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Abstract: Urban traffic congestion has a significant detrimental impact on the environment, public health
and the economy, with at a high cost to society worldwide. Moreover, it is not possible to continually
modify urban road infrastructure in order to mitigate increasing traffic demand. Therefore, it is
important to develop traffic control models that can handle high-volume traffic data and synchronize
traffic lights in an urban network in real time, without interfering with other initiatives. Within this
context, this study proposes a model, based on deep reinforcement learning, for synchronizing the
traffic signals of an urban traffic network composed of two intersections. The calibration of this
model, including training of its neural network, was performed using real traffic data collected at
the approach to each intersection. The results achieved through simulations were very promising,
yielding significant improvements in indicators measured in relation to the pre-existing conditions in
the network. The model was able to deal with a broad spectrum of traffic flows and, in peak demand
periods, reduced delays and queue lengths by more than 28% and 42%, respectively.

Keywords: smart cities; smart infrastructure; infrastructure optimization; real-time urban traffic
control; traffic light synchronization; traffic light plan optimization; artificial intelligence techniques;
deep reinforcement learning; inductive loop detectors

1. Introduction

Vehicular congestion is a growing global problem in urban areas and is one of the
major challenges that must be addressed by transportation systems to mitigate deteriorating
traffic conditions. Environmentally, traffic congestion increases noise and air pollution.
With respect to public health, it is linked to excessive fatigue and mental illness, as well as to
cardiovascular, respiratory, and nervous system problems. In economic terms, congestion
increases transport times, fuel consumption and operating costs, adversely affecting the
distribution and sale of goods, leading to consumer price increases [1-4].

In Brazil, traffic congestion occurs daily in major metropolitan regions, impacting
traffic distribution, trip frequency, driver behavior, safety, land use, and more broadly, the
economy, leading to significant losses for society [5]. In 2012, the cost attributable solely
to traffic jams in the city of Sao Paulo totaled USD 20.5 billion [6]. Moreover, the traffic
congestion has reduced the productivity in the United States and worldwide [7,8].

Therefore, because urban infrastructure improvement projects take time and are often
not feasible, it is important to develop strategic technologies to improve the efficiency
of existing infrastructure, minimizing congestion and its consequences as much as pos-
sible [2,9,10]. A traffic control model with these attributes is a technology that meets
these objectives.

In general, the previous literature addresses traffic congestion under the economic
bias, proposing strategies to price congestion and charge the road network. The decisions
of the drivers are then related to this charging policy taking into account the travel mode,
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the departure time, and the chosen route. These previous works deal with congestion
pricing strategies based on rationally constrained user equilibrium bound route choices
employing a heuristic algorithm to find the congestion price to minimize the network travel
time. Thus, the drivers do not necessarily choose a shorter or cheaper route if travel time is
not significantly reduced [11].

Other previous studies have also applied congestion pricing strategies implementing
optimization models to consider the drivers income on their decisions to the trip generation,
the transport modes, and the chosen routes in the networks. The models aim to design
more efficient traffic jam pricing and tradable credit schemes to reduce traffic congestion
among different income and geographic groups [4]. It is suggested that these road network
charging strategies can be effective tools to manage the traffic flow demand based on market
rules, influencing once more the drivers’ decisions. The concept of multi-period tradable
credit schemes has also been used affecting the drivers’ choices. The developed idea
regards the consumption or sale of credits in current or future periods of time, increasing
or alleviating the flow of traffic in the network. Finally, this tradable strategy would be
useful to mitigate credit price volatility allowing the central transit authority to develop
credit prices schemes where the users protect themselves of potential monetary losses [12].

The synchronization of traffic lights to reduce traffic congestion has also been applied
since the 1980s [13]. The researchers when synchronizing the traffic lights have sought
to develop the associated traffic lights theory adapting urban traffic control to real-world
needs. Urban traffic control models that have then emerged have been widely imple-
mented in different places including in Europe, the United States, and Brazil. Among the
most applied models are DYPIC, SCOOTS, SCATS, ITACA, OPAC, PRO-DYN, UTOPIA,
ALLONS-D, RHODES, ACS, and TUC, but it must be said that all of them depend on a
traffic model, and most of them are based in dynamic programming [14-20].

The costs of implementing these adaptive control models can vary from USD 6000 to
USD 60,000 per intersection, which, despite their importance, these high costs can restrict
their use in many cities. Additionally, their operation can result in significant variations in
the number of stops, vehicle delays, and travel times. In particular, the SCOOTS model can
reduce from 17% to 32% the number of stops. Moreover, the SCATS model can reduce up to
19% or increase by 3% the vehicle delays, while OPAC can reduce or increase travel time by
26% or 10%, respectively [19]. Once analyzing the described results by the SCOOTS, SCATS,
and OPAC models, many researchers working on the development of these technologies
have proposed several optimization models for traffic lights planning. These proposed
optimization models include fuzzy logic, genetic algorithms, dynamic programming, and
neural networks and, lately, the new models have also dealt with Artificial Intelligence (Al)
and Deep Reinforcement learning techniques (Deep Q-learning). These new policies and
tools have lately been discussed when talking about the smart cities systems.

The smart city concept is becoming the future trend of the urban development where
it includes the topics of smart homes, smart transport, green city, smart roads, smart urban
management, and smart tourism among others. Smart city is related to the Internet of
Things (IoT), the Internet of Everything (IoE), and Information Communication Technology
(ICT) collecting and evaluating a lot of data in real time. Smart cities can then revolution-
ize the management of metropolitan transport and infrastructure operations, mitigating
existing traffic problems [4,21,22].

