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Abstract: This study aimed to explore the use of additives in soil–cement mixtures that have un-
dergone a wetting-drying cycle. In total, two types of soil were used, granitic and lateritic, which
are widely used in road base construction in the Katingan area, Central Kalimantan, Indonesia.
The cement used was the ordinary Portland type I, while the additive utilized was for commercial
purposes, and predominantly contained CaCl2. This research was conducted by testing the optimum
cement content for each soil to determine the shear strength according to Indonesian standards (i.e.,
minimum Unconfined Compressive Strength of 2400 kPa). The optimum cement contents of granitic
and lateritic soils were deduced to be 5.5% and 5% on a dry weight basis, respectively. The utilization
of 0.8% additive resulted in a 0.5% reduction in the optimum cement content of granite-like soil. The
results showed that the optimum additive content for granitic soil was higher than that without
supplementation, while for lateritic, no changes occurred. The advantage of using supplements,
however, was more pronounced in the samples when they had been subjected to wetting–drying
cycles. Additionally, at the optimum additive level, the moisture content and soil-cement loss during
wetting was always lower than without supplements.

Keywords: lateritic soil; granitic soil; additive; soil stabilization; soil-cement

1. Introduction

Central Kalimantan is a province in Indonesia which is famous for its vast swampy
areas; thus, it is difficult to source granular material for road foundations. Therefore, a
soil–cement base is often used as an alternative.

The reliability and performance of this mixture have been widely studied [1–12].
Sunitsakul et al. [1] reported that the shear strength of a mixture is strongly affected by
the water–cement ratio, independent of its dry density. The dry density of the compacted
mix should be higher than 95% of the maximum dry density of the modified Proctor
compaction, as one of the criteria for road base application [1]. In addition, the percentage
of cement is directly proportional to the shear strength of the soil–cement base [2,7,8].
This is because, with the increase in cement, the amount of calcium silicate hydrate (C-S-
H), calcium aluminum hydrate (C-A-H), and calcium hydroxide (Ca(OH)2) produced by
the mixture’s reaction also increases [4,11]. Additionally, the soil–cement shear strength
increases with curing time [2,3,5,7,11]. Da et al. [2] reported that a mixture soaked in a
higher pH groundwater produced greater strength than those immersed in distilled water.
This corresponds with the increase in sample pH with a higher percentage of cement [5].
It can be concluded that the ability to resist stress by the mix is influenced by several
factors, such as the water–cement ratio, density, curing time, salt content in the soil, and
environmental conditions, particularly water and pH.
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The addition of cement also improves the compaction behavior of a mixture in the
case of fine-grained soils [7]. The compression index decreases, and the coefficient of
consolidation increases, with a higher cement content. It has also been found that the
soil pores become smaller, and the structure behaves more robustly with an increasing
percentage [7]. Mg2+, SO4

2+, and Cl− ions have been discovered in soils with high salt
content [11], resulting in the reduction in calcium silicate hydrate (C-S-H) and aluminum
hydrate (C-A-H) bonds. Consequently, the strength of the soil–cement mixture is reduced
in this case. In addition to its application in road construction, this mixture is also used for
other purposes, such as grouting and foundations [6,9].

To improve the strength attainment, soil and cement are normally mixed with some
additional components, which are either solid or liquid natural or artificial ingredients. This
addition always leads physical or chemical changes in the mixture. The use of additives
to increase the shear strength of the soil–cement mixture started in the late 1950s; the
researcher [13] used 29 additives, such as dispersants, synthetic resins, waterproofing
agents, salts, and alkalis. The addition of 0.5–1.0% supplements, such as sodium carbonate,
sodium hydroxide, sodium sulfate, and potassium permanganate, significantly increased
the soil–cement shear strength by 150% [13]. Adding more substances beyond this did not
result in a significant improvement, and partly resulted in strength reduction, as seen in a
case where potassium hydroxide, calcium chloride, and sodium chloride were used.

