree ensembles, have recently become extremely
popular due to their versatility and scalability in handling heterogeneous data and have been
successfully applied across a wide range of domains. In this study, two widely applied tree ensemble
methods, i.e., random forest (parallel ensemble) and gradient boosting (sequential ensemble), were
investigated to predict resilient modulus, using routinely collected soil properties. Laboratory test
data on sandy soils from nine borrow pits in Georgia were used for model training and testing.
For comparison purposes, the two tree ensemble methods were evaluated against a regression tree
model and a multiple linear regression model, demonstrating their superior performance. The results
revealed that a single tree model generally suffers from high variance, while providing a similar
performance to the traditional multiple linear regression model. By leveraging a collection of trees,
both tree ensemble methods, Random Forest and eXtreme Gradient Boosting, significantly reduced
variance and improved prediction accuracy, with the eXtreme Gradient Boosting being the best
model, with an R2 of 0.95 on the test dataset.

Keywords: machine learning; decision trees; random forest; gradient boosting; multiple linear
regression; resilient modulus; Mechanistic–Empirical Pavement Design

1. Introduction

As many state transportation agencies start adopting or plan to adopt the Mechanistic–
Empirical Pavement Design Guide (MEPDG) [1], the smooth transition from current
material testing schedules and pavement design practices to full implementation of the
MEPDG is a major concern. The Georgia Department of Transportation (GDOT), for
example, currently uses the “AASHTO Interim Guide for Design of Pavement Structures,
1972” for its flexible pavement design procedure and the 1981 Revision of the Interim
Guide for its rigid pavement design procedure [2]. Pavement designers are provided a
single strength parameter, derived from soaked California Bearing Ratio (CBR) test results.
As part of the MEPDG implementation plan, the soil support value (SSV) and modulus of
subgrade reaction (k) will be replaced by the subgrade resilient modulus (MR), which is
more representative of the behavior of soil under traffic loading and can be determined by
using a cyclic loading test procedure [3,4].

The goal in selecting a design MR is to characterize the subgrade soil according to its
physical properties and behavior within the pavement structure. Therefore, laboratory
testing of the soil at the density, moisture content, and stresses that are experienced during
the pavement design life is recommended. To reliably predict MR, it is important to
understand the key factors that influence the behavior of the subgrade. In general, the
data from Kim [5] show that higher confining stresses were observed to increase the MR of
granular soils while higher deviator stresses were observed to lower the MR.

State transportation agencies view the laboratory resilient modulus testing as time-
consuming, complicated, or resource intensive [6]. Yau and Von Quintus [7] noted that
most state transportation agencies did not routinely test for the MR of subgrade soils
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and preferred to estimate this property with experience or through the use of other soil
properties. As such, there has been an invested effort on developing predictive models for
MR [8]. By doing so, movement towards full adoption of the MEPDG can be achieved with
the least disruption to a state’s existing procedures.

In this study, the utility of modern machine learning methods, i.e., tree ensembles, were
explored in modeling and predicting MR using routinely collected soil index properties
in Georgia. The study aims to demonstrate the superiority of the tree ensemble methods
in modeling and predicting MR as compared to a simple regression tree and a traditional
multiple linear regression (MLR) model. The paper is organized into seven sections.
Section 2 reviews the literature relevant to the subject of the study and discusses the
factors affecting subgrade resilient modulus. Section 3 describes the laboratory test and the
dataset. The tree-based machine learning models, including Regression Tree, and two tree
ensemble methods, i.e., Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), are
introduced in Section 4, followed by the model development and evaluation in Section 5.
Section 6 provides a direct comparison of the tree-based models developed in contrast with
an MLR model fit with the same dataset. Finally, the conclusions are drawn in Section 7.

2. Factors Affecting Subgrade Resilient Modulus

The resilient modulus (MR) is defined by Equation (1) [9]:

MR =
σd
εr

(1)

The classic formulation (Equation (2)) provides a relationship between MR and the
stress state of the soil, which fits the Long-Term Pavement Performance (LTPP) test data [7]:

MR = K1Pa

[
θ

Pa

]K2
[

σd
Pa

]K3

(2)

where MR = resilient modulus; εr = the recoverable axial strain; K1, K2, and K3 = regression
coefficients; Pa = atmospheric pressure; and θ = bulk stress.

