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Abstract: In complex engineering models, various uncertain parameters affect the computational
results. Most of them can only be estimated or assumed quite generally. In such a context, measure-
ments are interesting to determine the most decisive parameters accurately. While measurements
can reduce parameters’ variance, structural monitoring might improve general assumptions on
distributions and their characteristics. The decision on variables being measured often relies on
experts’ practical experience. This paper introduces a method to stochastically estimate the potential
benefits of measurements by modified sensitivity indices. They extend the established variance-based
sensitivity indices originally suggested by Sobol’. They do not quantify the importance of a variable
but the importance of its variance reduction. The numerical computation is presented and exem-
plified on a reference structure, a 50-year-old pre-stressed concrete bridge in Germany, where the
prediction of the fatigue lifetime of the pre-stressing steel is of concern. Sensitivity evaluation yields
six important parameters (e.g., shape of the S–N curve, temperature loads, creep, and shrinkage).
However, taking into account individual monitoring measures and suited measurements identified
by the modified sensitivity indices, creep and shrinkage, temperature loads, and the residual pre-
strain of the tendons turn out to be most efficient. They grant the highest gains of accuracy with
respect to the lifetime prediction.

Keywords: sensitivity analysis; probability; probabilistic methods; Monte Carlo; monitoring; lifetime
prediction; concrete bridge

1. Introduction

Engineers use mathematical models to describe the bearing behavior of structures or to
predict their residual lifetime [1]. Here, usually many and partially interactive parameters
need to be considered [2], for instance, material properties [3], loads [4] and dimensions [5].
To account for uncertainty, they are included as variables in stochastic simulations [6–9].

Sensitivity analyses (SA) are well established to investigate and analyze analytical
or numerical computational models [10,11]. They help to improve the knowledge on
the model’s behavior and to assess the impact of all parameters to the variability of the
model output [12]. During the last decades, alternative methods have been developed
and enhanced [13]. While in case of simple models, the impact of a single variable might
already be identified analytically or employing local SA, more complex models—quite
common in engineering—usually require more sophisticated global methods [14]. Global
methods can be further divided into quantitative and qualitative approaches. For an initial
screening and to identify less relevant parameters [15,16], qualitative, distribution-free
methods like the Elementary Effect Method by Morris [17] should be preferred. By contrast,
the variance-based sensitivity indices by Sobol’ [18] involve substantial computational
costs but also provide the most sophisticated information in model analysis by quantitative
results [11]. They assess a parameter’s direct influence, as well as its influence induced
by correlation to others—referred to as parameter interaction. Finally, a combination of
screening and quantitative methods is also possible [19].
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To improve knowledge of specific parameters and to reduce uncertainty in lifetime
predictions, structural monitoring is becoming more and more popular [20–22]. Measure-
ment techniques are used to monitor the structural response [23–25] or to estimate acting
loads [26]. Furthermore, material testing is commonly used to increase the accuracy [27,28].
Each measurement technique has an associated accuracy and thus a specific reduction po-
tential of epistemic uncertainty. However, even at the highest accuracy, all parameters have
a minimum natural uncertainty that cannot be further reduced (aleatory uncertainty) [29].

So far, monitoring components, sensors and parameters are usually selected by experts
or according to general guidelines [30,31]. The measured variables are selected based on
experience [32] or the results of structural computation. This paper presents an approach
to answer the question of which parameters should be measured to achieve the highest
benefit in structural computation, based on highest accuracies achievable by measurements.
Therefore, not the most important parameter in the model should be identified, but that
one which brings the greatest benefit if its uncertainty is reduced as much as possible.

In this paper a modification of the variance-based sensitivity indices is proposed.
Based on the reduction of the epistemic uncertainty of a parameter, they can evaluate
and quantify the benefit of measurements and monitoring. The method is based on the
variance-based sensitivity indices by Sobol’ [18], which are presented in Section 2, and
the conditional variance [33,34], where a single parameter is fixed to a constant value.
The modified approach is presented in Section 3 and exemplified on a practical model in
Section 4. The presented model was developed to predict the residual fatigue lifetime of a
pre-stressed concrete bridge.

2. Variance-Based Sensitivity Indices

Variance-based SA go back to the pioneering work of Cukier et al. [35], who considered
the conditional variance as a measure of a model’s sensitivity. Later, Hora and Iman [34]
analyzed the variance of a model in cases when one parameter is fixed to a certain value.
Finally, Sobol’ derived a numerical, Monte-Carlo-based estimation of sensitivity indices [18],
which covers both a parameter’s direct influence as well as its interaction to others by
means of the covariance [13]. In this section, the theoretical background of this SA method
is given. In Section 2.2, a method of computation is briefly introduced which is later
adapted to derive modified indices in Section 3.