Using different types of additives, such as acids, enzymatic solutions, and calcium
lignosulfonate, Blanck et al. [14] obtained distinct compaction, UCS, swelling, permeabil-
ity, and surface tension tests for various concentrations. At high proportions of calcium
lignosulfonate, the shear strength of the soil–cement mix was lower than that at low concen-
trations. Lime and rice husk ash were also used as additives to increase the soil’s resistance
level. Lin et al. [15] added nano-silicon dioxide to a sewage sludge ash–cement mixture to
improve its plasticity, shear strength, compression, swelling, and permeability behavior.
Adding 2% of this compound to samples at the optimum moisture content produced the
highest compressive strength. Aryal et al. [16] used polypropylene fiber to improve the
performance of a mix in terms of its wetting–drying and freezing–thawing behavior. It
was found out that the soil with 10% cement and 0.5% fiber was able to withstand wetting–
drying for up to 12 cycles, based on its percentage loss. Organic fiber such as jute was
also used to increase ductility [17]. Garbage, such as ceramic waste and marble dust, were
combined with a small amount of cement (i.e., 2%) to produce a sub-base material for
rural roads and highways [18]. For different purposes, superplasticizer additives were also
used to improve the mixture’s performance in grouting, to increase soil injectability and
shear strength [19]. It was observed that the mix exhibited different behavior dependent
upon the soil type, additive, and its percentage. Therefore, the soil–cement mix and the
supplements were first tested according to conditions and designation [13].

Researchers have studied the durability of soil–cement mixtures with additives sub-
jected to wetting–drying cycles [20–23]. França et al. [22] observed the addition of 30%
limestone to a soil-cement mixture reduced water absorption and increased its compressive
strength. Calcite and gibbsite-rich limestone have also been used in granite waste–cement
mixtures. The sample with 60% waste and 5% limestone met the requirements for strength
after experiencing wetting–drying cycles for 90 days [20]. De Souza and Lucena [23]
replaced water with cassava wastewater, containing calcium and potassium, when mak-
ing brick soil–cement. After seven days of wetting-drying cycles, the strength, water
absorption, and loss of mass of the sample met the established criteria. These results have
demonstrated the successful use of additives rich in calcium on soil–cement affected by
wetting–drying cycles. The importance of the calcium content in the soil–cement mixture
was also reported by Van Ngoc et al. [24]. Deep and rapid damage to soil–cement due to
calcium leaching was found in samples submerged in high seawater concentrations [24].
Apart from calcium, fly ash, which contains silica, was also found to reduce mass loss
due to wetting–drying processes, with a sample retention strength of 51–88% [21]. Gen-
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erally, the mixtures are used for brick. In this case, brushing was not carried out in the
wetting–drying test [23].

This article discusses the reliability of two types of soil of predominantly granular
material (i.e., granitic and lateritic soils), that have been mixed with cement and commercial
additives, with respect to their behavior in wetting–drying cycles. They were chosen
because they are widely available in Katingan, where it is not easy to find materials that
meet the road base requirements. The most common method is to use a soil–cement mixture
from the local soil. This method is more affordable than ordering materials from other
regions. High rainfall and tides are often encountered in this location, causing the road
to be submerged in several places. Therefore, the soil–cement base becomes degraded, as
shown on the Tumbang LahangTumbang Samba-Tumbang Kaman road section, Katingan
Regency, Central Kalimantan, as indicated by the arrow in Figure 1a. This is in contrast
with the soil–cement conditions where the road was not submerged, as shown in Figure 1b.
No visible damage appears to the surface of the soil–cement in the figure. In this study,
we aimed to find a solution to the problem by mixing an additive rich in calcium into the
soil–cement. This was expected to improve the soil–cement mixture’s performance against
drying–wetting cycles, as shown by the reduced water absorption and loss of mass.
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2. Materials and Methods
2.1. Materials

One of the materials used was a granitic soil taken from Hampalit, Katingan Hilir, in
Central Kalimantan. The deposits at the location are shown in Figure 2. Another material
was a lateritic soil from Tumbang Kaman, about 100 km to the north of the district capital
of Katingan, Kasongan, Central Kalimantan. This soil is a type used in road applications, as
shown in Figure 1. The basic and engineering properties of the two soils are summarized
in Table 1. The two samples had almost the same composition, which predominantly
was sand. Both were classified as silty sand (SM) under the Unified Soil Classification
System (USCS) [25]. The chemical composition of the granitic and lateritic soils were
determined using X-ray fluorescence (XRF) tests, as summarized in Table 2. Although the
two samples were classified into the same soil type, the chemical composition of the soils
was different. The lateritic soil predominantly contained Si and Fe, while the granitic was
largely comprised of Si and Ti. The presence of Si can increase the soil cement’s strength by
forming C-S-H in the mixture [26].
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Table 1. Engineering properties of the soils.