Researchers have found that the MR for granular soils increases with increasing
deviator stress [10,11]. It also increases with increasing confining pressure [11–13]. Bulk
stress has also been found to influence MR [14,15].

Besides stress conditions, moisture is another key factor affecting the subgrade resilient
modulus, because it has been observed that MR decreases as moisture content increases [13,14,16].
Hossain included temperature as an important factor that affects MR because a frozen soil
can rise to values 20 to 120 times higher than before freezing. After thawing occurs, soil
strength is greatly reduced thereby weakening the pavement structure [17].

Resilient modulus has been shown to change based on seasonal moisture condi-
tions [18]. Jin et al. (1994) found that the MR of granular soils modulus decreases with
seasonal increases in moisture content up to a certain bulk stress after which MR varies
indifferently to the moisture content [19]. Therefore, proper modeling of the moisture
conditions is necessary to select a suitable modulus for pavement design because an over-
estimated modulus will result in a thin pavement that cannot properly support the design
traffic while an under-estimated modulus will result in over-designed pavements that
do not optimize a state agency’s transportation budget. In addition, proper modeling
of in situ stresses is important because selecting an MR based on expected stress levels
may not be conservative and can lead to under-designed pavements [12]. Since MR is
stress-dependent, thinner pavement sections will result from unsuitably high design con-
fining stress estimates. The pavement may also be under-designed if the in situ moisture
conditions are underestimated.

Lekarp et al. (2000) concluded in their state-of-the-art review of the literature that
researchers had not yet overcome the challenge of understanding the elastoplastic behavior
of granular soils [20]. They pointed out that, while agreeing on some of the factors that
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influence resilient behavior, there is a lack of agreement with regards to others. They found
that the resilient behavior of granular materials is influenced by density, gradation, fines
content, maximum grain size, aggregate type, particle shape, stress history, and number of
load applications. The analysis by Yau and Von Quintus [7] on the Long-Term Pavement
Performance (LTPP) database agrees with these general physical properties as factors
that influence the modulus of sandy subgrade soils and include liquid limit in their list.
However, they did not find a variable that was common to all their models. Malla and
Joshi [6] found strong correlations for some AASHTO soil classes and weaker correlations
for others using a general constitutive model. They also did not find predictor variables
that were common among their prediction models.

Kessler (2009) found that the properties of interest in building the long-lasting roads
are density, moisture, shear strength, and stiffness/modulus [21]. These studies support
that knowing the moisture content of the subgrade material is very important because
achieving 100% compaction during construction is a function of a soil’s optimum mois-
ture content.

3. Laboratory Test and Dataset

In this study, laboratory test data from a previous study were utilized to establish a
correlation between MR and a number of influential variables [5]. The soils tested in the
study were recovered from nine borrow pits located across the state of Georgia (Figure 1).
These soils were selected by GDOT as being representative of materials used in subgrade
construction in Georgia. As seen in Table 1, all nine soils were classified as sands (SC,
SM, or SP). The physical properties were determined based on AASHTO T-89 (Liquid
Limit Test) [22] and AASHTO T-90 (Plastic Limit Test) [23]. The standard proctor test was
conducted in accordance with AASHTO T-99 to obtain optimum moisture content and
maximum dry density [24]. The soils were also classified according to the Unified Soil
Classification System (USCS) and AASHTO Soil Classification System. The particle size
distributions for each of the nine subgrade soils are presented in Figure 2.

Table 1. Subgrade sources and properties [4].

Subgrade
No.

