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Abstract: Urban pickup and delivery (PUD) activities are important for logistics operations. Real
operations for general freight involve a high degree of complexity due to daily variability. Discrete-
event simulation (DES) is a method that can mimic real operations and include stochastic parameters.
However, realistic vehicle routing is difficult to build in DES models. The objective is to create a DES
model for realistic freight routing, which considers the driver’s routing decisions. Realistic models
need to predict the delivery route (including time and distance) for variable consignment address and
backhaul pickup. Geographic information systems (GIS) and DES were combined to develop freight
PUD models. GIS was used to process geographical data. Two DES models were developed and
compared. The first was a simple suburb model, and the second an intersection-based model. Real
industrial data were applied including one-year consignment data and global positioning system
(GPS) data. A case study of one delivery tour is shown, with results validated with actual GPS
data. The DES results were also compared with conventional GIS models. The result shows the
intersection-based model is adequate to mimic actual PUD routing. This work provides a method for
combining GIS and DES to build freight operation models for urban PUD. This has the potential to
help industry logistics practitioners better understand their current operations and experiment with
different scenarios.

Keywords: freight delivery with backhaul pickup; discrete-event simulation; geographic information
system; dynamic routing

1. Introduction

Freight transport is important for goods supply and the world economy. For New
Zealand, which is the case under examination, freight transport is a major section for eco-
nomic growth [1]. However, there are still difficulties in developing freight models [2–4].
In practice, freight companies have needs for improving the efficiency of operations [5].
General freight operations are complex because of the high degree of daily variability
in consignments [6,7], and the need to match this to vehicle fleet composition [8], vehi-
cle allocation and routing [9], shipment consolidation and dispatching [7], diverse types
of infrastructure and network design [10]. Road transport is the primary mode in New
Zealand, and industries are highly reliant on road transport in domestic distribution [11,12].
Compared with line-haul transport, there is more flexibility in short-haul transport regard-
ing route selection, multiple destinations and traffic complexity. Mathematical models
have been extensively applied to freight problems. However, mathematical techniques are
insufficient to represent the real operations and randomness. Therefore, there is value in
developing a freight logistics model more able to accommodate variability and randomness.
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Discrete event simulation (DES) has been widely used to simulate operations problems
with stochastic events [13]. It can analyse the system at the consignment level. Analysis
of roadway including road segments, travel speed and travel time can benefit transport
modelling [14]. However, for freight transport, it is challenging to create the transportation
network in DES. To mimic the real operations, the driver‘s decisions should be included in
the model.

This paper describes a method for combining Geographic information system (GIS)
and DES for modelling pickup and delivery (PUD) operations. GIS was applied to identify
customer clusters, the transport network and route selections. The resulting model has
partial flexible routing with a backhaul pickup. The model can reflect the driver’s routing
decisions in the route selection. Two freight simulation models were proposed, which are
a simple suburb model and an intersection-based model. The result was validated with
global positioning system (GPS) data and compared with conventional GIS models.

2. Literature Review on Urban Pickup and Delivery with Flexible Routing
2.1. Conventional Vehicle Routing Problems (VPRs)

PUD is also known as short-haul transport. Complexities arise from scattered and
random customer locations, unpredictable demand and unexpected traffic conditions.
Typical issues in transportation are Vehicle Routing Problems (VRPs). Explicit VRPs with
explanations are shown in Table 1.

Table 1. Typical Vehicle Routing Problems.

Problems Explanation

Node routing problem (NRP) [15,16] No need for arcs and edges

Travelling salesman problem [9,17,18]
One circuit is finished by one vehicle in NRP,

Including the asymmetric travelling salesman problem and the
symmetric travelling salesman problem

Arc routing problem (ARP) [19–21] No need for vertices

Rural postman problem (RPP) [22,23] One circuit finished by one vehicle in ARP

Chinese postman problem (CPP) [24–26] Each arc and edge needs to be serviced in RPP

Real-time vehicle routing and dispatching problem [27–29]
GIS, GPS, vehicle allocation could be involved.