The development of smart cities can really increase the efficiency of the transport
infrastructure and its operation dealing with current traffic conditions through intelligent
and efficient traffic management tools [4]. Particularly, the Intelligent Traffic Management
System (TMS) is one of these important tools to be applied to reduce traffic congestion
and to better control the traffic signals (TSC) [3,22]. After all, despite the drivers’” behavior
changing because of any applied TMS, traffic management must be skilled to respond to
the new scenarios due to these drivers’ changes.

The Intelligent Traffic Management System uses the digital devices available in the
smart road environment (SRE) and in autonomous vehicles. The TMS will collect the
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vehicles data, transmitting them to the traffic monitoring system where, after analyzing the
driver behavior, it can better synchronize the traffic lights network in real time [22].

In this context, this paper proposes a new urban traffic control model based on the
application of deep reinforcement learning developed from the algorithm proposed by [23].
The algorithm used as a reference performs the optimization of the signal timing for only
one intersection based on traffic flow of between 100 and 2000 vehicles/hour randomly
generated according to a Poisson distribution. The researchers adopted queue length as the
traffic state variable, minimizing queue length as the reward variable for traffic light action.

The problem addressed by our study is approached by means of a traffic network
located between two Administrative Regions of the Federal District, composed of two
intersections. Each intersection is located in a different administrative region and connects
one of the two collector roads to an arterial road—HEélio Prates Boulevard. Traffic jams
occur on this road, daily, especially in the morning when users are commuting to work.
Each collector road is a dual carriageway with two lanes in opposing directions. The arterial
road is also a dual carriageway, but it has three traffic lanes in each direction. Accordingly,
the selected traffic network has two intersections connecting ten traffic lanes with eight
sensor data collection sections.

A solution to the problem must ensure that the arterial road, which connects the
two intersections, delivers the greatest possible traffic flow throughput without hindering
the performance of the collector roads at each intersection. Thus, the main objective of
this research is to maximize the number of vehicles crossing the intersections, optimiz-
ing the signal timing between them using the Deep Reinforcement Learning technique.
This technique has a flexible structure that can be modified to adapt to changes in the
traffic network.

In this context, this paper proposes an approach based on deep reinforcement learning
to synchronize the traffic signal plans of two networked intersections from flow data
collected by inductive loop detectors to improve the performance of the traffic network
as a whole. These sensors are extremely common in existing traffic controls around the
world [24] and also in Brazilian cities, especially in the metropolitan regions of most
medium and large cities in the country.

The main contribution of this work is the development and implementation of a
model capable of controlling urban traffic according to the decisions effectively taken by
the drivers. These decisions are taken in real time and in a centralized way, instead of
controlling isolated intersections, through the development of a reward that integrates
the network intersections. Furthermore, the proposed approach does not depend on a
traffic model, and it is not limited to just one type of data collection device. The presented
approach is then able to operate adequately and timely just with the collected count of
vehicles per unit of time that is the traffic flow.

The paper is divided into five sections. The Section 1 presents the problem and
objectives of the paper. The Section 2 presents a review of the state of the art for the main
themes addressed in the study. The Section 3 describes the research methodology and the
various stages of the proposed model. The Section 4 analyzes the results obtained, and
finally, the Section 5 presents the conclusions.

2. The State of the Art

This study relies on the collection of an enormous amount of data and a tool capable
of handling this volume of data to produce information and make consistent and timely
decisions for real-time urban traffic control. Therefore, it is important to address the
technology of inductive loop detectors with its technical characteristics and the relevance
of its wide application around the world. In the same context, it is important to highlight
the importance of the artificial intelligence techniques studied in order to propose better
solutions to the complex problems that determine the synchronization of traffic signal
timing plans. Therefore, the next two items in this section will address the use of data
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provided by inductive loop detectors and traffic control with synchronization of signal
timing through the use of artificial intelligence tools

2.1. Using Data Provided by Inductive Loop Detectors

Any traffic response control system depends on its ability to detect traffic to control
local intersections by synchronizing traffic signal timing plans throughout the system [25].
Analysis and understanding of transportation-related issues are therefore often restricted
to a domain that depends on a data source.

Various algorithms have been developed based on different methods of traffic density
detection, including infrared sensors, GPS systems, video cameras, and others. There are
many technologies available to detect traffic, but inductive loop detectors remain arguably
the best method, and the simplest as well, to collect vehicular flow data [26]. Therefore,
data collected by inductive loops are widely used to synchronize traffic signal timing plans
in the urban environment [23,24].

Inductive loop detectors are an alternative to data survey technologies and have
traditionally been used to collect basic traffic data, including volume and speed. These
detectors are used as a simple and consistent source of data because they accurately reflect
the actual traffic network environment at any specific time. Furthermore, aggregating the
data from inductive loop detectors at any time interval is simple, making time-dependent
measurements extremely flexible [1,27].

The configuration of inductive loop detectors consists of one or more insulated wire
loops wound in a shallow slot sawed into the sidewalk (Figure 1). Basically, it operates
by means of an electric current induced in the loop by the passage of the vehicle. This
detector can take on various configurations of size and shape depending on the area of
interest, the types of vehicles to be detected, and the purpose of data collection, such as
queue detection, vehicle counting, or speed measurements [1,25]. Figure 1 depicts the
arrangement of inductive loop detectors installed over the crosswalk located at one of the
intersections in the area studied.

Figure 1. Inductive loop detectors installed over crosswalk.
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2.2. Traffic Control with Synchronized Traffic Timing Using Artificial Intelligence Tools

Urban traffic control systems, as an essential part of dynamic traffic management,
aim to reduce congestion, mitigate environmental impacts, and at the same time increase
traffic safety and the efficiency of the road network. State-of-the-art urban traffic control
systems use traffic models to estimate, predict, and optimize traffic flow based on real-time
measurements [2,3,24].