Location
(County)

Percent Passing (%)
% Clay

%
Volume
Change

Max. Dry
Density

(pcf)

Opt.
Moisture

Content (%)

LL
(%)

PI
(%)

USCS
Soil

Class

AASHTO
Soil

Class

Number of
Successfully Tested

Specimens#10 #40 #60 #200

1 Lincoln 99 96.8 94 48.9 40.7 24.5 93.4 23.5 39.9 8.6 SC A-4 3
2 Washington 100 84.6 56 23.8 20.6 4.7 117.8 11.0 23 6.6 SM A-2-4 2
3 Coweta 90 64.6 49 28.3 24 12.2 105.3 16.7 42.5 11 SC A-2-7 3
4 Walton 89 61.5 51 36.3 28.3 4.0 104.8 16.8 40.5 12.7 SC A-7-6 3
5 Chatham 100 97.4 94 3.6 1.8 3.6 97.4 12.7 0.0 0.0 SM A-2-4 1
6 Lowndes 99 74.9 53 12.2 4.5 0.0 113.1 4.7 0.0 0.0 SP A-2-4 2
7 Franklin 97 89.4 71 31.1 19.6 5.2 105.1 22.6 39.3 9.8 SC A-2-4 1
8 Cook 80 66.4 47 25 18.4 0.6 113.1 9.9 0.0 0.0 SM A-2-4 1
9 Toombs 84 37.8 18 6.2 4.6 1.1 119.3 11.9 0.0 0.0 SP A-1-b 2
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Figure 2. Subgrade gradation [4].

AASHTO T 307-99 was followed to determine the laboratory resilient modulus of the
soil samples, using repeated load testing (RLT) equipment. The testing conditions were
selected to simulate traffic wheel loading at a dynamic cyclic load rate of 0.1 s for every
rest period of 0.9 s. The testing sequence included a range of deviator stresses for a set of
confining pressures. For each confining pressure, the resilient modulus was determined
by averaging the resilient deformation for the last five deviator stress cycles. Based on the
averages from using this method, a design resilient modulus was determined to represent
the expected subgrade condition in the pavement structure.

Three replicates for each of the nine subgrade soils were prepared for a total of 27 test
specimens. However, 9 of specimens were broken during the test. As a result, the data used
in this study were based on 18 successfully tested specimens. Note that 15 stress states
were tested for each specimen, resulting in 270 samples. The cylindrical test specimens
were fabricated to be 100 mm in diameter by 200 mm high and were compacted by using
impact methods. To remove the effect of initial permanent deformation, the specimens
were conditioned at a deviator stress of 4 psi and confining pressure of 6 psi for 500 load
repetitions. Then, 100 load repetitions were applied to the specimens for a loading sequence
that ranged from 2 to 6 psi for the confining stress and from 2 to 10 psi for the deviator
stress. The mean deviator stress and mean recovered strain were then used to calculate the
mean resilient modulus at each stress state.

For modeling purposes, the MR test results and the soil properties test data routinely
collected by GDOT were pooled together to form a dataset. The variables included in
the dataset are shown in Table 2. The correlation matrix of these variables is presented in
Figure 3.
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Table 2. Summary of variables.

Variable Description Unit Min Max Mean

P10 Percentage of sample material (by weight) passing
through the No. 10 sieve. % 79.9 99.9 93.2

P40 Percentage of sample material (by weight) passing
through the No. 40 sieve. % 37.8 97.4 73.1

P60 Percentage of sample material (by weight) passing
through the No. 60 sieve. % 17.6 93.8 58

P200 Percentage of sample material (by weight) passing
through the No. 200 sieve. % 3.6 48.9 26.9

Clay Percentage of clay (by weight) of the soil sample. % 1.8 40.7 21.0

VC Percentage of volume change of the soil sample as the
material passes from a dry to soaked state. % 0.0 24.5 7.8

SW Percentage of soil swell % 0.0 20.5 6.4

SH Percentage of soil shrinkage % 0.0 4.0 1.6

MDD
Maximum Dry Density is the dry density of the soil
sample at the peak of its parabolic relationship with
moisture content.

lbs./ft3 93.4 119.3 107.0

OMC Optimum Moisture Content is the moisture percentage
(by weight) of the soil sample at its MDD. % 4.7 23.5 15.1