Considerations include quick response, denied or deferred service,
congestion and system dynamism [7]

Models of VRPs are developed based on the concept of optimising the combination of
travel time, tour cost and travel distance with elements of vertices, arcs and edges where
vertices refer to addresses, and arcs (directed routes) and edges (undirected routes) refer
to routes [7]. Constraints are generally added to these problems, such as vehicle capacity,
time windows, customer priority, backhaul for pickups, and simultaneous delivery and
pickup. VRPs are built by mathematical models, which primarily are mixed-integer linear
programming models [23]. Mixed-integer linear programming is a mathematical optimi-
sation method with objective functions and constraints, which was frequently conducted
in transportation problems. The most well-known problem is the Travelling Salesman
Problem (TSP). VRPs are NP-hard (nondeterministic polynomial time) problems, so these
mathematical models can be solved by heuristic method [9] or metaheuristic method [22,29]
including genetic algorithm [17,18,26,27], tabu search, ant colony optimisation, simulated
annealing, variable neighbourhood search, etc. [30].

The most significant advantage of mathematical models is they can be created and
solved quickly. However, there are limitations in these models. In conventional mathemati-
cal models, the complexity of the calculation complicates the representation of random-
ness [13,30]. The randomness of freight transport can be freight volume, traffic conditions,
or random customer addresses. In addition, these mathematical techniques simplify real
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systems, e.g., in analytical techniques, it is difficult to add sufficient path constraints and
realistic scheduling of vehicles [31]. The simplification further leads to discrepancies in
results. For example, driver’s decisions are difficult to include. Also, the results of mathe-
matical models are unable to reveal detailed processes of operations, so different operations
scenarios are challenging to compare.

2.2. GIS

Geographic Information System (GIS) has been widely used to analyse geographic
data, and it can also run routing simulations. Compared with pure mathematical models,
a significant advantage of GIS is that geographical data is used to determine customer
addresses, which means that distances are more accurately measured. In addition, soft-
ware such as ArcGIS® has a database of road conditions and historic traffic information
which improve the results for travel time and route selection. Applications of GIS in the
VRP freight literature include freight system analysis [32], forest firefighting [33], waste
collection routes [34–37] (the latter also including Artificial Neural Network (ANN)), truck
configuration [34], emissions including carbon dioxide [38,39], and operation costs [40].

Although GIS is able to include various features, some necessary features need to be
manipulated manually, and there can be inaccuracies in the data [41]. GIS is inconvenient
to solve multiple routing cases since the input is deterministic. Moreover, GIS mainly
focuses on the routing section rather than the holistic operations.

2.3. Computer Simulation Methods

Computer simulation methods for freight logistics primarily include Agent-based
Simulation (ABS) and Discrete-event Simulation (DES). ABS allows individual entities
to determine their own process whereas DES is more dedicated to system analysis with
predefined system architecture.

Large literatures exist for ABS and DES. Selected examples for ABS, relevant to freight
are supermarket freight distribution using ABS [42], TSP using ABS and Constructive
Heuristics [43] or Particle Swarm Optimisation [44] to solve TSP, home hospital services
using ABS and GIS [45]. However, ABS may be insufficient to describe detailed freight
processes because it focuses on individual behaviour [46].

DES has been used to solve transport problems such as rail yard simulation [47],
urban rail freight [48], passengers transport [49], multimodal transport [50], container
port operations [51] real-time dispatching and fleet management [52], and freeway patrol
service [53]. DES splits the whole process into separate processes into different time periods.
In each time period, the entity is deemed to have the same status. In addition, instead of
solving constraints altogether, DES splits the process into individual events and simulates
events sequentially so it decreases the difficulty of multiple constraints. This attribute
greatly decreases the computing time of DES so randomness is able to be involved via
Monte Carlo methods.

DES is not a common method for solving VRPs. Applications include meal delivery
with uncertain requests and couriers with fixed routes [54], location-routing via Ant Colony
Optimisation (ACO) and DES [55], Rich Vehicle Routing Problems [56], pickup and delivery
problems with energy consumption [57], and vehicle routing with multiple constraints [58].

2.4. Gaps

The complexity of real freight networks is challenging. Existing mathematical methods
for freight routing modelling tend to include large simplifications in route constraints [13,31],
leading to inaccuracy in results. In addition, driver’s decisions are barely involved to
predict the route. While GIS models may solve the routing problem, they do not address
the holistic logistic operations, nor do they tolerate variability (except by manual methods).
Although DES models could deal with randomness, current DES models are limited to
represent the freight network in terms of road attributes, customer cluster analysis and
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freight operations. Furthermore, DES models lack historical information and data to suit
the real operations and validation for routing.

Therefore, there is a potential benefit to develop a method that integrates GIS and DES
to cope with intricate truck routes and variable customer locations, and involves practical
methods for practitioners to understand and optimize their operations.

