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Abstract: This paper summarizes the results of traditional image processing algorithms for detection
of defects in concrete using images taken by Unmanned Aerial Systems (UASs). Such algorithms are
useful for improving the accuracy of crack detection during autonomous inspection of bridges and
other structures, and they have yet to be compared and evaluated on a dataset of concrete images
taken by UAS. The authors created a generic image processing algorithm for crack detection, which
included the major steps of filter design, edge detection, image enhancement, and segmentation,
designed to uniformly compare different edge detectors. Edge detection was carried out by six filters
in the spatial (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and frequency (Butterworth and
Gaussian) domains. These algorithms were applied to fifty images each of defected and sound
concrete. Performances of the six filters were compared in terms of accuracy, precision, minimum
detectable crack width, computational time, and noise-to-signal ratio. In general, frequency domain
techniques were slower than spatial domain methods because of the computational intensity of the
Fourier and inverse Fourier transformations used to move between spatial and frequency domains.
Frequency domain methods also produced noisier images than spatial domain methods. Crack
detection in the spatial domain using the Laplacian of Gaussian filter proved to be the fastest, most
accurate, and most precise method, and it resulted in the finest detectable crack width. The Laplacian
of Gaussian filter in spatial domain is recommended for future applications of real-time crack detection
using UAS.

Keywords: structural condition assessment; concrete structures; unmanned aerial systems; crack
detection; image processing; noncontact methods

1. Introduction

The United States is home to more than 600,000 bridges, more than one-third of which include a
concrete superstructure or wear surface [1]. These bridges require a variety of periodic inspections in
accordance with federal regulations. The most common inspection type is routine inspection, wherein
the inspector scans the bridge deck to identify surface degradation or surface cracking. Such inspections
are costly, time-consuming, and labor-intensive [2,3]. Autonomous inspection could be a cost-effective
solution to these problems if the accuracy of human inspection can be matched [3–9]. Image-based
inspection of infrastructure for concrete delamination [10–13], cracks [14–17], and spalls [18,19] using
unmanned aerial systems (UASs) have been proven effective based on previous literature [20].
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Image-based autonomous inspections still require human inspectors to review images. The number
of images collected depends on a number of factors, but it is commonly in the several thousands.
For instance, SDNET2018 [21], with more than 56,000 labeled images of concrete structures, covers
three small lab-made bridge decks, walls of a building, and several paved sidewalks, which are
significantly smaller than common inspected infrastructures in practice. Manual identification of
flaws in such large image sets is time consuming and prone to inaccuracy because of inspector fatigue
or human error [22–26]. Image processing algorithms can improve the accuracy and efficiency of
autonomous inspections by either (a) enhancing images to improve ease of human detection of
defects or (b) autonomously identifying defects. Additionally, edge detectors are used in combination
with more contemporary techniques such as deep learning convolutional neural networks for UAS
applications [27], reducing false positive cases by 20 times compared to sole use of edge detectors [28].

Cracks in a two-dimensional (2D) image are classified as edges, and, thus, existing edge detection
algorithms are likely candidates for crack identification. 2D images are represented mathematically by
matrices (one matrix, in the case of greyscale images, or three matrices in the case of red/green/blue
color images). An ideal edge is defined as a discontinuity in the greyscale intensity field. Crack
detection algorithms can emphasize edges by applying filters in either the spatial or frequency domain.
Even though use of edge detectors for crack detection goes back to the early 2000s [29], these methods
have been used in the past and are still being used in recent studies because of their simplicity and
pixel-based detection of cracks [15,28,30–42]. Even in emerging applications of supervised machine
learning methods, edge detectors are still considered in practice since they do not require expensive
annotated training datasets. Using edge detectors for crack detection is computationally fast, making it
an appealing option for real-time crack detection during UAS inspections; they have been implemented
in ground-based robotic inspections in the past [4,18,38]. Edge detectors can have different sizes,
shapes, and values. There are limited guidelines for researchers and practitioners in choosing a proper
edge detector for their applications, especially for UAS collected data.