LL Liquid Limit % 0.0 42.5 25.2

PI Plastic Index % 0.0 12.7 6.7

s1 Principal vertical stress at which testing was conducted lbs./in2 4.0 16.0 10.0

s3 Confining pressure at which testing was conducted lbs./in2 2.0 6.0 4.0

dev Deviator Stress dev = s1 − s3 lbs./in2 2.0 10.0 6.0

theta theta = s1 + 2(s3) lbs./in2 8.0 28.0 18.0

toct toct = 1
3

√
(s1 − s3)2 + (s3 − s1)2 lbs./in2 0.9 4.7 2.8

MR Resilient Modulus lbs./in2 3174 25,887 11,400

As shown in Figure 3, toct and dev are perfectly correlated according to their definitions.
The correlation coefficient between SW and VC and between clay and P200 are nearly 1.0
as well.
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4. Decision Tree and Ensemble Methods

Decision trees partition the feature space into a set of distinct and non-overlapping
regions, and then they fit a simple model (such as a constant) in each region. It is computa-
tionally infeasible to consider every possible partition of the feature space due to curse of
dimensionality. Instead, a “top-down” and “greedy” approach, known as recursive binary
splitting, has been generally used together with cost complexity pruning.

The classification and regression tree (CART) is a popular one proposed by Breiman
et al. [25] to construct decision trees. The major advantages of trees are their interpretability
and ease in handling qualitative predictors without creating dummy variables. However,
the major issue with trees is their high variance, meaning a small change in the data
could result in a very different tree structure. The main reason for this instability lies in
the hierarchical nature of the tree’s construction process: the effect of an error in the top
split is propagated down to all of the splits below it [26]. Other major limitations of trees
include the lack of smoothness of the prediction surface and difficulty in capturing the
additive structure. In solving most of these issues, tree-based ensemble methods have
been developed and refined over time. Tree ensemble methods are scalable to practically
large dataset. They are invariant to scaling of inputs and can learn higher-order interaction
among features.

There are two major categories of ensemble methods: parallel ensemble and sequential
ensemble. In parallel ensemble, each tree model is built independently, typically with a
bootstrapped sample. The main idea is to combine many of individual trees to reduce
variance. For example, for regression problems, the predictions of individual trees in an
ensemble are averaged to produce the final prediction, which can significantly reduce
variance if the samples are independently drawn from the underlying population. On the
other hand, in sequential ensemble, tree models are generated sequentially with the later
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trees to correct the errors made by previous trees in sequence. In practice, a shrinkage factor
(also referred to as learning rate) is often applied to prevent overfitting. In the inference
stage, the trees are summed to produce the final prediction.

The most popular and well-known model of parallel ensemble is Random Forest
(RF) [27], while for the sequential ensemble, variants of gradient boosting methods have
been developed with the eXtreme Gradient Boosting (XGBoost) [28] being one of the most
popular methods. In RF, bootstrapped samples are used to fit individual trees. Instead
of selecting a node-splitting feature from the full set of predictors, a random subset of
predictors is chosen, and those predictors are the candidates for node splitting, to reduce
correlation among trees. In XGBoost, gradient boosting is extended to the second order
and a novel explicit penalty term on tree complexity is added to the objective function.
XGBoost has achieved state-of-the-art results on many machine learning challenges and is
capable of scaling beyond billions of examples by using far fewer resources. Both methods
have recently been applied across different domains [29–31].

In this study, we explored the utility of Decision Tree, RF, and XGBoost methods
in modeling and predicting the subgrade resilient modulus of subgrade materials. The
tree-based models developed were further compared with a traditional Multiple Linear Re-
gression (MLR) model fitted using the same training dataset to demonstrate the superiority
of the tree ensemble methods.

5. Model Development and Evaluation

In machine learning applications, data are typically split into training and testing
datasets; the training dataset is used for model development, while the test dataset for
the final model test. Training dataset is normally further divided into multiple folds (k
folds) for cross-validation and hyperparameter tuning. The cross-validation is especially
necessary for small datasets, which is our case. Our dataset for this study contains 270
resilient modulus test results on nine sandy subgrade soils. The dataset was randomly
divided into training and testing datasets with an 80–20 split. The basic MR statistics of the
training and testing datasets are provided in Table 3, showing similar distributions.

Table 3. Summary of statistics for MR.

Training Dataset Testing Dataset Total Dataset

Number of
Observations 216 54 270

Average MR 11,277 psi 11,894 psi 11,400 psi

Standard Deviation 5392 psi 5967 psi 5505 psi

All models were developed by using the training dataset, and their performances
were evaluated and compared by using the test dataset. The development of each model
type and the corresponding results are presented and discussed subsequently.