Synchronizing traffic signal timing is one of the fastest and most cost-effective ways
to reduce intersection congestion and optimize traffic flow on urban roads. This requires a
plan that can adapt to demand fluctuations, with many parameters of signal timing affect-
ing intersection performance [2]. In this regard, several studies have been conducted to
improve the intelligence of traffic control systems for intersections. However, complicated
traffic light optimization problems cannot be solved using conventional methods, and
therefore, traffic light synchronization has recently employed artificial intelligence (AI) tech-
niques including fuzzy logic, reinforcement learning (Q-learning), and deep reinforcement
learning (Deep Q-learning) [3].

Fuzzy logic has been used to optimize traffic signal timing. Compared to fixed-
time controllers, it is an adaptive method where the dynamic environment is analyzed,
and predefined models are adapted to the demands of that environment continuously.
However, the system requires a lot of processing power to perform all the necessary tasks,
and eventually, this degrades its performance to some extent.

Consequently, researchers started experimenting with other techniques such as rein-
forcement learning and then deep reinforcement learning based on Q-learning and Deep
Q-learning algorithms, respectively, to perform traffic flow management. Unlike fuzzy
logic, Q-learning does not use predefined models, thus making it more suitable for real-time
traffic management problems [3]. The reinforcement learning approach implicitly models
the dynamics of complex systems, learning the control actions and resulting changes in
traffic flow. Meanwhile, it searches for the optimal traffic signal plan for the learned input
and output pairs [23].

Some studies have used Q-learning to achieve optimization of traffic signal timing
and, consequently, congestion reduction by minimizing traffic control parameters such as
stop delay, queue length, and waiting time per vehicle. Although they adapt to real-time
demand, these models cannot change the signal sequence between different traffic lights.
A later Q-learning model, combining the clustering technique with the waiting time queue
length parameters, was able to vary the order of traffic lights according to traffic flow [3].

Recently, a study conducted by [3] sought an adaptive solution for a complex dynamic
traffic system, proposing a solution for traffic signal control in light of the emergence of
smart cities and the development of the Internet of Things by employing a Q-learning
algorithm and maximizing the number of vehicles. Despite the proposal of a flexible
structure, easily applicable in several N-way intersections according to the authors, this
proposal was applied in only one intersection.

However, it is necessary to consider the size of the traffic network, and reinforcement
learning has a major difficulty in optimizing traffic signal timing, in that the complexity of
a traffic signal plan grows exponentially with the number of traffic flow states and control
actions considered [23].

Therefore, a new method was proposed to simultaneously solve the modeling and op-
timization problems of complex systems by combining two important tools: reinforcement
learning and deep learning. This resulted in Deep Q-learning, which better adheres to the
problem conditions in that deep learning complements reinforcement learning by using
multiple layers of artificial neural networks to learn the implied maximum discounted
future reward when a certain action in a given state is executed [23,28,29].

Deep Q-learning learns the Q-function by means of a deep neural network (DNN).
Then, the value-function-based agent selects the optimal control action, making it capable
of handling high-dimensional inputs for multiple states beyond Q-learning [3]. Then, it
simultaneously learns the dynamics of the traffic system and the optimal control plan,
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implicitly modeling the control actions and the change of system states. As a result, it
outperforms conventional approaches in optimizing traffic signal timing [23,29].

Some studies have demonstrated the feasibility and effectiveness of deep reinforce-
ment learning in traffic signal synchronization plans. Numerical tests show that deep
networks are the most convenient and powerful means to approximate the maximum
discounted future reward [23]. Again, combinations between traffic control parameters
such as queue lengths and total cumulative delays at an intersection were used as reward
variables [3,23,28].

There is an extensive literature review that develops the deep reinforcement learning
approaches applied to traffic signal control, describing their architectures and respective
attributes: methods, rewards, actions, and states, in line with the main models that have
already been implemented [29]. This study is considered to be of extreme importance for
the reader interested in deepening their knowledge on this topic.

3. Research Methodology

The research methodology for this study aimed to develop an intelligent model for
traffic signal synchronization that adapts to the actual demand conditions triggered by
the traffic flow present at the approaches to the intersections of a road network. Once the
data set was collected, it was applied to calibrate the model and validated it. Afterwards,
applying the Vissim microsimulation software, the obtained results for the measured
parameters when applying not only the actual traffic plan but also the intelligent one were
then compared. The following steps describe how the work was implemented:

1.  Input System Data Set. The input data set consists of the number of vehicles per lane,
their speed, and the time of the day for all considered sensors. The data set was also
analyzed to avoid any inconsistencies (for instance, missing data due to the failure of
any sensor).

2. Modelling the Artificial Neural Network (ANN). The ANN was implemented and
calibrated applying the Deep Q-Learning method. The intelligent traffic light plan
was obtained. The resulted intelligent traffic light plan will be used in step 4 to obtain
the values of the evaluated parameters (average and total delay, average speed, total
travel time, total vehicles in the network, queue length, and maximum queue length).

3.  Model Validation and Actual Simulation. The model was validated applying the
Vissim microsimulation software. When applying the Vissim, the geometry of the
network was given besides the actual traffic light plan and the collected data set
(step 1). Once the implemented model was validated, the intelligent traffic light plan
was used in the Vissim. In case the implemented model is not validated, one has to
return to step 2.

4.  Implementing the Intelligent Traffic Light Plan in the Vissim. The intelligent traffic
light plan determined in step 2 is implemented in the Vissim software. The results
obtained for the parameters are stored (average and total delay, average speed, total
travel time, total vehicles in the network, queue length, and maximum queue length).

5. Comparison of the Results. The results validated in step 3 (the actual traffic light
plan) and the ones obtained in step 4 (the intelligent traffic light plan given by
the Deep Q-Learning method) are compared to determine the performance of the
developed model.