3. Method
3.1. Research Objective

The objective of the paper was to find a method to create a credible PUD model
by using DES. The DES model should reflect the real operations with the driver’s route
selection. In addition, the method should not only provide solutions but also be suitable
for practical industrial implementation. In discussion with the industry, it was identified
that the main objective function from an operational perspective was time to complete
the delivery tour, as this affects cost and service quality. In this paper, we do not seek to
optimize delivery time or cost, but rather find ways to create models that could be used for
such purposes in a general freight situation of high daily variability of consignments.

3.2. Approach

First, industrial data were obtained for one-year consignments and GPS data. Due to
the consequence of COVID-19, consignment data for 2019 was used instead of the data for
2020. Consignment data were used from 2019, and used to analyse customer clusters. GPS
data were unavailable for 2019, and instead used 2020 data. The GPS data were only used
to investigate trucks routes and calculate speeds. Although 2020 represented COVID-19
operating conditions, it is believed that the overall road conditions, speeds and routes were
representative. This is because GPS data was used for the whole year, and while there were
COVID-19 lockdowns in New Zealand they were of short duration. Furthermore, the truck
route was validated by checking with the driver and the dispatcher.

GIS analysis was conducted in ArcGIS pro®. GPS data was imported in ArcGIS
to identify truck historical locations. Consignment data were used to analyse customer
clusters. Second, DES models were implemented in Arena®. Despatchers and drivers were
interviewed about their route decisions, and truck tour observations were conducted by
the first author. Ethics approval was obtained (Reference: HEC 2020/65/LR-PS).

The overall design of the DES model included an operations part and a transport
part. The operations part includes a DES model for consignment arrival and freight
consolidation, which takes into account weight and volume relative to truck capacity.
These results are not reported here. For the transport network, which is the focus of
the current paper, the problem includes freight loading at the dock via forklift, travel to
destination, unloading at destination, and regular backhaul pickup. Two DES models were
devised for the transportation, with slightly different architectures. The first is called the
Simple Suburb Model. It has the defining feature that suburbs are directly connected to
nearby suburbs by distance parameters. The second model is called the Intersection Based
Model. It is more complex as it includes major road intersections. This gives a greater ability
to model the route specifics. In both cases, the overall architecture of the model consists of
geographic centres of the suburbs represented as nodes in the model. Distances between
suburbs are included, but the two models differ in how they accomplish this. The objective
function was time to complete the delivery tour, and total distance travelled. Of these
parameters, the time was more important from the client’s operational perspective, because
of the need to complete all deliveries within the day. However, from the perspective of
emissions, e.g., tonne-kilometer, the distance is the more important. Input variables are
speeds, route selection, distances between clusters/intersections, destination and number
of consignments in the load. Average speeds for different types of roads were calculated
based on GPS data. These speeds were applied to networks.

To construct the transport network, intersections and roads were explored regarding
road selection and road conditions. This process was clarified by the truck driver and the



Infrastructures 2021, 6, 180 5 of 21

dispatcher. The street view of Google maps® was used to identify road details, intersections,
and identification of customer locations. In contrast, average speeds for truck routes were
calculated by using GPS data, and GIS was used to determine routes using the TSP
algorithm. Route selection and delivery sequence were validated with the industry client.

A summary of the combined GIS and DES simulation modelling approach is shown
in Figure 1.
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Figure 1. Workflow of combined GIS and DES simulation modelling approach.

4. Results
4.1. Identification of Main Suburbs

The truck mainly serves Less than Container Load (LCL) freight, which means multiple
customer addresses are visited in one truck tour. Moreover, the truck undertakes various
types of jobs including first-mile pickups, last-mile deliveries, and metro freight transport
as separate tours. This study examines the delivery tours. These are finished in the morning
with pick up freight in the backhaul.

The last-mile delivery consignments were consolidated in suburbs by a pivot table. To
simplify the network, the low freight volume suburbs were abandoned. Some cleaning of
the data was conducted. Some suburbs have rare deliveries, and it is impractical to develop
a simulation model for all these outliers. The outlier threshold was 1% of consignment
numbers. This is justified, because in discussion with the dispatcher, it transpired that in
some cases these outliers were because the driver was helping other drivers. These outliers
were excluded from further analysis. From this, the main suburbs were identified. Table 2
shows the one-year consignment data for the examined truck.
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Table 2. One-year consignment data for the truck. Data sourced from the industry partner.