Properties Granitic Lateritic

Specific gravity 2.64 2.64
Water content (%) 2.4 4.3

Gravel (%) 0.00 1.19
Sand (%) 77.76 69.46
Silt (%) 7.74 0.9

Clay (%) 14.5 28.56
Liquid limit (%) − 28.59
Plastic limit (%) − 22.74

Plasticity index (%) − 5.85
Soil Classification (USCS) Silty sand Silty sand

Unconfined compression strength (cu) (kN/m2) − 26.8
Maximum dry density (kN/m3) 1 16.33 17.73
Optimum moisture content (%) 1 12.5 14.3

1 Modified Proctor compaction test.

Table 2. Chemical composition of soils.

Composition Granitic 1 Lateritic 1

Al 1.77 15
Si 83.12 29
Ca 0.02 0.89
Ti 10.75 2.28
Fe 1.18 46.3
Ni 0.00 3.93

1 obtained from the X-ray fluorescence test (XRF).

The cement type used in the study was an ordinary Portland cement type I, with a
specific gravity of 3.15. Using the X-ray fluorescence (XRF) test, its chemical contents, as
summarized in Table 3, were obtained. The results were comparable with the Portland
cement content, which consists of major oxides (i.e., CaO, SiO2, Al2O3, and Fe2O3) and
minor oxides (i.e., MgO, SO3, and some alkali oxides (K2O and Na2O)) [27].
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Table 3. Chemical composition of the cement.

Compounds Percentage 1

CaO 67.28
SiO2 18.68

Al2O3 4.30
Fe2O3 4.54
MgO 1.10

Alkali (K2O + Na2O) 1.71
SO3 1.28

1 obtained from the X-ray fluorescence test (XRF).

The additive used was a commercial type, which was in the form of a powder. The
chemical contents are shown in Table 4, and mainly included chlorine (Cl), calcium (Ca),
and potassium (K).

Table 4. Chemical composition of the additive.

Compositions Percentage 1

Cl 55.7
K 4.47
Ca 37.6
Fe 0.18
Ni 0.964
Cu 0.092

1 obtained from the X-ray fluorescence test (XRF).

2.2. Methods and Procedures

Each soil density was achieved by compacting the samples by following the Modified
Proctor Standard to obtain the optimum moisture content of the lateritic and granitic
samples, which were 14.3% and 12.5%, respectively, with a maximum dry density of
17.73 kN/m3 and 16.33 kN/m3, respectively, as shown in Table 1.

Unconfined compression strength (UCS) tests were carried out on each sample at its
optimum moisture content and maximum dry density, with various cement percentages of
4%, 4.5%, 5%, 5.5%, and 6% on a dry weight basis based on SNI03-6887-2002 [28], which
was similar to ASTM D-1633-2000 [29]. This test is commonly used to determine the effect
of cement on the soil [1–3,5–8,10,11,13–15,17].

Based on the Indonesian standard (SNI03-3438 1994) [30], the optimum cement content
is at a UCS of 2200 kPa. Following the latest and more specific standard, the general
specification for highways, a UCS of 2000–2400 kPa is required [31]. It should be noted
that the required soil shear strength for road applications differs from country to country.
Antunes et al. [5] compared the strength required by several countries. Table 5 shows the
required mechanical specifications compared to those used in Indonesia; however, in this
study, the maximum value was used (i.e., 2400 kPa).

The wetting–drying test was carried out based on the Indonesian standard (SNI 6427
2012) [32]. A No. 4 (4.75 mm) sieve was used. In total, two samples were used in the
wetting–drying test. One was used for any changes in absorption (i.e., Specimen No. 1),
and the other was for soil loss (i.e., Specimen No. 2). After compaction, the samples were
stored in a humid place and protected from free water for seven days. Specimen No. 1 was
weighed and measured in dimensions after storage at the end of day 7. Then, the samples
were immersed in water at room temperature for 5 h. Specimen No. 1 was again weighed
and measured. Both specimens were placed in an oven at 71 ◦C for 42 h. Then, sample
No. 1 was weighed and measured in its dimensions. For Sample No. 2, two firm strokes
were given on all areas with the wire scratch brush. It took approximately 18–20 vertical
firm strokes to cover the specimen’s sides twice, and four strokes on each end. Then, it
was weighed. Both samples were re-immersed, and the same procedure was continued