The flowchart for the applied Deep Q-Learning method implemented in this research

is given in Figure 2. In particular, the research methodology consisted of five work stages
that are described next.
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STEP1
Input System Data Set.
Input the number of vehicles per lane. their speed and the

time of the day.

STEP2
Modelling the Artificial Neural Network (ANN).
Model development with the algorithm implementation,
evaluation of the traffic flow., modelling the reward
equation (Eq.1) and training of the ANN (obtaining the
intelligent traffic lights plan). Table 1.

I

STEP 3
Model Validation and Actual Simulation (Vissim)
Implementation of the Network in the Vissim simulation
software measuring of the parameters (average and total
delay. average speed, fotal travel time, total vehicles in the
network. queue length and maximum queue length),
parameters of Table 3.

'

The model has been

validated ?

STEP 4
Implementing the Intelligent Traffic Light System in
Vissim.
The obtained intelligent traffic lights plan (Step 2) is
implemented in the Vissim software. and the parameters
are evaluated (average and total delay, average speed. total
travel time, total vehicles in the network. queue length and

maximum queue length).

STEPS
Comparison of the Results.
The results obtained with the Vissim software with the
actual traffic lights plan and the intelligent plan
(determined by the ANN) are compared (Table 3).

Figure 2. Flowchart Diagram of the developed model.

3.1. Data Survey

Figure 3 highlights the actual traffic network used in this study, showing the location
of the eight inductive loop detectors installed at the approaches to intersections 1 and 2, as
well as the reference axes used to orient and indicate the directions of traffic flow at and
between intersections.
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Figure 3. The real traffic network, object of this study (Source: Google Maps. Google, 2021).

The traffic flow data used in the research are actual data collected with inductive
loop detectors installed in all directions on the approaches to each intersection, i.e., on the
four approaches to each of the two intersections in the network. It should be noted that
the design of the intersections allows only right turns, and that the basic signal plan for
controlling the current traffic on the street is a pre-existing plan that was developed by the
local traffic authority using the progressive or synchronized system method, known as
Green Wave.

3.2. Preliminary Analysis of the Data Collected

The data collected was grouped by detector that recorded the date, time, lane, instan-
taneous speed, and speed limit of each vehicle crossing the intersection. Each of these
detectors produced an average of 520,000 records per month for 31 months between De-
cember 2014 and June 2017, for a total of 128,960,000 lines of distinct records pertaining to
passing vehicles. A preliminary analysis of these data was performed in order to evaluate
the behavior and consistency of the flow records in relation to the intended goal.

Thus, taking the RSI033 detector as an example, discontinuities in data collection can
be observed, characterized by the interruption of the time series and irregularities in the
velocity spectrum, as indicated by gaps between successive records on the same day. In the
graph shown in Figure 4, both interruptions and irregularities can be identified over the
31 months of observations.

The preliminary analysis was performed in 15 min intervals. In this analysis, the
traffic flow behavior varied during the week, between normal working days and rest days,
typically weekends and holidays. This difference can be seen in both Figures 5 and 6, in
which the graphs of vehicle speeds and traffic flows were superimposed according to two
different time scales: one weekly and one daily, respectively.

On Saturdays and Sundays, traffic flow appears before 05:00. It is less intense and
grows more evenly distributed during the morning period, without major variations or
congestion throughout the day. Consequently, low speeds do not occur on these days, as
they do from Monday to Friday, when the pattern of behavior and the relationship between
traffic flow and vehicle speed changes substantially.
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Figure 6. Daily traffic behavior, highlighting the occurrence of a traffic jam.

Under the effect of the proximity of the weekend, traffic behavior on Monday and
Friday is different from that on Tuesday, Wednesday, and Thursday. Traffic flow still starts
before 05:00, probably because drivers are still returning from Sunday entertainment or
leaving early to avoid congestion on the way to work in order to enjoy some after-hours
fun on Friday. However, an inversely proportional relationship arises between traffic flow
and vehicle speeds between 05:00 and 10:00, which does not happen on weekends. In this
interval, traffic flow starts to increase, and proportionally, vehicle speeds start to decrease.

This inversely proportional behavior between traffic flow and vehicle speeds continues
on Tuesday, Wednesday, and Thursday, but no flow occurs before 05:00. Flow increases;
speeds decrease, and as this relationship intensifies over time, the flow and speed reach
their maximum and minimum peaks, respectively. These peaks are inverse but coincident
in time and occur before 08:00. On these sampled days, traffic flow reached practically
1.25 vehicles per second in all three lanes, i.e., 1500 vehicles per hour per lane while vehicle
speeds were close to 20 km/h, indicating that congestion possibly occurred on the approach
to the RSI033 detector.

Therefore, based on this preliminary analysis, the time intervals between 06:00 a.m.
and 08:00 a.m. on Tuesday, Wednesday, and Thursday mornings exhibited continuous
traffic flow gradients from lowest to the highest, going through saturation flow on the main
road and then entering a free and stable regime. Therefore, the data recorded between
06:00 a.m. and 08:00 a.m. on business days in May and June of the year 2016 were selected
to develop the present study.

The graphs in Figures 7 and 8 present the average traffic flow behaviors measured in
5 min intervals for the four approaches at each of the intersections during the 06:00 a.m. and
08:00 a.m. period on business days in May and June 2016. In this analysis, the average flow
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Flow (Veh/In/h)

Flow (Veh/In/h)

at the approaches of the two intersections show an upward trend for this time interval. In
particular, the flow behavior lines based on the RSI018 and RSI033 detector measurements,
respectively at intersections 1 and 2, show considerably higher traffic flow values than
those at the other approaches. Moreover, the flow grows in the direction from intersection
1 to intersection 2 and reaches peak values at 06:40 a.m.