Suburb Percentage

PAPANUI 50.84%
BURNSIDE 10.30%

CHRISTCHURCH AIRPORT 7.88%
HAREWOOD 7.53%
BISHOPDALE 7.47%
ST ALBANS 3.38%

YALDHURST 3.06%
NORTHCOTE 2.62%
AVONHEAD 2.29%

NORTHLANDS 1.88%
BRYNDWR 0.44%

MAIREHAU 0.38%
WIGRAM 0.32%

CHRISTCHURCH CENTRAL 0.32%
HORNBY 0.24%

REDWOOD 0.21%
RICHMOND 0.21%
HALSWELL 0.18%
SOCKBURN 0.09%

RUSSLEY 0.09%
ADDINGTON 0.06%

STROWAN 0.03%
FENDALTON 0.03%
SYDENHAM 0.03%

CHRISTCHURCH 0.03%
BELFAST 0.03%

MIDDLETON 0.03%
ILAM 0.03%

Customer locations and trucks GPS data were plotted in ArcGIS® as shown in a
heat map, see Figure 2. This provided a visual check of consistency. It was noted that
some suburbs were close together, so that the distinctions were artificial. These were
lumped together, e.g., Papanui and Northcote. This part of the work also provided a
visual representation of how tightly grouped the deliveries were in any one cluster. This is
relevant because it potentially affects in-cluster deliveries. In the present case, the clusters
were deemed to have similar density and hence a common in-cluster parameter was
assumed throughout. GPS data include truck location with speed, and represents different
types of roads.

This is a discrepancy between consignment data and GPS data. The GPS data in
2019 is unavailable so the GPS data in 2020 and 2021 were used instead. The company
developed new customers after 2019 in the Mcleans Island suburb (in the west of the
airport). However, it hardly affects the result of route selection and it has been checked
with the dispatcher and the driver.

4.2. Discrete-Event Simulation Model
4.2.1. Freight Operations Modelling

DES simulation for freight operations are developed into two parts: operations and
transport. Freight operations were considered as a series of discrete events. The status
of freight consignments is identical in each process. Figure 3 illustrates the operations of
freight delivery, and further modelled via Arena.
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Figure 3. Freight delivery operations modelled by DES.

The driver drove a forklift to sort out the freight and load on the truck. Observation
showed that the forklift usually carries one pallet of freight but sometimes multiple pallets.
This operation was simplified as one loading process by a forklift with the capacity of one
pallet. The truck limit is subject to freight weight and volume so these two parameters are
included in the consolidation process. The unloading module has the same process in each
cluster since most of the customers unload freight by themselves.

For backhaul, the driver is always assigned to finish a pickup in a warehouse. There
are several reasons for conducting the pickup in the backhaul. For the pickup, the driver
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operates a forklift to load freights so this process can take about 30 min. Moreover, if they
pick up a larger number of pallets, it is more difficult to unload other freights.

4.2.2. Transport Modelling

The network in this study was created by distance with truck speeds. For route
searching, the least-distance route is preferable.

The truck speed was recorded by GPS data and categorised into various roads. Dis-
tributions of speeds on different roads were determined; see Figure 4. The speed limit
for open roads is 80 km/h, and for urban roads was considered as 60 km/h because
50 km/h and 60 km/h are mixed on some roads. The GPS data were analysed to calculate
average speeds. The 0 km/h speed for loading and unloading was excluded so the data
includes acceleration speed, deceleration speed, and the 0 km/h speed for traffic lights and
congestions on the road.
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The average speeds of the truck on the open road and the urban road were calculated;
see Table 3. The delivery sequence was established according to the analysis of GPS data
(as shown in Figure 2) and enquiry with the driver and the dispatcher; see Table 4. The
reason that driver follows this sequence is mostly from the consideration of travel distance,
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and familiarity with customers and traffic. The driver preferred the open road because of
quicker travel time.

Table 3. Truck average speeds on open road and urban road, from GPS data.

Road Type Average Speed (km/h)

All roads 30.633
Open road 56.140
Urban road 23.279

Table 4. Truck delivery suburb sequence.

Sequence Suburb Cluster

1 Yaldhurst
2 Christchurch airport
3 Burnside
4 Harewood
5 Bishopdale
6 Papanui
7 ST Albans
8 Backhaul pickup

4.3. Simple Suburb Cluster Network with DES with an Average Speed

For the transport network, two structures were developed. The first network consists
of simplified suburb clusters and each cluster is connected directly with the centre of other
clusters. Figure 5 illustrates the freight network of the simple suburb cluster model in
Arena®. Distances between cluster centres of suburbs were obtained from Google maps®.
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Figure 5. Transport network of simple suburb cluster model.