5.1. Regression Tree Model

For developing the regression tree model, the rpart package [32] was used. As part
of the package, multiple cost complexities were evaluated with cross-validation. Figure 4
shows the cross-validation error plotted with respect to the cost complexity factor, as well
as the tree size.
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As indicated in Figure 4, the tree with eight terminal nodes has the minimum cost
complexity factor, and it is selected and plotted in Figure 5.
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Figure 5. Regression tree model.

As shown in Figure 5, for MR prediction, the most important variable (root node) is
the optimum moisture content (OMC), followed by the clay content (Clay) and volume
change percentage (VC). Moreover, toct and theta are also important variables in explaining
the variance in MR.

The model developed by using the training dataset was evaluated on the testing
dataset. For visualization, the model-predicted MR and the lab-measured MR are plotted
against the equality line, as shown in Figure 6. The Root Mean Squared Error (RMSE)
was computed to be 2339 lbs./in2. The R2 was computed to be 0.843 with respect to the
equality line.
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5.2. Random Forest Model

The randomForest package [33] was used to develop the RF model. The hyperparame-
ters were optimized through a cross-validation-based grid search method adopted in the
caret package [34]. As a result, the number of trees (ntree) and the number of variables
randomly sampled as candidates at each split (mtry) were selected to be 50 and 10, respec-
tively. Given the relatively small dataset, the minimum size of terminal nodes was chosen
to be 5. The final model was evaluated on the test dataset, and the model-predicted MR
and the lab-measured MR are plotted in Figure 7. The RMSE and R2 were computed to be
1499 and 0.936, respectively.

Tree ensemble models have a natural way of evaluating variable importance. Two
typically used metrics in random forest are percent increment in mean squared errors
(%IncMSE) and increment in node purity (IncNodePurity). The former indicates how
much error increases if a subject variable is removed, while the latter measures how much
node purity (in terms of Gini impurity index) increases if a subject variable is removed.
The relative importance plots are shown in Figure 8. As indicated, the two lists of top
10 important variables are not completely agreeable. However, both importance metrics
chose OMC, toct, theta, VC, SW, and s3 among the top 10 most importance variables. Clay
was selected by the %incMSE metric, while P200 was selected by the IncNodePurity metric,
noting that these two variables are highly correlated (see Figure 3).



Infrastructures 2021, 6, 78 11 of 16

Infrastructures 2021, 6, x FOR PEER REVIEW 10 of 15 
 

5.2. Random Forest Model 

The randomForest package [33] was used to develop the RF model. The hyperparam-

eters were optimized through a cross-validation-based grid search method adopted in the 

caret package [34]. As a result, the number of trees (ntree) and the number of variables 

randomly sampled as candidates at each split (mtry) were selected to be 50 and 10, respec-

tively. Given the relatively small dataset, the minimum size of terminal nodes was chosen 

to be 5. The final model was evaluated on the test dataset, and the model-predicted MR 

and the lab-measured MR are plotted in Figure 7. The RMSE and R2 were computed to be 

1499 and 0.936, respectively. 

Tree ensemble models have a natural way of evaluating variable importance. Two 

typically used metrics in random forest are percent increment in mean squared errors 

(%IncMSE) and increment in node purity (IncNodePurity). The former indicates how 

much error increases if a subject variable is removed, while the latter measures how much 

node purity (in terms of Gini impurity index) increases if a subject variable is removed. 

The relative importance plots are shown in Figure 8. As indicated, the two lists of top 10 

important variables are not completely agreeable. However, both importance metrics 

chose OMC, toct, theta, VC, SW, and s3 among the top 10 most importance variables. Clay 

was selected by the %incMSE metric, while P200 was selected by the IncNodePurity met-

ric, noting that these two variables are highly correlated (see Figure 3). 

 

Figure 7. Predicted MR versus measured MR on testing dataset (the RF model). Figure 7. Predicted MR versus measured MR on testing dataset (the RF model).

Infrastructures 2021, 6, x FOR PEER REVIEW 11 of 15 
 

 

Figure 8. Importance of top 10 variables by percent increment in MSE and increment in node purity (the RF model). 