Infrastructures 2021, 6, 48 6 of 18

for 12 cycles. At the end of the cycle, the samples were placed in an oven at 110 ◦C for
24 h to determine the dry weight. This method is similar to the ASTM standard [33]. After
12 cycles, UCS tests were performed to obtain the residual shear strength of each sample.
Table 6 presents a summary of the initial conditions of the tested samples. GC and LC refer
to granitic and lateritic soils, respectively. The next two numbers indicate the cement and
additive content. An additional denotation is given at the end of the sample numbering in
Table 6, namely “1” for the volume and moisture change measurements, and “2” is for the
soil-cement loss measurements.

Table 5. Laboratory UCS required for soil–cement mixtures.

Layer
U.S. Army
Corps for

Engineer [5]
German [5] Portuguese [5] Southern

African [5] Indonesia [30] Indonesia [31]

Base
≥5.17 MPa for
7 days curing

time

≥7.0 MPa for
28 days curing

time
Non-specified

1.5 ≤ UCS ≤
3.0 MPa for

7 days curing
time

2.2 MPa for
7 days curing

time

2.0 ≤ UCS ≤
2.4 MPa for

7 days curing
time

Sub-baseLayer
≥1.72 MPa for
7 days curing

time

≥0.5 MPa for
28 days curing

time

0.8 ≤ UCS ≤
1.0 MPa for

28 days curing
time

0.75 ≤ UCS ≤
1.5 MPa for

7 days curing
time

0.6 MPa for
7 days curing

time
Non-specified

Table 6. Initial conditions of the wetting-drying samples.

Soil Sample Code γd w (%) Cement (%) Additive (%)

Granitic GC-5-0-1 16.33 12.5 5 0
Granitic GC-5-0-2 16.33 12.5 5 0
Granitic GC-5-0.8-1 16.33 12.5 5 0.8
Granitic GC-5-0.8-2 16.33 12.5 5 0.8
Lateritic LC-5-0-1 17.73 14.3 5 0
Lateritic LC-5-0-2 17.73 14.3 5 0
Lateritic LC-5-2-1 17.73 14.3 5 2.0
Lateritic LC-5-2-2 17.73 14.3 5 2.0
Lateritic LC-5-5-1 17.73 14.3 5 5.0
Lateritic LC-5-5-2 17.73 14.3 5 5.0
Lateritic LC-5-9-1 17.73 14.3 5 9.0
Lateritic LC-5-9-2 17.73 14.3 5 9.0
Lateritic LC-5-14-1 17.73 14.3 5 14.0
Lateritic LC-5-14-2 17.73 14.3 5 14.0

In total, two tests were carried out to determine the microscopic samples and chemical
components before and after mixing with additives and the wetting–drying processes. The
two tests were field-emission scanning electron microscopy (FESEM) and energy-dispersive
X-ray spectroscopy (EDAX). Other researchers investigating soil–cement mixes have also
used these two methods.

3. Results
3.1. Optimum Additive and Soil-Cement Content

Figure 3 shows the results of the UCS granitic and lateritic soils. This graph shows that
the optimum cement content for both was 5.5% and 5.0%, respectively. The additive content
in the mixtures was determined using a trial test by mixing an added component with
varying concentrations from 2% to 14% of the soil–cement sample. In the determination of
the cement content, the optimum additive percentage produced a sample UCS of 2400 kPa.
Its variation with the additive content is shown in Figure 4a,b for the granitic and lateritic
soils, respectively. For the granitic soil, lower cement contents (i.e., 4.5% and 5%), with
the addition of the same percentage of supplements, were assessed. It was found that the
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UCS was still below 2400 kPa. As shown in Figure 4a, the optimum additive content was
0.8% and 6% for 5% cement content. A lower additive content (i.e., 0.8%) was selected and
used for further blending. For the lateritic soil (Figure 4b), 2% of the additive was chosen
because it gave the required strength (2400 kPa). Although the UCS was almost the same
as for the soil–cement mix without additives, its effect on the wetting–drying cycles was
easily discernible.
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3.2. Granitic Soil