The priority of suburbs was set up consistent with the real delivery sequence. The
model provides a sequence in which suburbs will be visited. This sequence resulted from
GPS data analysis and enquiry for the truck driver and the dispatcher. Due to simplification
of the network, the speed of the truck is assumed to be the average speed for all routes.

The simple suburb model shown above was to be generalised to a model that could
basically reflect the delivery activity of the truck. There are some advantages of the simple
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suburb model. The simulation modelling time is short since the network is simplified and
specific routes that the truck took were not needed to construct the network. Therefore, the
simple suburb model can be quickly extended to a larger model such as a whole city model.
This model might be used to quickly explore new markets or operational adjustments.

A limitation of the simple suburb network is that roads cannot be presented, which
means the input relative to traffic are hard to determine, such as different truck speeds
on open roads and urban roads. Besides, the route varies based on the set of destination
clusters because the driver prefers open roads with a high-speed limit.

A more realistic model architecture would be based on major roads and driver’s
perceptions of the speed and ease of getting a large truck to a specific destination. The road
perspective is natural to the driver, and it is also intrinsic to the way that GPS formulates
the situation. While it is possible for DES to represent a network of roads, there is still the
need to include travel time and other road-specific information. This is where GIS has
the advantage since it has data on roads attributes (speed limits, congestion, intersection
wait times, live traffic data, etc.) and it can already use this to determine an optimal
route between two addresses. Discussion with drivers showed that they used similar
considerations in determining their own route for the day’s consignments.

To transfer information from GIS into DES it is advantageous to reformulate the architec-
ture of the model as a network of road intersections as opposed to merely suburb centres.

4.4. Intersection-Based Network with Specified Speeds

The second freight network is the intersection-based network. Main clusters and inter-
sections were identified in Figure 6. In making this decision, Google Maps® was applied
to assist this process, and the distance between intersections was searched. Moreover, the
satellite view and street view of Google Maps® were applied to explore road conditions
including road directions and highway interchange traffic. For example, some intersections
prohibit turning right or left. The truck needs to take another road or use the interchange to
change the direction. The centre of each cluster represents the whole cluster so the distance
between the centre and the nearest road intersection was measured.
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The driver expressed a preference for the open road above urban roads. Besides, the
turn-left time was also considered because turn-right normally costs more time, especially
in traffic peak time.

Combining the above information lead to the design of an intersection-based freight
model, and its construction in Arena®. Figure 6 presents the freight network of the
intersection-based model.

Two routes were modelled from the dock to intersection A. This comes from the driver’
experience and historical GPS data (as shown in Figure 2). The driver chooses different
routes for drive-out and drive-in because of the consideration of turn-right times and traffic
conditions. However, this choice varies based on real-time traffic. In the model, these two
routes were set as one-way routes. The travel sequence is from the closest cluster to the
furthest cluster. That means the truck starts to drop off freight from the nearest customer.
This process accords with the driver’s routine. However, this sequence may be occasionally
changed according to the real priority of freight in practice.

4.5. Case Study
4.5.1. Description

To validate the model, one delivery tour with a backhaul pickup of the truck was
selected. There were 5 deliveries locations and 1 backhaul pickup location. Table 5 shows
input delivery suburbs with consignment numbers for DES models. The backhaul pickup
is located in Yaldhurst. The simulation was implemented in Arena®.

Table 5. Delivery suburbs with consignment numbers in DES models.

Delivery Suburb Consignment Number

Airport 1
Harewood 1
Yaldhurst 2
Papanui 2

For large volume deliveries, the driver switched off the ignition of the truck while
he parked the truck and finished the unloading activity. This shows up in the GPS data.
For small parcels, the driver kept the engine on. Figure 7 presents delivery locations and
corresponding routes based on GPS data. GPS data provides historical locations of the
truck with time and XY coordinates, trip distance and actions operated by the driver to the
truck. The data was imported to ArcGIS by XY coordinates. The GPS data were cleaned
by extracting the travel segments, and ignoring the time spend on unloading/loading.
This was achieved in two ways: (1) Engine on/off actions were recorded in the GPS logs,
and these were used to identify the unloading/loading times for exclusion: (2) In some
cases the driver did not switch the engine off at the delivery location, and these case were
identified by the consignment note and examining when the truck was motionless. The
frequency of GPS data logging was 5 min when in motion, with the engine on/off status
being recorded to greater precision.