Intersection 1
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Figure 7. Average flow measurements in 5 min intervals during the period of 06:00 a.m. to 08:00 a.m. at intersection 1.
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Figure 8. Average flow measurements in 5 min intervals during the period of 06:00 a.m. to 08:00 a.m. at intersection 2.

3.3. Modeling

To meet the objective of this research, the proposed model was developed based on the
premise that each direction of an intersection is an element. Consequently, each intersection
is composed of two elements. Then, since a traffic light can only be open or closed, the
green signal time of one direction is the same for the opposite direction in the same element,
and the green time of one element was taken as the red time of the other element of the
same intersection.

Flow was calculated at each intersection element according to the number of vehicles
passing in each lane per traffic direction and time unit within the green signal interval.
To evaluate the extent of the traffic flow, it was assumed that as long as there was traffic
flow in one direction, the traffic light was open at that element, and if there was no flow
there, the flow in the other direction was tested in the same time interval. When confirmed,
the flow was counted, and it was then deduced that the signal was closed at the previous
element. The resulting test times were validated against the data reported by the local
traffic authority.
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Accordingly, once it was confirmed that the traffic light was green, the number of
vehicles was counted within the evaluated interval. Then, the flow was calculated by the
ratio between the number of vehicles and the time difference between the first and the
last vehicle in the interval. The minimum phase verification time was set as equal to a
minimum green time of 30 s although the developed algorithm allows any variation of this
verification time. After this analysis and verification process, each calculated traffic flow
was recorded.

Despite the possibilities of assuming other more typical states of a network, such
as queue length, vehicle speed, and green or red-light time or a combination of them,
an alternative state to characterize the traffic network, i.e., vehicle flow, was chosen to
optimize the model.

3.4. Neural Network Selection

It must be added once more that the developed model in this work is based on the
Deep Reinforcement Learning algorithm [23]. Complementarily, the work by [30] provides
a good description of Deep Reinforcement Learning. Therefore, only the main structures
applied to the implemented Deep Reinforcement Learning algorithm are next described,
avoiding replicating what was already presented by [29].

For the proposed model, a neural network with four layers was employed, including
an input layer, two hidden layers, and an output layer. Since the model integrates two
intersections with four-way flow measurements, and the three most recent measurements
were taken as a sample to train the network, there were 24 neurons in the input layer. Then,
the second and third layers, activated by a sigmoid function, were structured with 16 and
8 neurons, respectively. Then, since each intersection has one element for each direction,
the output layer was designed with four neurons, one neuron for each element. Figure 9
presents the architecture of the neural network employed in the study model.
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Figure 9. Architecture of the neural network used in the model.

Next, the reward for the traffic signal actions was defined by two distinct portions,
one local and one interlocal. While the local reward portion maximizes traffic flow in all
directions of each intersection, the interlocal reward maximizes traffic flow only in the
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direction between the two intersections. Equation (1) details this total reward (r;), where n
is the intersection ID, and i is the travel lane of the roadway:.

i= 12,3 local interlocal
n=1,2
= Y max {fi(naﬁb);ﬂgﬁa)} + max {fifﬁd);fiidﬁc)] + max [fi(lbﬁa);fi(zaﬁb) (1)

in

3.5. Evaluating the Results

The adapted traffic signal timing plans that resulted from the application of this deep
reinforcement learning-based model were used to simulate traffic flow control during
several working days in the interval from 06:00 a.m. to 08:00 a.m. Similar simulations were
performed with the pre-existing traffic signal timing plan with the same collected traffic
flows. Both simulations were performed using the VISSIM traffic microsimulation software
program [31].

The performance of the proposed methodology was evaluated by comparing the
results of the two simulations. Several performance parameters were measured and
compared, especially those concerning delay, speed, and queue length.

4. Results and Discussion

The methodology produced intelligent traffic signal plans aimed at adapting to the
actual demand conditions triggered by the traffic flow present at the approaches to the
network intersections. As an example, Table 1 partially describes the resulting intelligent
traffic signal timing plan through an extract of the actions taken by the model between
06:35 a.m. and 06:39 a.m. for three working days in the middle of the month of June
2016. The table shows that actions are decided every 10 s with a minimum interval of 30 s
for them to be effectively adopted. It is also evident that there is no regularity between
decisions taken at equal times between consecutive days nor within the same day, even if
they are taken at immediately successive times. Furthermore, different decisions are made
to control different intersections. When these decisions are true, they are graphed with the
color green to represent the green signal. Otherwise, they are graphed with red color to
represent the red signal when they are false.

Furthermore, it was necessary to evaluate whether the intelligent traffic signal timing
plans that resulted from the methodology proposed by this work met the objective of adapt-
ing to the actual conditions of demand caused by traffic flow. Therefore, as pointed out
earlier, these plans were employed in microsimulations to control the traffic flows collected
in the network in this study. The same number of microsimulations was performed by
replacing only the intelligent traffic signal timing plans with the pre-existing traffic signal
timing plans. In each microsimulation, VISSIM tracked and measured network perfor-
mance, queue, and delay parameters. Table 2 highlights two of the network performance
parameters—average delay and average speed—as examples.

For the purposes of evaluation and presentation of these results, they were later
compared with the results of the same parameters obtained through other microsimulations
performed with the pre-existing traffic signal timing plan. Thus, Tables 3 and 4 present the
percent improvements of the parameters measured by the simulator from the ratio between
the results achieved by the model in this study based on deep reinforcement learning and
the traditional deterministic model used by the local traffic authority.