5.3. XGBoost Model 

The XGBoost model was trained by using the xgboost package [35]. Similar to the RF 

model development, the cross-validation based grid search method was applied to find 

the best hyperparameters: the number of boosting iterations (nrounds) = 50, maximum 

depth of trees (max_depth) = 4, learning rate (eta) = 0.1, the subsample ratio of columns 

(colsample_bytree) = 1, minimum sum of instance weight needed in a child 

(min_child_weight) = 0.5, and the subsample ratio of the training instances (subsample) = 

0.8. Figure 9 shows the model-predicted MR versus the lab-measured MR. The RMSE and 

R2 were computed to be 1,321 and 0.95, respectively. The relative importance of the top 10 

variables is shown in Figure 10, with the top three variables being OMC, P200, and MDD. 

 

Figure 9. Predicted MR versus measured MR on testing dataset (the XGBoost model). 

Figure 8. Importance of top 10 variables by percent increment in MSE and increment in node purity (the RF model).

5.3. XGBoost Model

The XGBoost model was trained by using the xgboost package [35]. Similar to the RF
model development, the cross-validation based grid search method was applied to find the
best hyperparameters: the number of boosting iterations (nrounds) = 50, maximum depth
of trees (max_depth) = 4, learning rate (eta) = 0.1, the subsample ratio of columns (colsam-
ple_bytree) = 1, minimum sum of instance weight needed in a child (min_child_weight) = 0.5,
and the subsample ratio of the training instances (subsample) = 0.8. Figure 9 shows the
model-predicted MR versus the lab-measured MR. The RMSE and R2 were computed to
be 1321 and 0.95, respectively. The relative importance of the top 10 variables is shown in
Figure 10, with the top three variables being OMC, P200, and MDD.
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5.4. Multiple Linear Regression Model

For comparison purposes, a traditional MLR model was fitted with the same training
dataset used for developing the tree-based models. The estimation results of the MLR
model are summarized in Table 4, revealing a fairly good fit to the training dataset. By
referencing the absolute t-value in Table 4, the most significant variable is OMC, followed
by toct, P200, theta, PI, and MDD. The signs of the estimates indicate that increase in OMC,
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toct and PI would result in a decrease in MR while increase in P200, theta, and MDD would
result in an increase in MR.

Table 4. Model Estimation Results (MLR Model).

Variable Estimate SE T-Value P-Value Sig.

(Intercept) 13147.86 3682.27 3.571 0.000 ***
P200 155.82 20.53 7.589 0.000 ***
MDD 77.06 29.05 2.652 0.009 **
OMC −881.82 56.52 −15.602 0.000 ***

PI −277.45 47.22 −5.876 0.000 ***
theta 209.76 30.07 6.977 0.000 ***
toct −1004.75 127.68 −7.869 0.000 ***

R2 = 0.839
Residual Standard Error = 2191
F statistic = 182.1 (p-value < 2.2 × 10−16)

Sig.: *** 0.001; ** 0.01.

The MLR model was further evaluated on the same test dataset. The model-predicted
MR and the lab-measured MR are plotted in Figure 11. The RMSE and R2 were computed
to be 2143 and 0.869, respectively.

Infrastructures 2021, 6, x FOR PEER REVIEW 13 of 15 
 

 

Figure 11. Predicted MR versus measured MR on testing dataset (the MLR model). 

6. Model Comparison 

For direct comparison of all four models presented previously, the RMSE and R2 are 

compiled in Table 5, and the top five most important variables are summarized in Table 

6. The MLR model and the Regression Tree model share similar performance in terms of 

RMSE and R2. The MLR model slightly outperformed the Regression Tree model, while 

the latter has a much simpler model structure (see Figure 5). As expected, both tree en-

semble methods (RF and XGBoost) outperformed the MLR and Regression Tree models, 

with significantly improved performance, evidenced by much lower RMSE and higher R2. 

Table 5. Comparison of model performance on the test dataset. 

 MLR Regression Tree RF XGBoost 

R2 0.869 0.843 0.936 0.950 

RMSE 2143 2339 1499 1321 

Table 6. Comparison of variable importance across models. 