Due to the 5 min interval of GPS data, the exact unloading time is difficult to recognize.
In this case, travel times between two GPS spots, which are the first on-premise time and
the nearest on-road time, were searched on Google maps. Then the residual unloading
times were calculated by subtracting 10 min from the travel time.
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4.5.2. ArcGIS Models

ArcGIS® is a platform of Geographic Information System (GIS). Locations are identi-
fied in ArcGIS® by addresses or XY coordinates. ArcGIS® was utilised to present customer
addresses and truck locations by inputting GPS data.

Existing literature shows that GIS has been used to simulate routing problems. There-
fore, several GIS models were developed and compared with DES results. Truck routes
in GIS can be estimated with a specified sequence of customer addresses. Alternatively,
it can find the theoretical optimal route by solving TSP. However, only the first location
can be preserved by TSP in ArcGIS®. There are options dedicated to trucks such as ‘avoid
truck restricted roads’, ‘driving a truck’, ‘tandem axle vehicles prohibited’ and ‘truck with
trailer restriction’. These functions indicate ArcGIS pro® potentially provides robust results
of routes. The truck speed is obtained from historical and live traffic data based on the
traffic flow.

To compare with DES models, several GIS models were developed with the predefined
sequence. To discover routes, addresses were first identified. Time measurement and
distance measurement were considered to explore the least route time and the least distance
routes. Options about the truck were selected, such as truck preferred routes and trucks
with trailers restrictions.
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4.5.3. Model Validation and Result Comparison

The following Figure 8 shows ArcGIS route results with different measurements.
Table 6 indicates GIS and DES results compared with GPS data. Correlations between
time and distance should not be determined from this table, as the data represent different
competing methods.
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Table 6. Results comparison.

Models Input
Variables

Key
Assumption

Travel
Time (min)

Travel
Distance

(km)

Output
Average Speed

(km/h)

Delivery
Sequence Pickup

ArcGIS estimated
by time

measurement

Addresses by
sequence

Historical
traffic data 47.018 39.675 50.630 Set

sequence Backhaul

ArcGIS estimated
by distance

measurement

Addresses by
sequence

Historical
traffic data 49.545 38.755 46.933 Set

sequence Backhaul

Simple suburb
model

Customer
suburb
clusters,

truck average
speed

Customer
locations 70.44 35.950 30.622

Arena
determined

sequence
with

predefined
priority

Backhaul

Intersection-based
model

Customer
suburb
clusters,

truck average
speed and

speed factors

Customer
locations 77.97 36.450 28.049

Arena
determined

sequence
with

predefined
priority

Backhaul

Ground truth-GPS
actual 73.267 39.200 32.102 Backhaul

Figures 9 and 10 display travel distance and route time for consignments from GPS
data and DES results. The route was determined from discussion with dispatchers and
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drivers, not via TSP. The reason TSP was not applicable here, was because the real opera-
tions include a regular backhaul whereby the truck must take a specific last segment of the
return route. In contrast, TSP requires freedom to select all segments of the route.
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The result of the GIS estimated model by time measurement is the best for road
selection and total travel distance although there are some discrepancies in some pieces of
road segments. However, both these models lack consideration of truck turning and road
conditions. The TSP results provided the optimal results for time or distance, although the
sequence is different from the real operations in backhaul pickup. Almost all GIS models
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produce large average speeds, which are at odds with the actual travel times. The results
of these models show the inherent configuration of ArcGIS pro is insufficient to generate
accurate results for route time.

The DES model had the best results for travel time and the route. The route provided
by DES is similar to the driver’s actual route. The consignments in the same cluster have
the same travel time because they were considered to be unloaded in the centre. The
deviation in travel distance is caused by the simplification of clusters.

5. Discussion
5.1. Advantages and Disadvantages of Logistics Simulation Models
5.1.1. Pure GIS Models

GIS is a useful tool to aid the analysis of multiple addresses and GPS data. The
advantages of GIS models are the ability to process and identify massive data for network
information and location, find route results by the heuristic Tabu Search technique, result
visualisation [40], real-time simulation [33], and detailed traffic conditions [32]. GIS pro-
vides detailed network features for regional analysis [31]. It can run a routing simulation
by inputting addresses. However, the results demonstrate that the ArcGIS model provides
accurate route distance and similar routes by time measurement for trucks as long as the
sequence is defined.