The percentages of improvement of the parameters that were generated by means of
the methodology developed in this study should be interpreted as appropriate whenever
the average speed in the network increases or the other recorded parameters decrease,
including the average delay in the network and the length of queues at traffic light ap-
proaches. Figure 10 compares the average network delays simulated from the local traffic
authority traffic signal plan and the intelligent traffic signal plans produced by the model
proposed in this paper. In this sense, negative percentages represent a reduction and
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positive percentages represent an increase in the ratio between the parameters. When these
percentages are graphed with the color blue or red, they will be respectively adequate or
inadequate according to the desired behavior for the parameter.

Table 1. Extract of the optimized traffic signal timing plan for each intersection in the network.

Route: Arterial
Intersection: 1 2 1 2 1 2
Time 14 June 2016 15 June 2016 16 June 2016

06:35:19 True False True False False True
06:35:29 True False False True False True
06:35:39 False True False True False True
06:35:49 False True False True True True
06:35:59 False True True True True True
06:36:09 True False True True True True
06:36:19 True False True True False True
06:36:29 True False False True False True
06:36:39 False True False True False True
06:36:49 False True False True True False
06:36:59 False True True True True False
06:37:09 True True True True True False
06:37:19 True True True True True False
06:37:29 True True True True True False
06:37:39 True True True True False True
06:37:49 True True False True False True
06:37:59 True True False True False True
06:38:09 False True False True True False
06:38:19 False True True False True False
06:38:29 False True True False True False
06:38:39 True False True False False True
06:38:49 True False False True False True
06:38:59 True False False True False True

Table 2. Network performance parameters obtained from traffic control with the intelligent traffic
signal timing plan, according to microsimulations.

Parameters Average Delay Average Speed Average Delay Average Speed

(s/veh) (km/h) (s/veh) (km/h)

Intervals 18 May 2016 15 June 2016
0-300's 16.52 41.35 17.05 41.18
300-600 s 17.32 40.49 19.37 39.50
600-900 s 14.28 42.24 18.37 40.41
900-1200 s 23.13 37.93 22.82 38.21
1200-1500 s 19.93 39.76 20.65 39.23
1500-1800 s 22.01 37.84 26.05 36.63
1800-2100 s 21.33 38.73 20.13 39.17
2100-2400 s 34.72 32.74 32.49 33.91
2400-2700 s 30.72 34.21 29.49 35.16
2700-3000 s 33.08 33.42 34.52 33.51
3000-3300 s 28.19 35.44 28.41 35.15

3300-3600 s 31.56 34.17 33.74 33.39
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Table 3. Improvements obtained by the adapted traffic signal plans compared to the pre-existing plans, according to the

results of the simulations performed between 06:00 a.m. and 07:00 a.m.

SIMULATIONS
PARAMETERS 17 May 18 May 19 May 14 June 15 June 16 May Mean
2016 2016 2016 2016 2016 2016

NETWORK PERFORMANCE
Average delay —34.39% —20.59% —32.32% —26.69% —28.46% —27.94% —28.40%
Total delay —35.03% —19.23% —30.90% —29.01% —27.42% —28.67% —28.38%
Average speed 11.11% 6.78% 10.48% 8.54% 9.96% 9.45% 9.39%
Travel total time —13.58% —6.78% —11.33% —11.35% —10.84% —10.58% —10.74%
Total vehicles in network —16.67% —9.49% —12.39% —15.65% —15.74% —16.31% —14.37%
QUEUES
Queue length —54.36% —25.79% —42.44% —46.95% —42.27% —43.19% —42.50%
Maximum queue length —40.20% —21.65% —34.44% —40.16% —33.29% —37.70% —34.57%

Table 4. Improvements obtained by the adapted traffic signal plans compared to the pre-existing plans, according to the

results of the simulations performed between 07:00 and 08:00 a.m.

SIMULATIONS
PARAMETERS 17 May 18 May 19 May 14 June 15 June 16 May Mean
2016 2016 2016 2016 2016 2016

NETWORK PERFORMANCE
Average delay —31.14% —19.52% —31.43% —30.95% —22.28% —35.08%  —28.40%
Total delay —32.84% —20.26% —34.18% —33.68% —23.05% ~36.81%  —30.14%
Average speed 8.70% 5.70% 8.82% 9.07% 5.85% 9.82% 8.00%
Travel total time ~10.15% ~5.91% —9.83% —9.48% ~7.59% ~10.50%  —8.91%
Total vehicles in network —12.49% —6.84% ~10.17% —10.62% ~5.70% -1011%  —9.32%
QUEUES
Queue length —41.02% —26.22% —42.20% —41.44% —30.71% —45.81%  —37.90%
Maximum queue length —32.69% —23.78% —30.35% —29.94% —22.63% —35.14%  —29.09%

It is worth noting that the simulation averages show reductions of 28% for network
delays, as well as an increase of more than 9% in the average network speed. Queue lengths
were reduced by more than 42% and maximum queue lengths by more than 34%. The
simulations performed between 07:00 a.m. and 08:00 a.m. yielded slightly lower results
compared to those obtained earlier in the interval between 06:00 a.m. and 07:00 a.m. The
exceptions are the total network delay and the average delay. However, the orders of
magnitude of the percentages of reduction or increase are similar in the two intervals.

It is also important to compare the results obtained in this work with the ones applied,
for instance, by the main adaptive real-time traffic control systems in use in the USA [19].
Table 5 presents these comparisons. When analyzing Table 5, one can see that the devel-
oped model achieves quite reasonable results when compared with the other models. In
particular, the evaluated delays by the developed model in this research were very good
ones ranging from —36.8% to —19.2%, Further studies should evaluate ways to improve
the ranges of the obtained stops even though the obtained results by the Deep Q-learning
method were quite similar with the SCATS tool.