2.1. Variance-Based Sensitivity Indices by Sobol’

A computational model describes a specific output Y based on one or a different
input parameters (variables) Xi, cf. Equation (1). The uncertainty of each variable V(Xi)
propagates through the model and results in uncertain model output V(Y). Variance-based
SA determine the contribution of each parameter’s uncertainty to the uncertainty of the
output. For complex models, in addition to the direct variance of each parameter V(Xi),
covariances V(Xi,Xj) and higher order variances V(Xi, . . . Xn) arise and can be relevant.
Then, more sophisticated SA methods serve to identify each parameter’s impact.

In general, all these methods base on variance decomposition of a model Y Equation (1)
as a square-integrable function of q variables X1, X2, ..., Xq in a q-dimensional unit hyper-
space Ωq (0 ≤ Xi ≤ 1).

Y = f (x) = f
(
X1, X2, . . . Xq

)
(1)

Decomposition of Y—by means of ANOVA HDMR (analysis of variance, high dimen-
sional model representation [36])—delivers a single constant term f0, q linear terms fi(Xi),
q over 2 s-order terms fij and higher-order terms. Overall, the model consists of 2q terms;
each square-integrable again.

Y = f (x) = f0 +
q

∑
i=1

fi(Xi) +
q

∑
i=1

q

∑
j>i

[
fij
(
Xi, Xj

)
+ . . . + f1,2...q

(
X1, X2, . . . Xq

)]
(2)
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The decomposition is not unique, but assuming all mean values except f0 to be zero,
Sobol’ proved all terms being orthogonal [18]. Thus, the zero-order term f0 corresponds to
the model’s expectation E(Y):

f0 = E(Y) (3)

Higher-order terms can be determined by the conditional expectation E(Y|Xi) (see [37]),
where dx−i denotes an integration over all dimensions except i; equivalently, dx−i,j indicates
an integration over all dimensions except i and j.

fi(Xi) = E(Y|Xi)− E(Y) =
∫ 1

0
. . .
∫ 1

0
f (x)dx−i − f0 (4)

fij
(
Xi.Xj

)
= E

(
Y
∣∣Xi, Xj

)
− fi − f j − E(Y) =

∫ 1

0
. . .
∫ 1

0
f (x)dx−{i,j} − fi(Xi)− f j

(
Xj
)
− f0 (5)

In this way, the model’s variance V(Y) = E(Y2) − E(Y)2 =
∫

Ωq f2(x) dx − f 0
2 can

be decomposed in first- and higher-order terms, respectively (Equation (6)). Here, the
second-order variance Vij of two parameters Xi and Xj is the covariance and is a measure
of interaction.

V(Y) =
q

∑
i=1

Vi +
q

∑
i=1

q

∑
j>i

[
Vi,j + . . . + V1,2...q

]
(6)

From this, the first order sensitivity index Si follows as the ratio of the model’s
conditional variance V(E(Y|Xi)), when all parameters but Xi are fixed, to the variance of
the entire model V(Y) with all parameters variable.

Si =
V( fi(Xi))

V(Y)
=

V(E(Y|Xi))

V(Y)
(7)

Thus, single Si-values quantify the direct impact of an individual variance on the
model result Y. Higher-order sensitivity indices (Sij, . . . S1,2...q) can be deduced from condi-
tional variances as well (see [10]). Those are measures of interaction of two (covariance)
or more parameters (higher-order variance). Restricting on a single parameter Xi for
convenience, its total sensitivity index STi represents the ratio of its direct influence on
the model’s variance Vi (conditional variance) and all covariances of Xi (Vij, Vijk, . . . ) in
relation to the model’s variance. To prevent the conditional variance from being dependent
on a fixed value Xi = xi*, the expectation of the conditional variance Vx-i(Xi = xi*) over the
range of xi* denoted EXi(Vx-i(Xi = xi*)) = E(V(Y|X-i) is calculated [10].