Save two noteworthy exceptions, most research focuses on developing new methods for crack
detection rather than comparing the performance of existing methods. Abdel-Qader et al. [29] compared
the performance of the fast Haar transform, Fourier transform, Sobel filter, and Canny filter for crack
detection in 25 images of defected concrete and 25 images of sound concrete. The fast Haar transform
was the most accurate method, with an overall accuracy of 86%, followed by the Canny filter (76%),
Sobel filter (68%), and the Fourier transform (64%). Processing time was not considered, and no actual
definition of accuracy was presented. Mohan and Poobal [43] reviewed a number of edge detection
techniques for visual, thermal, and ultrasonic images, but the information presented was from several
studies that considered vastly different data sets, and so the results were not directly comparable.
This paper presents the results of a direct comparison of four common edge detection methods in the
spatial domain (Roberts, Prewitt, Sobel, and Laplacian of Gaussian) and two in the frequency domain
(Butterworth and Gaussian) by applying them to a dataset of 50 sound and 50 defected images of
concrete collected from UAS. The goal of this study is to determine the most efficient edge detectors
to use in aiding UAS condition assessments of concrete structures when all the other parameters
are kept the same. Prior to implementation, as an emerging technology in bridge inspections, UAS
need a rigorous investigation as part of a process model to determine whether they can be used in
lieu of hands-on inspections. While this is not a part of this study, such an approach would involve
investigating the reliability and effectiveness of UAS inspections through a generic decision making
tool that includes a multivariable analysis of the inspection accuracy, cost, time, and hazard.

2. Analytical Program

Figure 1 shows a generic image analysis algorithm developed for this study. The generic algorithm
included three main steps: Edge detection, edge image enhancement, and segmentation. Edge detection
in the spatial domain involved greyscale conversion and application of a filter. Edge detection in the
frequency domain required additional steps to transform the image from the spatial domain to the
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frequency domain before application of the filter. The inverse operation to transform the filtered image
back to the spatial domain was also an additional step. This section includes the particulars of each
step in the generic image processing algorithm.
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2.1. Greyscale Conversion

Edge detection algorithms perform best with greyscale images [44], so the first step in the image
analysis procedure was greyscale conversion of color images. The original color image comprised a
matrix of pixels, each with a defined red, green, and blue intensity. Greyscale conversion followed
Equation (1), where I(x, y) is the grayscale intensity of pixel (x, y), and R(x, y), G(x, y), and B(x, y) are
the red, green, and blue pixel intensities of the same, respectively.

I(x, y) = 0.2989R(x, y) + 0.5870G(x, y) + 0.1140B(x, y). (1)

2.2. Edge Detection in the Spatial Domain

In general, edge detection in images requires filtering by one of several common methods, which
are discussed in detail below. Filters are applied as a small matrix of values (called a kernel) through a
mathematical operation known as convolution. In general form, the convoluted image O is the sum of
the element-by-element products of the image intensity matrix I and the kernel K in every position in
which K fits fully inside I. Equation (2) describes this in plainer terms for image size M×N and kernel
size m× n.

O(i, j) =
∑m

k=1

∑n

`=1
I(i + k− 1, j + ` − 1)K(k, `), (2)

The convoluted image O will be of size (M−m + 1) × (N− n + 1). The kernel typically includes
both x and y components; the convoluted images Ex and Ey obtained from the x and y components of
the filter emphasize vertical and horizontal edges, respectively. The final edge image E is the square
root of the sum of the squared component images, i.e.,

O(i, j) =
∑m

k=1

∑n

`=1
I(i + k− 1, j + ` − 1)K(k, `). (3)

Common edge detecting filters in the spatial domain include Roberts, Prewitt, and Sobel.
Equations (4)–(6) give the x and y kernels for the Roberts (Rx and Ry), Prewitt (Px and Py), and Sobel
(Sx and Sy) filters. These filters compute the gradient between neighboring pixels in the x and y
directions and intensify areas of high gradient (i.e., edges). Filters are constructed such that the
components are of opposite sign and the sum of all components is zero. The Roberts filter (Equation (4))
is a compact kernel, which could lead to very fast processing times. The Prewitt (Equation (5))
and Sobel (Equation (6)) filters use larger 3× 3 kernels and are therefore more powerful but require
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extended computation times. The Prewitt is a first-order filter (the largest magnitude component is
one); the second-order Sobel filter will likely produce an image with more intensified edges.