Figure 5 shows the change in water content during the 12 cycles of the wetting–
drying process for granitic soil. As shown in Figure 5a, the moisture content of
the soil-cement sample after wetting varied by an average of 3.9% for the samples
mixed with 0.8% additive, and 14.8% for the samples without it. The addition of
0.8% supplement reduced the amount of water absorbed by the sample by 3.8 times.
Meanwhile, for the brushed samples (Figure 5b), the water increased with the number
of wetting–drying cycles, which was observed after the sixth cycle. The sample’s water
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content without additive increased from 16% in the first cycle to 25% in the 12th cycle
(a 1.6-fold increase). In addition, with the supplements, it also increased from 4.8% to
20% (or about 4.2 times); nevertheless, the sample water content with additives was
still lower than without.
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(b) soil–cement loss specimens.

An important conclusion with regards to soil–cement samples that have undergone
wetting–drying processes is with respect to the soil–cement loss, which is defined as the
ratio of the original calculated sample’s oven-dried weight minus its final corrected weight
(ASTM D559 1996) [33]. Simply, it is the dry unit weight of the sample per cycle divided by
the initial dry density of the sample. Here, the soil–cement loss was shown not only in the
brushed samples, but also during soaking (i.e., volume and moisture change specifications).
Figure 6a shows that for the soil–cement samples without additives the mixture started
losing weight in the second cycle, while for those with supplements this occurred in the
third cycle. At the end of the test (i.e., after the 12th cycle), the soil–cement samples
without additives exhibited a weight loss of 25% and 17%. The loss for the samples with
supplements was 8% less than those without. This was more significant in the sample
that was intended for investigation (Figure 6b). The soil–cement loss commenced from the
second cycle and increased until the last phase. At the end of the test, the soil–cement loss
of the samples without additives was 47%, or 14% greater than those with supplements
(i.e., 34%). The addition of these substances reduced the soil–cement loss due to the
wetting–drying cycles.
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Figure 6. Soil–cement loss throughout the wetting–drying cycles. (a) Volume and moisture change specimens, and (b)
soil–cement loss specimens.

Upon completion of these cycles, the samples were tested for their strength (UCS).
Sample GC-5-0-2 was not examined due to being broken before testing. Figure 7 depicts the
results of the UCS tests on these specimens. Before the wetting–drying cycles, the samples
with additives (GC-5-0.8) had a UCS of 2400 kPa, and after the process, it dropped to 1049
kPa for Sample 1 (i.e., for the volume and moisture change measurement) and 678 kPa for
Sample 2 (i.e., the specimen for the soil–cement loss measurement). The smallest UCS was
observed in the sample without additives (i.e., 441 kPa). It could be concluded that the
wetting–drying process decreased the strength of the mixture. Those with additives were
twice as strong as those without at the end of the cycles.
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Figure 7. Unconfined compression strength of the granitic–cement samples.

Figures 8–10 show the SEM results of the granitic soil samples (Figure 8), the granitic–
cement mix specimen (Figure 9), and the soil-cement mix with 0.8% additives (Figure 10).
It can be clearly observed in Figure 8a,b that the granitic soil consisted of sand grains and
silt particles with irregular shapes and varying sizes, which were smaller than 50 µm. The
grains did not appear to bind to one another.
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Table 7 presents the average chemical contents of this type of soil, extracted with EDX
in Spectrums 1 and 2 (Figure 8). This showed the dominance of Si and Ti, confirming
the chemical content results from XRF, as shown in Table 2. The addition of cement was
observed to produce bonding between the grains, and more compact and smaller pores, as
shown in Figure 9. The presence of cement, rich in CaO, was observed from the increase in
Ca element at the area where the EDX test was carried out (Figure 9), and the results are
shown in Table 7. The Ca content increased to 6.64%.
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Table 7. Initial condition of the wetting–drying samples.

Element Granitic Soil
(Figure 8)

GC-5-0-1
(Figure 9)

GC-5-0.8-1
(Figure 10)

Si (%) 91.95 88.82 77.06
Al (%) 1.93 1.28 6.39
Ca (%) 0.095 6.64 15.2
Ti (%) 6.73 1.41 1.69

The addition of 0.8% additive resulted in more compact clusters with smaller visible
pores, as shown in Figure 10a,b. In Table 7, the Ca content increased to 15.2% due to a high
content of CaCl2 in the supplement. The presence of this chemical also increased the Ti
content due to reduced mobilization of Ti in the soil by CaCl2 [34,35].