V(Y) = V(E(Y|Xi)) + E(V(Y|Xi))
= V(E(Y|X−i)) + E(V(Y|X−i))

(8)

Finally, the total sensitivity index STi for the parameter Xi follows as the ratio of the
parameter’s direct variance Vi and all higher-order variances (Vij, Vijk . . . ) involving Xi
to the variance of the entire model V(Y). Thus, it quantifies the impact of all interactions
involving Xi and their direct influences:

STi = 1− V(E(Y|X−i) )
V(Y)

=
Vi+∑j,j 6=i Vij+∑j,j 6=i,j 6=k ∑k,k 6=i,k 6=j Vijk+...+V1,2...q

V(Y)
= Si + ∑

j,j 6=i
Sij + ∑

j,j 6=i,j 6=k
∑

k,k 6=i,k 6=j
Sijk + . . . + S1,2...q

(9)

In case of no interactions, all higher-order variances are zero and STi = Si.

2.2. Computation of Variance-Based Sensitivity Indices

Sensitivity indices are usually computed using Monte Carlo simulations [38]. Initially,
Sobol’ [18] developed an algorithm which was later enhanced by Saltelli et al. [13]. Another
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modification by Glen and Isaacs [39] significantly lowers computational costs reducing the
number of model simulations n necessary from n2 to n (2 + q) by calculating the correlation
properties of the results. Remember that q denotes the number of parameters in the model,
while the user’s choice of n comes along with the accuracy of the resulting indices and
depends on the convergence of results (see Section 4.4 and [10,14,39,40]).

For computation, two independent sample matrices A and B are generated, each
containing n realizations of q variables. For reliable results, the stochastic independence
of A and B is essential [41]. It can be found through Pearson’s coefficient of correlation
ρA,B ≈ 0. Otherwise, even small correlations can be found as spurious correlations in
the resulting sensitivity indices [39]. Especially for models with several parameters, the
sensitivity indices are likely to be close to zero. Here, spurious correlations can distort
the results.

A =


x(1)1 · · · x(1)i

... · · ·
...

x(n)1 · · · x(n)i

· · · x(1)q

· · ·
...

· · · x(n)q

; B =


x(1)q+1 · · · x(1)q+i

... · · ·
...

x(n)q+1 · · · x(n)q+i

· · · x(1)2q

· · ·
...

· · · x(n)2q

 (10)

In a second step, q further matrices Ci (with i = 1, . . . q) are assembled from A and
B. They are generated by interchanging columns. This means that the new matrix Ci is
identical to B, solely column i (for parameter i) is taken from matrix A instead. Other
matrices Ci are obtained analogously.

Ci =


x(1)q+1 · · · x(1)q+i−1

... · · ·
...

x(n)q+1 · · · x(n)q+i−1

x(1)i
...

x(n)i

x(1)q+i+1
...

x(n)q+i+1

· · · x(1)2q

· · ·
...

· · · x(n)2q

 (11)

By model computation the result vectors a = Y(A), b = Y(B) and c1 = Y(C1) to cq = Y(Cq)
are determined. Finally, the sensitivity indices are obtained based on correlation properties
between ci and a or ci and b, respectively. For details see [39].

3. Method: Modification of Variance-Based Sensitivity Indices

By means of sensitivity indices, the influence of a single parameter on the entire model
can be analyzed based on its variance. Hora and Iman [34] introduced the conditional
variance of a model, when one of its parameters is fixed to a deterministic value. In fact,
the individual variances in stochastic analyses usually contain aleatory (random, nonre-
ducible) and epistemic (reducible, inaccurate knowledge) parts. For structural systems only
epistemic variances can be reduced (Figure 1). To determine the benefits of increased knowl-
edge by monitoring or other measurements to reduce the variance, modified sensitivity
indices should consider individual variance reductions, not the variance itself.

3.1. Proposed Method Based on SOBOL’ Indices

The proposed method decomposes the variance of a general model Y—no matter
if analytical or numerical. While the initial model with originally large variances of all
variables is termed Y0 (cf. Equation (1)), the best model with utmost reduced variances is
denoted Y*. It comprises q parameters Xi*, each having a reduced variance V* (represented
by a reduced standard deviation σ* in Figure 1).

Y∗ = f
(

X∗1 , . . . X∗i , . . . X∗q
)

(12)
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Both models can be reformulated mathematically by means of variance decomposition
(ANOVA HDMR), as shown before.

V(Y0) =
q

∑
i=1

Vi,0 +
q

∑
i=1

q

∑
j>i

[
Vi,j,0 + . . . + V1,2...q,0

]
(13)

V(Y∗) =
q

∑
i=1

V∗i +
q

∑
i=1

q

∑
j>i

[
V∗i,j + . . . + V∗1,2...q

]
(14)

Thus, the variance V(Y0) of the initial model Y0 consists of q first-order variances Vi,0
and (q over 2) covariance terms Vi,j,0 (cf. Equation (6)). Y* is treated equivalently. Thus, the
difference of the two decomposed variances in Equations (15) and (16) captures the extent
of potential variance reduction ∆V*.