Rank MLR (1) Regression Tree (2) RF (3) XGBoost (4) 

1 OMC OMC OMC OMC 

2 toct VC MDD P200 

3 P200 Clay VC MDD 

4 theta toct P200 LL 

5 PI theta toct s3 

Notes: (1) ranking is based on the absolute t value, (2) ranking is based on the hierarchical order in the 

tree, (3) ranking is based on the increment in node purity, and (4) ranking is based on the relative im-

portance. 

As indicated in Table 6, the top single most important variable (i.e., OMC) is same 

across all four models, and many other top variables are shared across the models. For ex-

ample, among the top five most importance variables, toct appeared in the MLR, Regression 

Tree, and RF models, while P200 showed up in the MLR, RF, and XGBoost models, noting 

Figure 11. Predicted MR versus measured MR on testing dataset (the MLR model).

6. Model Comparison

For direct comparison of all four models presented previously, the RMSE and R2 are
compiled in Table 5, and the top five most important variables are summarized in Table 6.
The MLR model and the Regression Tree model share similar performance in terms of
RMSE and R2. The MLR model slightly outperformed the Regression Tree model, while the
latter has a much simpler model structure (see Figure 5). As expected, both tree ensemble
methods (RF and XGBoost) outperformed the MLR and Regression Tree models, with
significantly improved performance, evidenced by much lower RMSE and higher R2.
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Table 5. Comparison of model performance on the test dataset.

MLR Regression Tree RF XGBoost

R2 0.869 0.843 0.936 0.950

RMSE 2143 2339 1499 1321

Table 6. Comparison of variable importance across models.

Rank MLR (1) Regression Tree
(2) RF (3) XGBoost (4)

1 OMC OMC OMC OMC

2 toct VC MDD P200

3 P200 Clay VC MDD

4 theta toct P200 LL

5 PI theta toct s3

Notes: (1) ranking is based on the absolute t value, (2) ranking is based on the hierarchical order in the tree, (3)

ranking is based on the increment in node purity, and (4) ranking is based on the relative importance.

As indicated in Table 6, the top single most important variable (i.e., OMC) is same
across all four models, and many other top variables are shared across the models. For
example, among the top five most importance variables, toct appeared in the MLR, Regres-
sion Tree, and RF models, while P200 showed up in the MLR, RF, and XGBoost models,
noting that Clay is the third most importance variable for the Regression Tree, which has
nearly perfect correlation with P200. The variation in variable importance and ranking
across models is likely due to the difference in model structures and algorithms used for
model training or fitting. For example, the MLR model is constrained by its linear-in-
parameter assumption, while tree-based models are nonlinear in nature and more flexible
than the MLR.

7. Conclusions

MR is a critical input parameter for the MEPDG. As many state transportation agencies
have started adopting the MEPDG, there has been an invested effort to develop reliable
models that are capable of predicting MR from routinely measured soil properties. As such,
movement towards full adoption of the MEPDG can be achieved with the least disruption
to a state’s existing procedures.

In this paper, modern machine learning methods, such as tree ensembles, were ex-
plored in modeling and predicting MR. The laboratory test data in Georgia were utilized
for model development and evaluation. In maximizing the limited data resource, a cross-
validation procedure was applied for model training and hyperparameter fine-tuning. Two
powerful tree ensemble models, i.e., RF and XGBoost, were developed and compared
with a Regression Tree model and a traditional MLR model, fitted using the same training
dataset. All four models were evaluated on the same test dataset. The results revealed that
both tree ensemble models (RF and XGBoost) significantly outperformed the Regression
Tree and MLR models, and the XGBoost model produced the best performance.

In conclusion, single tree models, although flexible, are subject to high variance. They
are generally considered weak leaners with limited capacity, while tree ensembles are
able to leverage a collection of weak leaners to significantly improve prediction accuracy
with reduced variance. The tree ensemble models, endowed with powerful structure,
offer ample capacity to learn from various heterogeneous data sources. Unlike traditional
MLR models, which impose restrictive assumptions, such as linearity in parameters, error
normality, and homogeneity, tree ensemble models are much more flexible and versatile,
especially in learning complex nonlinear relationships in high-dimensional feature spaces.
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