When analyzing the results presented in Figure 10, it must be added that the developed
intelligent model in this work maximizes the traffic flow in the network. It did not consider
any of the other possible traffic states, nor did it restrict network performance parameters.
It was then observed that on 17 May 2016, at 7:40 a.m. and 7:45 a.m., there were punctual
and sudden increases in the flow in the arterials, and then, the applied Deep Q-learning
model tried to maximize the flow on those arterials. Therefore, there was a decrease in the
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flow in the main road and, consequently, an increase in the average delay of the network.
Quite interestingly, the same occurred on 18 May 2016 at 7:25 a.m. where there was a
sudden and punctual increase in arterial flows at that time. Moreover, when analyzing in
detail the data set, it was showed that one of the sensors, the RSI017 one, failed at 7:40 a.m.
on 17 May 2016 since it did not register any flow at that time. This fact can certainly have
affected even more the work of the Deep Q-learning model since it considered a 0 (zero)
flow for that sensor when applying its algorithm.
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Figure 10. Comparison between the average network delays resulting from pre-existing and intelli-
gent traffic signal timing plans for (a) 17 May 2016, (b) 18 May 2016, and (c) 19 May 2016.

Table 5. Comparisons of the performances of the proposed model and the main adaptive traffic control systems already in

use in the USA.
Performance
Systems of Adaptative Traffic Control
Travel Times Delays Stops
Developed Model —13.6% to —5.9% —36.8% to —19.2% —26.1% to +9.3%
SCOOTSs —29.0% to —5.0% —28.0% to —2.0% —32.0% to —17.0%
SCATS —20.0% to —0% —19.0% to +3.0% —24.0% to +5.0%
OPAC —26.0% to +10.0% - —55.0% to 0%
RHODES —7.0% to +4.0% —19.0% to —2.0% -

ACS —12.0% to +7.0% —38.0% to +2.0% —35.0% to —28.0%
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We sought to evaluate the results obtained individually at intersections and at traffic
light approaches in order to add value to this analysis and considering that the reward for
the actions integrated two portions, both a local portion referring to the optimization of
intersections and an interlocal portion referring to the optimization between intersections.
In this sense, the queue length was chosen to present the results of this approach.

Therefore, as described above, the ratios between the results obtained from each of the
traffic signal timing plans, the intelligent one and the pre-existing one, were measured, and
the criterion for evaluating the appropriateness of the negative and positive percentages
of these ratios in relation to the goal was maintained. It is worth noting, in the case of
the queues, that the negative percentages indicate more appropriate results, because they
demonstrate a reduction in their lengths.

These percentages adopted to express the variations in the parameters were correlated
with the respective traffic flows in each of the approaches that make up the intersections of
the network. Thus, it was possible to observe how the proposed approach reacts based on
the increase or decrease in traffic flow in the network, at the intersections and approaches.
Figures 11 and 12 present these correlations for the network and for each of the intersections,
respectively. Note that the linear regressions fitted to these correlations show negative
angular coefficients, i.e., the model proposed here tends to cause a reduction in queue
lengths relative to the usual condition subject to the control performed by the pre-existing
traffic signal timing plan.

Given the application of this model based on deep reinforcement learning, the growth
of queue lengths and maximum queue lengths tends to be smaller as traffic flows increase,
as a result of the more efficient signal control provided by the signal timing plans adapted
to the dynamic and real conditions of the traffic network studied.

An analogous procedure was subsequently applied for each approximation. The inter-
sections were discretized to present the resulting behaviors of the queue lengths in each of
their approximations. Figures 13 and 14 highlight what happens to the queue lengths in the
approaches that connect at each intersection. Isolating the results of the approaches, identi-
fied in the graphs by their inductive loop detector codes, it is evident that in the direction
of the predominant flows that coincide with the arterial road, the signalized approaches in
the direction of higher traffic demand (RSI018 and RSI033) have predominance over the
approaches in the opposite direction, with less vehicle traffic demand.

In the face of higher flows in one direction, the respective queue lengths are reduced
considerably while the queue lengths in the opposite direction are sacrificed to the extent
that the method accepts slight increases in queue lengths in that direction when facing
lower flows. The angular coefficients of the linear regressions define a rate of reduction
of this parameter when negative or increase when positive. In the other direction of the
intersections, on which the collector roads are aligned, the flows are significantly lower.
Therefore, although the effect of the model seems smaller, the same decision is made to
reduce queue lengths in the direction with higher flows to the detriment of a small increase
in queues in the opposite direction, which has lower traffic demand.
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Figure 11. Correlations between traffic flows and (a) variations in queue lengths and (b) maximum queue lengths from the

model, considering the entire transit network.
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Figure 12. Correlations between traffic flows and the variations in (a,c) queue lengths and (b,d) maximum queue lengths
resulting from the model, considering the results obtained for (a,b) intersection one and (c,d) intersection two.
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Figure 13. Correlations between traffic flows and queue length variations based on the model results for detectors (a)
RSI017, (b) RSI018, (c) RSI128, and (d) RSI129 from the intersection 1 approaches.
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Figure 14. Correlations between traffic flows and queue length variations based on the model results for detectors (a)
RSI032, (b) RSI033, (c) RSI131, and (d) RSI132 from the intersection 2 approaches.

Finally, the presented results can be compared with previous works including the
ones by [32,33]. These works show advantages to the traffic controller field being based
on the established techniques of Dynamic Programming and Reinforcement Learning.
Reference [32] developed a real-time traffic optimization model implementing the dy-
namic programming approach such as the Rhodes technique. Moreover, [33] proposed an
urban traffic controller combining a Reinforcement Learning algorithm, the Distributed
W-Learning one, jointly with the Deep Reinforcement Learning algorithm, the Deep Q-
Network one.