Other elements appeared to have little effect; therefore, the influence of additives was
not easily recognizable on the different samples’ chemical elements, taken in Spectrums 1
and 2 (Figure 10). The average Ca content increased in the specimens, and the SEM results
clearly showed differences in the physical conditions of the samples with additives.

3.3. Lateritic Soil

Figure 11a,b show the moisture content of the lateritic-cement samples that were
subjected to wetting–drying cycles for volume and moisture changes, and soil–cement
loss specimens, respectively. The LC-5-14-1 sample (i.e., that with 14% additives) was
not tested after the second cycle because it collapsed. The average water content of the
samples LC-5-0-1, LC-5-2-1, LC-5-5-1, and LC-5-9-1 were 9.9%, 2.8%, 9.8%, and 10.5%,
respectively. Specimens with 2% additives showed the lowest moisture content. For
brushed samples, the volume varied but did not increase. This was different from the
granitic–cement samples, which showed increased volume after wetting–drying cycles.
The average moisture content of the samples were 11.7%, 5.7%, 12.1%, and 12.9% for
LC-5-0-2, LC-5-2-2, LC-5-5-2, and LC-5-9-2, respectively. The water content of the LC-5-14-2
sample was not tested because it collapsed after the second cycle.

Infrastructures 2021, 6, x FOR PEER REVIEW 11 of 17 
 

ples LC-5-0-1, LC-5-2-1, LC-5-5-1, and LC-5-9-1 were 9.9%, 2.8%, 9.8%, and 10.5%, respec- 291 
tively. Specimens with 2% additives showed the lowest moisture content. For brushed 292 
samples, the volume varied but did not increase. This was different from the granitic– 293 
cement samples, which showed increased volume after wetting–drying cycles. The aver- 294 
age moisture content of the samples were 11.7%, 5.7%, 12.1%, and 12.9% for LC-5-0-2, LC- 295 
5-2-2, LC-5-5-2, and LC-5-9-2, respectively. The water content of the LC-5-14-2 sample was 296 
not tested because it collapsed after the second cycle. 297 

  
(a) (b) 

Figure 11. Water content alterations throughout the wetting–drying cycles: (a) volume and mois- 298 
ture change specimens, and (b) soil–cement loss specimens. 299 

Figure 12a,b show soil–cement loss for volume and moisture change specimens. As 300 
observed in Figure 12a, the increase in this property occurred from the first cycle to the 301 
fifth. In addition, the sample tended not to lose weight. At the end of the cycle, the soil– 302 
cement loss samples LC-5-0-2-1, LC-5-2-1, LC-5-5-1, and LC-5-9-1 were 12.6%, 11.7%, 16.6, 303 
and 20%, respectively. Similar behavior was observed in specimens where the sample lost 304 
significant weight from cycles 1 to 5. After this, the increase in sample tonnage loss was 305 
not that great. At the end of the wetting–drying cycles, the soil–cement loss samples LC- 306 
5-0-2, LC-5-2-2, LC-5-5-2, and LC-5-9-2 were 14.5%, 13.7%, 18.4%, and 21.6%, respectively. 307 
These results indicated that the sample experiencing the least weight loss was that with 308 
the addition of 2% additives (i.e., LC-5-2) for both tests, as shown in Figure 13. The addi- 309 
tion of more than 2% supplements resulted in an increase in soil–cement loss. 310 

  
(a) (b) 