∆V∗ = V(Y0)−V(Y∗) (15)

Employing Equations (15) and (16), this reduced variance can be decomposed, too.
This decomposition is just analogous to that one in Section 2.2.

∆V∗ =
q

∑
i=1

Vi,0 +
q

∑
i=1

q

∑
j>i

[
Vi,j,0 + . . . + V1,2...q,0

]
−

q

∑
i=1

V∗i −
q

∑
i=1

q

∑
j>i

[
V∗i,j + . . . + V∗1,2...q

]
(16)

Herein, the reduced variance Vi* of a single parameter is interpreted as its individual
improvement and it reads:

∆Vi = Vi,0 −V∗i (17)

Thus, the potential variance reduction ∆V* from Equation (16) is given by:

∆V∗ =
q

∑
i=1

∆Vi +
q

∑
i=1

q

∑
j>i

[
∆Vi,j + . . . + ∆V1,2...q

]
(18)

If at first only a single parameter Xi* out of the q variables is improved, the model can
be written as a function of q-1 “original” parameters Xj 6=i,0 and one “improved” parame-
ter Xi*.

Y = f
(
X1,0, . . . Xi−1,0, X∗i , Xi+1,0, . . . Xq,0

)
= Y

(
Xj 6=i,0, X∗i

)
(19)
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Denoting the variance of this partly improved model V(Y(Xj 6=i,0, Xi*)), the variance
reduction by an improved knowledge about one parameter’s variance follows:

∆V∗i = V(Y0)−V
(
Y
(
Xj 6=i,0, X∗i

))
(20)

Now, considering two “improved” parameters Xi* and Xj*, the variance reduction of
the entire model follows:

∆V∗i,j = V(Y0)−V
(

Y
(

Xk 6=i,k 6=j,0, X∗i , X∗j
))

(21)

In the same way, one can increase the number of parameters with reduced variance
gradually until finally all parameters Xj* except one single variable Xi,0 exhibit a reduced
variance. This leads to:

Y = f
(

X∗1 , . . . X∗i−1, Xi,0, X∗i+1, . . . X∗q
)
= Y

(
Xi,0, X∗j 6=i

)
(22)

Hence, the total variance reduction of such a model reads:

∆V∗j 6=i = V(Y0)−V
(

Y
(

Xi,0, X∗j 6=i

))
(23)

Finally, modified first-order sensitivity indices Si
* are obtained from the ratio of single

variance reductions ∆Vi* (Equation (20)) to the total one ∆V* (acc. to Equation (18)). These
indices capture the benefit of improving the knowledge about a single parameter Xi but
neglecting any interactions with other reduced variances.

S∗i =
∆V∗i
∆V∗

=
V(Y0)−V

(
Y
(
Xj 6=i,0, X∗i

))
V(Y0)−V(Y∗)

(24)

To evaluate the benefit of simultaneous measurements and belonging variance reduc-
tions of two or more parameters, higher-order modified sensitivity indices are conceiv-
able, too.

S∗j 6=i =
∆V∗j 6=i

∆V∗
=

V(Y0)−V
(

Y
(

Xi,0, X∗j 6=i

))
V(Y0)−V(Y∗)

(25)

However, each index Sj 6=i * would require n additional model evaluations. In addition,
relevant parameter combinations would have to be estimated in advance. Thus, such
indices are omitted in the following evaluations.

3.2. Computational Implementation

A computational procedure to evaluate models is developed next. In general, it
is based on the previously described computation of the original sensitivity indices in
Section 2.2. An estimation of the modified sensitivity indices by correlation properties is no
longer possible since the influence of reduced variances and the importance of a parameter
would be mixed. A correlation coefficient analogue to the one in Equation (12) would still
identify an important parameter even if its variance cannot be reduced. This is contrary to
the basic idea of the modified sensitivity indices.