The models by [32,33] were implemented in an urban traffic network comparing
their performances to the ones of the Rhodes approach and the SCOOT system (Split
Cycle Offset Optimization Technique—SCOOT), respectively. Reference [32] applied a
flow data obtained by a traffic prediction model, and [33] used statistical data from a
government survey.

When comparing the results in [32] with the ones of the Rhodes method, it was
observed that [32] obtained an improvement of 15.1% of the average traffic delay. Moreover,
when comparing the work by [33] with the SCOOT approach, an improvement of 17.2% in
the stops was evaluated.

Regarding the already mentioned parameters of traffic delay and the number of
stops, the work developed in this research can also be compared with the Rhodes and
the SCOOT ones. The developed model can achieve, on average, 19.5% less delays when
compared with the Rhodes one, but it achieves 21% more stops when it is compared with
the SCOOT approach. Nevertheless, when the measured parameter is the average traffic
delay, the implemented model achieves 15.3% less delays than the ones obtained by the
SCOQT technique.

The Deep Reinforcement Learning implemented model shows then, in general, valu-
able improvements. It is important to mention that this work applied a real data set.
Therefore, the input data set was neither obtained by a prediction model nor by a gov-
ernment survey. This pattern of the used data set suggests the robustness of the applied
model, since a real data set can have not only missing data due to the failure of the sensors
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but also huge deviations because of the occurrence of accidents, for instance [34]. Further
studies can also be carried out to evaluate ways to decrease the number of stops of the
applied model including the minimum time for a traffic light phase and the batch size to
train the ANN.

5. Conclusions and Recommendations

The model based on deep reinforcement learning proposed in this paper holds similar-
ities with the work of [23]. However, the introduction of a new expression for calculating
the total reward and the use of traffic flow as its maximization parameter have added
considerable advances to the way of controlling urban traffic through traffic signal timing
plans adapted to real flow conditions.

Regardless of the dimension observed, whether in the network, the intersection, or the
approach, the results obtained are very promising. In relation to the pre-existing condition,
all of the parameters of the traffic network were reduced by the application of the proposed
model. In general, average speeds in the network increased by 9%, and delays and queue
lengths were reduced by more than 28% and 42% in the period of highest traffic demand,
respectively. In situations where traffic demand was lower, the percentages of improvement
were also significant and very close to the previous percentages, demonstrating that the
configuration defined to determine the total reward added value to the proposed model.

The graphs of the arterial road approaches, identified by the detector codes named
RSI017, RSI018, RSI032, and RSI033, showed that the proposed approach sacrifices the
directions with lower traffic demand (RSI017 and RSI032) by increasing the length of
queues in order to improve fluidity in the opposite direction, which has a higher traffic
flow (RSI018 and RSI033). This prevents increasing queues at these approaches, improving
network performance in light of dynamic, real-world conditions. Furthermore, analysis of
the graphs of the approaches to the collector roads, identified by the detector codes RSI128,
RSI129, RSI131, and RSI132, showed that this sacrifice and benefit behavior between smaller
and larger flow directions does not only occur in the presence of high traffic demands but
also in the presence of low flow.

This model therefore improves network performance for a broad spectrum of traffic
flows, regardless of their magnitude, because it is able to perceive and decide at both
high and low traffic flow levels. Based on these same results, the decisions taken by this
approach to privilege directions with higher demand do not hinder traffic in the other
directions guaranteeing an increase in the performance at the approaches, in isolation
or not.

The method proposed by this research is independent of a traffic model, providing
good results in situations of greater or lesser demand on the transit network. Accordingly,
this method is able to perceive the variations in the flow and decide which direction or
direction should be favored over the others. This ensures better traffic conditions without
jeopardizing any of the preferential directions, benefiting both the intersections and the
network, for all the parameters observed.

Moreover, the proposed model demonstrated the ability to respond appropriately,
controlling traffic even in the absence of traffic data, as shown in the 07:40 a.m. record on
17 June 2016, Figure 10. Since the applied algorithm deals with real-time traffic control, it is
possible to assume that some sensors can fail at a given time. Therefore, further research
should be carried out trying to mitigate these possible sensors failures when applying the
developed tool.

Certainly, the use of data collected in the field has added validity to the application
of the model, which is important due to the intrinsic behavior of real events and the
consistency of the achieved results. However, it would be interesting to apply this new
model to a larger data set without as many gaps in the time series, comparing once more
the evaluated results with the ones obtained by market models.

In general, traffic data are not widely available in Brazil. Therefore, even though this
research had access to a large database of flow, it was related to only two intersections. In
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the future, when a larger data set in a larger network becomes available, the developed
model can then be applied to better evaluate its effectiveness. Further studies should also
extrapolate the simulation environment based on this deep reinforcement learning method
to an experimental network requiring optimization. One should then take into account the
availability of inductive loop detectors in Brazil or in other countries, and the ease of using
this model with real data independent of the collection source. Technological advances are
also important to apply the proposed approach, due to the increasingly larger and more
accessible computing power.

The development of smart cities and autonomous vehicles will make the smart road
environment a reality allowing both the proper collection of flow data and its availability in
real time. These facts will greatly benefit the Deep Reinforcement Learning models because
of their simplicity and sensitivity to quick and unexpected changes.

As it was already stated, the developed model did not depend on a traffic model nor
on several traffic parameters that are routinely calibrated. The presented model, which was
a Deep Reinforcement Learning one, used only the real traffic flow data to define its state
integrating two intersections in a network in a centralized way, which had not yet been
done by previous research, to our knowledge.

Finally, it must also be added that one of the main contributions of this work is
regarded to be the simplicity to implement it operationally due to the already available
technologies. These technologies allow not only to count vehicles in real time but also
the promptly availability of data to the various actors and entities of the Traffic System,
especially with the development of smart cities.
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