Figure 11. Water content alterations throughout the wetting–drying cycles: (a) volume and moisture change specimens, and
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Figure 12a,b show soil–cement loss for volume and moisture change specimens. As
observed in Figure 12a, the increase in this property occurred from the first cycle to the fifth.
In addition, the sample tended not to lose weight. At the end of the cycle, the soil–cement
loss samples LC-5-0-2-1, LC-5-2-1, LC-5-5-1, and LC-5-9-1 were 12.6%, 11.7%, 16.6, and 20%,
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respectively. Similar behavior was observed in specimens where the sample lost significant
weight from cycles 1 to 5. After this, the increase in sample tonnage loss was not that great.
At the end of the wetting–drying cycles, the soil–cement loss samples LC-5-0-2, LC-5-2-2,
LC-5-5-2, and LC-5-9-2 were 14.5%, 13.7%, 18.4%, and 21.6%, respectively. These results
indicated that the sample experiencing the least weight loss was that with the addition of
2% additives (i.e., LC-5-2) for both tests, as shown in Figure 13. The addition of more than
2% supplements resulted in an increase in soil–cement loss.
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Figure 12. Soil–cement loss throughout the wetting–drying cycles: (a) volume and moisture change specimens and (b)
soil–cement loss specimens.
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Figure 13. Soil–cement loss as a function of the additive content of lateritic soil.
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After the wetting-drying test, the samples were examined using UCS, and as shown
in Figure 14, the results were compared with UCS specimens before the wetting–drying
tests. As observed in Figure 14, this process did not significantly affect the sample UCS,
either with or without additives. There was no discernible difference between the two.
In addition, the higher the percentage of the additives, the lower the UCS value. These
results indicated that the addition of supplements does not always result in a positive trend.
Investigations needed to be carried out for each type of soil, and the additives used. These
results were in accordance with previous findings [3,13].
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Figure 14. UCS as a function of additive content before and after wetting–drying cycles of lateritic soil.

Figure 15 shows SEM photos of samples of lateritic soil (Figure 15a), soil-cement
(Figure 15b), and soil–cement-additive mixtures (Figure 15c–f). Figure 15a shows
compacted lateritic soil grains with large pores. The granular size varies by even less
than 50 µm. The chemical content test was carried out with EDX on Spectrum 1 with
the composition shown in Table 8. In the sample, Al, Si, and Fe were the dominant
elements, according to the XRF test (Table 2). After adding cement, the specimen was
observed to be denser with closed pores, as shown in Figure 15b. Like the granitic soil
sample, cement added to the quantity of Ca, which increased from 0.21% to 4.11% in
the EDX test results (Table 8).
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Table 8. Chemical elements of lateritic–cement–additive mixtures.

Element

Before Wetting-Drying Process After Wetting-Drying

Lateritic
Figure 15a

LC-5-0
Figure 15b

LC-5-2
Figure 15c

LC-5-5
Figure 15d

LC-5-9
Figure 15e

LC-5-14
Figure 15f

LC-5-0-1
Figure 16a

LC-5-2-1
Figure 16b

Al (%) 31.37 30.48 34.41 28.16 30.42 26.68 32.62 36.08
Si (%) 45.14 42.99 45.1 40.87 40.54 35.37 42.00 44.83
Ca (%) 0.21 4.11 4.67 9.66 13.74 22.95 9.00 7.50
Fe (%) 19.39 17.65 13.45 9.70 10.92 9.84 10.75 7.71
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The addition of 2% additive resulted in a denser sample with even smaller pores.
The soil grains were also invisible in this condition (Figure 15c). Excessive supplements
caused the cement clusters to reappear; the pores were also clearly visible in this case
(Figure 15d–f). The bonds between the cement and soil grains were no longer visible at
the additive percentages of 9% and 14% (Figure 15e,f). From the EDX results (Table 8), it
was observed that the addition of 2% additives resulted in an increase in Ca, reduction
in Fe, and unchanged contents of Si and Al. The addition of Ca, which was supposed to
increase the shear strength of the sample, did not occur because of the Fe content reduction.
Goldberg [36] reported that iron oxide in clays has a beneficial effect on soil physical
properties, increasing its stability and dispersion. Reduced iron oxide content resulted
in reduced soil shear strength [37]. When the additive was more than 2%, this resulted
in a significant increase in Ca, with the Fe content not changing much, while Si and Al
decreased. Iron oxide and aluminum oxide stabilize clay soils by decreasing clay dispersion
and water uptake, and increasing micro-aggregation [36], however Fe, Al, and Si’s reduced
content resulted in reduced soil shear strength [37]. Therefore, it was concluded that
additives with high CaCl2 content are not suitable for stabilizing lateritic soils with high
Fe content.

Figure 16 shows SEM photos of samples LC-5-0-1 and LC-5-2-1 after the wetting-
drying process. It was observed that the two samples showed almost the same conditions;
cement clusters with small pores were visible. The two specimens’ chemical contents
showed that the Al content was slightly increased, and Si remained constant after wetting-
drying cycles (Table 8). Meanwhile, the Ca quantity increased due to reduced Fe content in
the soil.