First, two sample matrices A* and B are determined analogously to the procedure
in Section 2.2. Since the indices are no longer determined with correlation coefficients
approach, it does not matter, whether they are stochastically independent or not. However,
the pre-defined correlation within the matrices (usually the parameters are supposed to be
independent) still needs to be maintained. Now, A* contains the realizations of reduced
variance; B contains the realizations with the highest (initial) scatter. As before, both result
vectors a* and b are evaluated by employing the model.

a∗ = Y(A∗) = Y(X∗i ) (26)
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b = Y(B) = Y(Xi,0) (27)

Next, further q matrices Ci* are generated. These matrices are assembled mainly from
realizations of matrix B. Only column i comes from matrix A*. For each ci* the model needs
to be evaluated again n times.

c∗i = Y(C∗i ) = Y
(
Xj 6=i,0, X∗i

)
(28)

Finally, the computation of the modified sensitivity index follows analogue to Equation (24).

Si
∗ = 1−

V
(
c∗i
)
−V(a∗)

V(b)−V(a∗)
=

V(b)−V
(
c∗i
)

V(b)−V(a∗)
(29)

4. Application Case: A Model for Fatigue Lifetime Prediction of Pre-Stressed
Concrete Bridges

The variance-based sensitivity indices were modified to analyze a complex stochastic
model, which was set up to predict the residual fatigue lifetime of aged pre-stressed
concrete bridges. As a reference serves a 50-year-old bridge in Germany [42]. Since the
model includes, among other things, a finite element computation of the structural response
and accumulation of damage over time, it is numerical and nondifferentiable. It involves
interactions and uncertainties induced by the variance of the parameters. These different
individual variances can be reduced, e.g., by on-site measurements, but, depending on the
measurement methods and the individual aleatoric uncertainty, not to the same extent.

4.1. Reference Structure and Measurements

The reference structure for fatigue damage prediction is a 303 m long pre-stressed
concrete bridge located in Düsseldorf, Germany (Figure 2). Since 1959, the box-girder-
bridge has connected Düsseldorf’s city center to the German highway system. As it
was a usual construction technique of that time, coupling joints connected consecutive
construction parts and were located in each span at about one-fifth of the span length. The
post-tensioned tendons had in general a parabolic profile, only few tendons ran straight
along the upper and lower edges. Shortly after construction, first cracks were detected at
the coupling joints. Because of the cracks and because it is a well-known weak point of aged
bridges, fatigue of the tendons at the coupling joints was focused on during measurements
and analyses.
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Figure 2. Reference structure Pariser Straße in Düsseldorf, Germany—side and top views along with a general cross-section.

On-site, different measurements were carried out on the structure. In view of its
certain deconstruction and replacement, both destructive and nondestructive tests could
be performed. To serve as a reference, many different measurements were carried out to
cover a wide range of potential impacts increasing the accuracy. Here, the geometry was
determined by length measurements on-site while the strength of concrete and of the pre-
stressing steel were evaluated on concrete cores and steel samples in the lab. Additionally,
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a strain monitoring of the pre-stressing steel and the temperature distribution (see Figure 3)
was performed for several weeks.
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4.2. Fatigue Lifetime Prediction Model for Pre-Stressed Concrete Bridges

An accurate prediction of the residual lifetime of pre-stressed concrete bridges, which
are prone to fatigue, is hardly possible [43,44]. The special characteristic of high-cycle
fatigue is sudden failure after many thousands or even millions of load cycles. For that, the
fatigue damage progress is usually determined by extrapolating the frequency of calculated
stress ranges from changing loads based on load models from the codes (e.g., [45]). Typical
sources of uncertainty in the lifetime prediction for pre-stressed concrete road-bridges are:

• estimation and prognosis of loads (traffic loads and frequencies, temperature loads);
• calculation of stresses, including the nonlinearity after cracking (typically affected by

the structural FE-model, cross-sectional and geometric parameters, material parame-
ters, and stiffness);

• fatigue-related properties of the material resistance (represented by the S–N curve).

The model considered here is nonlinear, time-dependent, and able to predict the
fatigue lifetime TFL of a pre-stressed concrete road-bridge, based on the accumulated
fatigue damage D [46]. Fatigue failure occurs at damage D = 1 and is calculated by Miner’s
rule [47,48]:

D = ∑
i

ni
Ni
≤ 1 (30)

Load frequencies ni arise from traffic counts and prognosis and relative frequencies
of individual vehicle types according to Eurocode 1–2 [45]. Load cycles until failure Ni
are obtained from the S–N curve (Figure 4) according to the stress ranges ∆σi. Stress
ranges are determined at different load levels i by combining a structural model and an
iterative computation method of stresses. For convenience, the internal forces have been
determined on a linear-elastic FE beam model (Figure 5) separated from the computation
of stresses on cross-sectional level to reduce the computational costs. An advantage of this
approach is that superposition of the internal forces can still be applied for all load cases
and evaluations of the complex FE-model can be reduced. Then the stresses are computed,
employing an iterative procedure by Krüger and Mertzsch [49] to get accurate stresses
in cracked concrete conditions. To also cover non-cracked (linear elastic) conditions, the
original approach was slightly modified and now permits the neutral strain fiber to lie
outside the cross-section (0 < ξ ≤ 2, with ξ = x/d and x being the height of compression
zone and d the effective height), too.
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conditions by springs and supports.