TSP results are theoretically optimal but they are different from the real route. As iden-
tified above, the real operations require a regular backhaul segment, which is incompatible
with the TSP algorithm. Nonetheless, we applied TSP by both time and distance objective
functions, with the results shown in Figure 11a,b respectively. The (a) and (b) results give a
similar sequence of deliveries to the imposed sequence. However, both TSP methods place
the backhaul pickup in an operationally impractical sequence. For this particular industrial
operation, it is important to place the pickup last, once the truck has been emptied of
deliveries, but TPS does not respect this constraint. Therefore, GIS is inconvenient for this
type of delivery and pickup problem. In addition, some roads are actually not preferable
or appropriate for trucks with regards to speed limits, turning directions, pedestrians,
congestion and traffic lights. Results showed the time measurement is better for trucks
rather than the distance measurement, a finding that is consistent with [31].
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Moreover, the default truck speed provided by ArcGIS is much faster than the real
speed. This leads to a shorter travel time than the real travel time. It may arise from GIS
ignoring low speeds, such as traffic light stops and congestion.

Disadvantages of GIS include the inability to model multiple vehicles [31], and its
limitation to deterministic modelling, i.e., stochastic elements cannot be included [34].
Moreover, GIS mainly focuses on routing problems, and operational activities are difficult
to include.

Consolidating our findings with those of the literature suggests that the advantages
and disadvantages of GIS models, vs. combined GIS + DES models, may be summarized
as in Table 7.

5.1.2. GIS + DES Models

The simple suburb cluster model and intersection-based model have the same opera-
tions architecture with different transport networks.

The simple suburb cluster model structure is adequate to show the sequence of
consignments, and the accuracy of results are acceptable although the travel distance and
route selection are deficient due to the simplification of the network. The most significant
advantage of this model is the simplification greatly reduces the modelling time. Thus, this
model is valuable when the modelling process is at the initial stage. E.g. to plan a network
for a market. However, the network is unable to present detailed routes for real operations.

In comparison, the intersection-based model includes more road details. The network
is formed by intersections so specific roads are embodied. This allows more details applied
to each road with truck speeds and road directions. Therefore, the intersection-based model
provided more accurate results for travel distance and travel time. The route selection is
credible so the model can include driver’s decisions. The disadvantage of this model is
that the model construction period is more time-consuming than the simple model. The
advantages and disadvantages of these two models are summarized in Table 8.

Table 7. Comparison of GIS models and GIS + DES models for PUD.

Advantages Disadvantages

GIS models on their own
for PUD

• Plot customer addresses and identify
suburbs

• Route with defined sequence is close to
the real route

• Average truck speeds are higher than real
speeds.

• Stochastic parameters cannot be simulated
• Some processes such as freight consolidation

are hard to involve
• It can only run one case
• It cannot consider both delivery and pickup

DES models on their own
for PUD

• Models complex freight operations in
aggregate

• Does not represent individual consignments
or variability resulting from customer
addresses

• Cannot determine optimal route/network

GIS + DES combined
models for PUD

• All freight processes can be modelled
including freight consolidation, loading
and unloading

• Individual consignments can be
presented

• Driver’s route decisions are included
• Multiple replications can be conducted

with stochastic parameters

• More data is required including GPS data
and consignment data

• Need to identify customer clusters
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Table 8. Comparison of Simple cluster suburb model and Intersection-based model.

Advantages Disadvantages

Simple cluster suburb model • The modelling period is short • Less accuracy in route details
• One global average speed is used

Intersection-based model

• The resulting route closely matches the
real selection

• Average speeds on different types of
roads are applied

• The modelling period is long
• The real traffic needs to be investigated

such as intersections
• The network needs to be created based on

historical routes

5.2. Limitations

Although the intersection-based model can simulate the freight delivery process for
the truck with satisfying results, real freight operations are more complex. The following
limitations apply. First, some suburbs are ignored. These suburbs were occasionally
visited by the truck. These are mainly casual customers and take up 2.75% of the annual
consignment workload. Second, the truck undertakes other types of jobs. These trivial jobs
include morning pickups, metro deliveries and other driver’s deliveries. However, these
jobs account for 10% of the whole delivery jobs, which arguably can be ignored. Third, the
representative centres of clusters can be identified by other methods such as density-based
clustering methods. Current errors are a few minutes in time and dozens of meters in the
distance. Last, from the perspective of health and safety, the actual speed limit for urban
roads may be either by 50 km/h or 60 km/h, whereas the model simplifies this to 60 km/h.