4. Discussion

The effect of wetting–drying on soil–cement has rarely been examined; therefore,
information on reducing its effects is also limited. One strategy is to add polypropylene
fiber [16]. In this study, additives rich in Ca2+ and Cl− (Table 4) were used. The addition of
CaCl2 to cement is generally used to increase the strength [13,38,39]. The dosage used also
varies for different soil types. It was observed that the optimum additive amounts were
0.8% and 2%, corresponding to UCS 2400 kPa, based on the required soil–cement strength
standards [31]. The effect of adding more additives than the optimum percentage was
also different for the two soils. For lateritic soils, more than 2% supplements resulted in a
reduction in the UCS. For granitic–cement, the maximum UCS of 3000 kPa was obtained
at an additive content of 3% (Figure 4). This result allowed a reduction in the amount
of cement in the mixture, initially of 5.5% (Figure 3). When adding 0.8% additives, the
required cement was only 5% (Figure 4). This was due to Si and Al’s high content in
granitic soil, allowing the formation of more C-S-H and C-A-H. Both compounds play a
major role in increasing soil–cement strength [4,11].
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Indications of reduced strength due to excess CaCl2 have been submitted by many
researchers [38,39] as a consequence of the formation of 3CaO.Al2O3.CaCl2.10H2O, due
to the presence of Cl− preventing the formation of C-S-H and C-A-H [4,11]. This effect
occurs not only in short-term, but also in long-term strength [4]. The Si and Al content
of the two samples tested were different, which resulted in a different effect. The low
content of Si and Al in lateritic soils resulted in limited C-S-H and C-A-H formation. The
addition of Cl- further reduced their production. SEM results proved that the addition of
a Cl-rich additive resulted in a granular shape, which increased with the addition of the
additive (Figure 15d–f). This is evidence of the formation of 3CaO.Al2O3.CaCl2.10H2O
based on observations made by Xiong et al. [11]. Temperature has also been reported to
influence soil–cement [39]. The UCS increased when the sample was kept at 2–21 ◦C, while
the opposite effect occurred when mixing was carried out above 50 ◦C. In this study, the
temperature effect on the increase and reduction in soil–cement-additive strength was
neglected, because all tests were carried out at room temperature (between 25–30 ◦C).

In addition, the discussion around adding additives to soil–cement does not only consider
strength, but also the amount of water absorbed and loss of weight due to wetting–drying
cycles. The addition of supplements at the optimum percentage (i.e., 0.8% for granitic soils and
2% for lateritic soils) reduced the amount of water absorbed, represented by the samples’ low
water content, as shown in Figures 5 and 11. The addition of additives resulted in flocculated
and clustered structures, as shown in Figure 10a,b and Figure 15c, which increased with
higher C-S-H and C-A-H formation [10]. The pores became smaller and denser. Consequently,
the water absorbed by the sample when submerged was reduced. The increased strength
resulted in weight loss due to soil–cement particle release with less additives, rather than no
supplements (Figures 6 and 12). Additionally, the specimens’ strength with additives, tested
after the wetting-drying cycles, was better than those without (Figure 7).

5. Conclusions

The test results of the impact of wetting–drying cycles on soil–cement with additives
have been presented and analyzed. Based on the highest compressive strength, the op-
timum additive contents for the granitic-cement and lateritic-cement mixtures obtained
were 0.8% and 2%, respectively. The utilization of additives increased the resistance of the
soil–cement mixture in the wetting–drying cycles.

The addition of 0.8% supplements to the granitic soil–cement reduced the amount of
water absorbed by the sample by 3.8 times. The soil–cement loss of the samples without
additives was 14% greater than those with supplements. For the same soil, the wetting–
drying process also decreased the strength of the mixtures. Those with additives were
twice as strong than those without at the end of the cycles.

For lateritic soil, the specimens with 2% additive showed the smallest moisture content
for both volume change and the soil loss test. Meanwhile, the mass lost due to the wetting–
drying process on these soils with additives was slightly smaller than for those without
additives. This result was also seen in the residual strength measured after the wetting–
drying test. The effect additive was different to that for granitic soil. The chemical content
of the soil used affected the success of the additives.
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