That way, all stress ranges that are relevant for fatigue are treatable uniquely. In
advance, the approach was checked to be sufficiently accurate and significantly reduces
the computational effort for repeated simulation runs in comparison to a more detailed
fatigue lifetime prognosis as presented elsewhere [50].

The evolution of fatigue damage is a nonlinear time-dependent process (exemplified
in Figure 6), which is influenced, i.a., by creep and shrinkage and a global increase of traffic
loads and frequencies (cf. Figure 6 and [43]). Hence, fatigue lifetime is usually determined
by damage accumulation until failure occurs (Equation (30)). The simulations here aim
to determine the total fatigue damage accumulated in 250 years D(t = 250 a). In total, five
time intervals (∆t = 50 a), are assumed to cover the prediction period. Obviously, this is a
quite rough discretization of time—especially for the first years, where the gradients are
usually steep—but it was necessary to reduce the computational costs.
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Creep, shrinkage and relaxation reduce the pre-strain in the tendons as a function
of time. To cover creep and shrinkage, Bažant and Baweja’s model B3 [51] has been
incorporated and simplified to a scaling function aCS(t) of the reduced pre-stress (details
in [46]). Furthermore, hardening of concrete (compressive strength fc(t) and Young’s
modulus Ec) is considered by a root function according to Eurocode 2 [52].

For traffic loads, the detailed fatigue load model FLM 4 from Eurocode 1–2 [45] was
applied. It consists of five standardized truck types that are representative for heavyweight
traffic in Europe. For convenience and to reduce the computational costs, the evaluations
are restricted on truck type 3 of FLM 4 since it causes the highest stress ranges on the
reference structure [50]. Mathematically, this simplification is conservative and delivers
a lower bound of predicted lifetimes. Next, traffic- and temperature-induced stresses
are superposed, while the latter ones have been computed from a histogram of discrete
frequencies of linear vertical temperature gradients ∆T with time [53].

All the effects described before are considered in the model by 16 parameters:

• the width of the deck-slab bf, which represents the variability of the entire geometry;
• the effective height dp1 of the pre-stressed cross-section concerning tendon layer no. 1;
• a scaling factor for pre-stress losses by creep and shrinkage aCS;
• five (relevant) linear temperature gradients ∆Ti;
• a scaling factor w3 for the traffic loads from FLM 4, truck no. 3;
• the cross-sectional area of a tendon Ap1;
• Young’s moduli of concrete Ec and pre-stressing steel Ep;
• two parameters to describe the S–N curve: its knee point ∆σ(N*) at 106 load cycles and

the slope of the high-cycle fatigue range (k2); for simplification k1 is set equal to k2.

These parameters are all subjected to uncertainty (cf. Table 1). Following a probabilistic
approach, their scatter can be captured by normal and log-normal probability density
functions (PDF). Table 1 also provides individual means and variances.

Table 1. Stochastic variables with initial (original) distribution characteristics (µi,0, σi,0) and reduced variances (σi*), as well
as Sobol’s sensitivity indices.

Variable i Distribution
Orig. Distribution Improvement Sensitivity Indices

µi,0 CVi,0 CVi* V i*/V i,0 Si STi

Pre-strain εp
(0) [
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S–N curve:
LN 120 0.008 0.063 0.88 0.11 0.11knee point ∆σ(N*) [N/mm2]

slope k2 [-] LN 7 0.071 0.043 0.36 0.004 0.01

Width of the deck-slab bf [m] N 4.95 0.101 0.001 <0.01 0.01 0.05
Area of a tendon Ap1 [cm2] N 26.55 0.016 0.007 0.21 0.01 0.04
Effective height for tendon layer 1 dp1 [m] N 1.31 0.008 0.002 0.04 0.002 0.02

Gradient of load cycles per year dn/dt N 15,000 0.333 0.317 0.9 0.02 0.02
Scaling factor for FLM4-type 3 w3 [-] N 1 0.100 0.100 1 ~0 0.05
Temperature gradients (scaled):