To create a more complete logistics model, it would be necessary to include additional
operational processes. One of the key operational constraints is consolidation. This is
where the dispatcher at the dock allocates the incoming consignments to individual drivers.
This is a complex task because of the need to consider total cargo weight and volume
relative to the truck capacity. It is further complicated by the high daily variability of
consignments, at least for general freight firms. The dispatcher also needs to ensure
delivery windows and customer service measures are met, and this is especially so with
time-critical consignments. Furthermore, any consignments not delivered on the day of
arrival at the dock will accumulate to the next day, and this is problematic because of
limited storage capacity on the dock—the system operates in a lean manner. Variability in
driver availability is another consideration, although in practice perhaps not as severe as
might be thought as such firms tend to assign drivers to overlapping suburbs, and have
floater vehicles available. There is also an integration of pick-up and line-haul to consider
for a more complete model.

5.3. Implications

The models that have been shown above are suitable for a town or region, or an
area within a larger city. This raises the question of how multiple such models might be
aggregated together to represent a wider logistics situation. It is possible to add more
clusters for this truck and compare different scenarios. Another application is to find the
best solution for allocating clusters to a fleet of trucks.

The resulting DES model can involve randomness by inputting distributions of de-
livery addresses, unloading time, number of pallets, freight weight and volume based on
historical data. In addition, random traffic and operations delays can be included. Then
the model can estimate the lead time and total distance of the consignment from the start.
Moreover, the model is able to respond quickly to day-to-day operational requirements for
a list of deliveries. The model may also be extended by addition of modules for consolida-
tion module and line-haul. Consolidation refers to sorting consignments into the relevant
suburb delivery routes.
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The method might also be used to analyse a new market area without historical data,
which means the delivery route is unknown. In this case, if the marketing was able to
provide a list of client addresses and estimated annual consignments, then the suburb
clusters could be determined, and the typical tours too. Such an approach would use GIS
to evaluate possible routes and the sequence based on the TSP algorithm and build the
operations model by DES.

It is also possible to combine elements of both methods: historical data could be edited
to reflect the expected changed business for the future year. These business changes might
include the effect of plant closures, new businesses setting up, and changes in customer
purchase habits (e.g., more small parcels due to online shopping).

5.4. Opportunities for Future Research

The intersection-based DES model has been developed and validated. Future work
might conduct different scenarios, such as a change to the delivery sequence and truck types.
In addition, the network could be extended to a larger area and more trucks considered.

6. Conclusions

This paper presents and evaluates a method to create urban PUD models. The method
combines GIS and DES. Two DES models were proposed, the suburb model and the
intersection-based model. In terms of travel time, the predictions of the simple suburb
model (70 min) and intersection model (78 min) showed reasonable agreement with the
ground truth from GPS (73 min), whereas the GIS estimated times (47–50 min) were
unrealistic. The issue with GIS is that there are no representations of the slow speeds at
intersections and congestion, nor the unloading times. The intersection based model was
the most accurate, but its more detailed network takes more effort to construct in DES. The
simple suburb model had acceptable accuracy from the perspective of the industry client,
and a much simpler structure to programme into DES.

Regarding travel distances, the discrepancies were much smaller: both the simple
suburb and intersection based predicted about 36 km, compared to 39 km for the GPS
ground truth. In this metric, the GIS models performed well, at 40 km and 39 km.

We conclude that when the purpose of the simulation is to quantify the time taken,
which is typically the paramount operational need, then the simple suburb model provides
an exceptional balance between accuracy and ease of simulation. When the purpose is only
to quantify distance travelled, then the GIS methods are the best. For those cases where
both time and distance need to be simulated, as arises when considering emission metrics
such as tonne-kilometre, then the intersection-based model appears to be the best. It has
the advantage of being able to accommodate both time and distance within one model
(rather than having to use GIS and DES), with reasonable accuracy.

With more support from GIS, the intersection-based model was able to mimic the real
route and delivery sequence including a backhaul pickup. Plain GIS models were able to
provide accurate route distance, but predicted unrealistic truck speeds.

This work makes several contributions to the field. It provides a method for combining
GIS and DES to build freight operation models for urban PUD. This has the potential to help
industry logistics practitioners better understand their current operations and experiment
with different scenarios.
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