1 0.008 0.141 0.5 ~0 0.02∆T(−4 K) N
∆T(−5 K) N 1 0.200 0.141 0.5 0.01 0.04
∆T(−6 K) N 1 0.200 0.141 0.5 0.06 0.18
∆T(−7 K) N 1 0.200 0.141 0.5 0.18 0.29
∆T(−8 K) N 1 0.200 0.141 0.5 0.14 0.24

In addition to the original distribution parameters (µi,0, CVi,0), the reduced variances
(as improved variation coefficient CV* with aleatory uncertainty only) are summarized
in Table 1. The ratios of improved to original variances V*/V0 = σ*2/σ0

2 are a measure to
assess the improvement of a single parameter. For values close to zero the improvement is
significant, for Vi*/Vi,0 = 1 there is no reduction of the variance (by measurements). The
given values are assumptions based on measurement data from the reference structure and
information from the literature.
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Original variance-based sensitivity indices Si and STi according to Section 2.1 (Figure 7,
left) and reduced variances (as improved standard deviations σ* and as ratios of improved
to original variances V*/V0) are given as well in Table 1. Before the sensitivity indices
are determined, the result is logarithmically transformed (yi = log(xi)) to be more robust.
Consequently, the data appears Gaussian distributed.
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4.3. Stochastic Lifetime Prediction, Sensitivity Analysis and Evaluation of Modified
Sensitivity Indices

The results of stochastic predictions of fatigue lifetime by Monte Carlo simulation are
given in Table 2. They document a prognosis result when scatter of one single parameter is
reduced by monitoring. More precisely, the table contains 16 sets of lognormal distribution
characteristics LN(λ,ζ), means λ and standard deviations ζ, of accumulated damage D
after 250 years. The shape of the distributions is assumed to be lognormal based on test
statistics according to Kolmogorov–Smirnov (level of significance α = 0.05). Each set is
determined based on n = 100 simulations for each parameter (n (2 + q) = 1800).

Table 2. Improved distribution parameters, specific improvements of the target variable and modified sensitivity indices.

Variable i
Distribution Characteristics When i Is Improved Relative

Fractile Change

Mod.
Sensitivity

Index

λ ζ D0,90 D0,99 D0,90 D0,99 Si*

Pre-strain εp
(0) [
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∆T(−4 K) −1.96 3.284 9.469 292.8 −0% −4% ~0
∆T(−5 K) −1.98 3.260 9.004 271.4 +5% +4% ~0
∆T(−6 K) −2.08 3.201 7.519 213.2 +23% +26% 0.07
∆T(−7 K) −2.25 3.094 5.570 141.1 +46% +53% 0.20
∆T(−8 K) −2.19 3.143 6.268 167.1 +38% +43% 0.14

“best” model a* with V* −2.92 2.349 1.099 12.8 +100% +100% -
initial model b with V0 −1.93 3.255 9.433 283.0 ±0 ±0 -

For comparison the characteristics for the initial model b (no improved variances) and
the “best” model a* (all variances improved) are listed in the lower rows, too. Additionally,
two columns of the prognosis result’s fractiles D0,90 and D0,99 have been computed as
characteristic values. For the fatigue damage, the upper bound of the distribution is of
interest and focused. Additionally, in comparison to the improvement from the initial
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model (b) to the best model (a*) the individual gains are quantified by relative specific
improvements in the 6th and 7th column. The modified variance-based sensitivity indices
are determined according to Equation (29) and are given in Table 2. They are also shown in
Figure 7, right.

Next, original (Si and STi) and modified sensitivity indices (Si*) are opposed in Figure 7.
For the presented fatigue lifetime model, at least six different variables show a significant
impact (Si and STi) on the variance of the model. As a result of non-uniformly improved
variances the results of the modified sensitivity indices (Si*) are individually shifted in
comparison to the original sensitivity indices Si and STi in Table 2. Obviously, only relevant
parameters characterized by a high sensitivity index STi and a seriously reduced variance
(σi,0 >> σi*) lead to a significant variance reduction of the model. In contrast, a parameter
without any variance reduction (σi,0 = σi*), like the scaling factor of traffic loads w3, does
not change the model’s variance.

In total, three variables possess the highest original sensitivity indices: two tempera-
ture gradients ∆T(−7K), ∆T(−8K) and the scaling factor for creep and shrinkage aCS. Since
the variance of aCS can be reduced at most (cf. Table 1) it also delivers the highest modified
sensitivity index Si* (Figure 7, right)—as expected. The knee point of the S–N curve ∆σ(N*)
is a moderately important variable (Si ≈ STi ≈ 0.11), but its variance can hardly be reduced
by measurements. Thus, it exhibits a low modified sensitivity index Si* = 0.03.

The impact of individual improvements is illustrated by four probability density
functions (PDF) in Figure 8. Referenced is the original model Y0 with the highest variance—
given by the computational result in b and marked by a dashed black line. This distribution
function represents the initial prediction of the fatigue lifetime, having little knowledge
about the parameters. Its total scatter comprises both, aleatory (random) and epistemic
(lack of knowledge) parts. The “best” prediction model Y* using the computational result
in a* yields another pdf marked as a solid black line in Figure 8. It visualizes the response
when all variances are reduced to the greatest extent. Then the scatter is caused by aleatory
parts uniquely. Compared to Y0 the variance of Y* is significantly lower while the mean is
shifted, too.
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when only one parameter’s scatter is reduced by monitoring.

Other cases when only one parameter’s variance is reduced by monitoring lie between
these limit curves. The same holds true for the cumulative density functions (CDF) shown
on the right in Figure 8. That way, the impact of individual measurements can be evaluated.
Parameters that provide the closest shift to the “best” model yield the greatest benefit, if
monitored. In this example, the scaling factor for creep and shrinkage aCS and the linear
temperature gradient ∆T(−7 K) are the most important. They shift both distributions (CDF
and PDF) significantly towards the best model’s one. However, an irrelevant parameter
would yield curves similar to the initial one.
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4.4. Convergence

For reliable results, many thousand simulation runs are required as can be read from
Figure 9 showing the convergence of the fatigue lifetime model. For the convergence plot
the number of simulations n was increased incrementally from n = 100 to 104. For each
n, the modified sensitivity indices were determined ten times with different sampling
sets to assess their variation around the mean xm by means of the 5% and 95% fractiles
(xm ± 1.645·σ, assuming a Gaussian distribution) as a measure of variance. The results of
the modified sensitivity indices for some of the 16 parameters are drawn in Figure 9. The
selection comprises three types of parameters:

• The scaling factor of the pre-stress loss aCS in Figure 9 top left is a relevant parameter
(STi-value is high) and can be reduced significantly (Vi*/Vi,0 << 1). Therefore, its
modified sensitivity index Si* is expected to be high.

• The knee point of the S–N curve ∆σ(N*) in Figure 9 top right is a relevant parameter
(high STi-value) without significant variance reduction (Vi*/Vi,0 ≈ 1); thus, Si* is
expected to be low.

• Third, the effective depth of the pre-stressing steel (dp1) on the lower left of Figure 9 has
a low (original) total sensitivity index STi and even in case of a significant reduction of
its variance, the modified sensitivity index can be expected to be low.
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Figure 9. Convergence of the modified sensitivity index for three parameters of the lifetime prediction model.

All three clearly converge for 104 simulations. At least 5000 simulation runs are
recommended in this case. For smaller sample sizes, all modified sensitivity indices
possess large variance. For less than 1000 simulations, the results should not be used at all.
Then, some results with too-small sample sizes take on values even outside the reasonable
range 0 ≤ Si* ≤ 1. As it could be expected, this is more likely for Si*-values close to zero.
On the lower right, Figure 9 illustrates the convergence by means of the standard deviation.
All three parameters converge similarly. Differences are seen purely caused by chance.

5. Conclusions

An extension to the established method of variance-based sensitivity indices originally
proposed by Sobol’ is developed. The modified sensitivity indices are suited to quantify
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potential benefits of measurements and monitoring measures in advance. The enhanced
indices are mathematically derived, and its numerical implementation based on stochastic
simulation is exemplified on a model for fatigue lifetime prediction of a reference structure.

For the 50-year-old pre-stressed concrete bridge in Germany, the indices indicate that
the measurement of residual pre-stress in the tendons after creep and shrinkage and the
measurement of temperature loads are most meaningful. It can be found that the best
parameters to be measured (high Si*) are those impairing a model’s variance significantly
(characterized by high-variance-based indices Si and STi) and simultaneously having a
great potential for variance reduction by monitoring. In comparison to others, they possess
the highest modified sensitivity indices.

To support experts’ sound decisions on qualified measures to take the complex inter-
action of variance reduction and its influence on a model can be assessed in advance and
quantified with reasonable effort by the newly proposed modified sensitivity indices Si*. In
view of an ever-increasing stock of aged infrastructure buildings worldwide, the modified
indices might help to save money and resources, avoiding unnecessary measurements in
the future.
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