Rx =

[
1 0
0 −1

]
, Ry =

[
0 1
−1 0

]
, (4)

OPx =


−1 0 1
−1 0 1
−1 0 1

, Py =


1 1 1
0 0 0
−1 −1 −1

, (5)

Sx =


−1 0 1
−2 0 2
−1 0 1

, Sy =


1 2 1
0 0 0
−1 −2 −1

, (6)

Another popular edge detection method in the spatial domain is the Laplacian of Gaussian (LoG)
function. When applied to an image with intensities I(x, y), the Laplacian operator ∇2 = ∂2I

∂x2 +
∂2I
∂y2

emphasizes both edges and noise or artifact. The influence of noise can be reduced by first applying
the Gaussian smoothing filter given by Equation (7), where x and y are the spatial coordinates within
the Gaussian kernel and σ is the standard deviation

G(x, y) =
1

√

2πσ2
exp

(
−

x2 + y2

2σ2

)
. (7)

Equation (8) gives the Laplacian of the Gaussian, which can be pre-allocated for a given filter size
m × n and standard deviation σ.

LoG = ∇2(G(x, y)) =
x2 + y2

− 2σ2

4σ4
exp

(
−

x2 + y2

2σ2

)
. (8)

Iterative optimization of the parameters m, n, and σ is possible on an image-by-image basis, but it
is convenient to predefine both the size and standard deviation. For the purposes of this study, the LoG
kernel was defined as a square matrix with size equal to 0.5% of the maximum image dimension,
and the standard deviation was defined as one-fourth the maximum image dimension. At first glance,
it would appear that the larger 13 × 13 LoG filter would be more computationally intensive than the
smaller Roberts, Prewitt, and Sobel filters discussed previously. However, the LoG filter does not
include x and y component kernels. Thus, only one convolution operation (Equation (2)) was required,
and there was no need for the component transformation (Equation (3)).

2.3. Edge Detection in the Frequency Domain

Edge detection in the frequency domain requires transformation from the spatial domain to
the frequency domain. This is quickly accomplished using the fast Fourier transform (FFT), which
transforms the greyscale image intensities I(x, y) into the frequency components F(u, v). Unlike in the
spatial domain, where the filter kernel is of arbitrary size, the filter kernel in the frequency domain is
the same size as the image. The edge image E(u, v) in the frequency domain is the element-by-element
product of the filter kernel K(u, v) and the frequency domain image F(u, v), i.e.,

E(u, v) = K(u, v) � F(u, v), (9)

where � denotes element-wise multiplication. Inverse fast Fourier transformation (iFFT) of the
frequency domain edge image E(u, v) gives the edge image in the spatial domain E(x, y).

The two most common frequency domain edge detection filters include Butterworth [45] and
Gaussian [45–47] high pass filters. High pass filters attenuate frequencies above some defined cutoff

frequency D0. Equation (10) gives the general form of the nth-order Butterworth filter kernel KB(u, v),
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where D(u, v) is the distance between the pixel (u, v) and the origin of the frequency (the center of the
M × N image), as defined by Equation (11).

KB(u, v) = 1−
1

1 +
[

D(u,v)
D0

]2n , (10)

D(u, v) =

√[
u−

(M
2

+ 1
)]2

+
[
v−

(N
2
+ 1

)]2
. (11)

Similarly, Equation (12) gives the general form of the Gaussian high pass filter kernel KG(u, v),
where D(u,v) is again the distance between the pixel (u, v) and the frequency origin, and σ is the
assumed standard deviation of the frequency distribution.

KG(u, v) = 1− e
−D2(u,v)

2σ2 . (12)

For the purposes of this study, a fourth order (n = 4)Butterworth filter was constructed with cutoff

frequency D0 = M/10 The Guassian filter was constructed with standard deviation σ = M/10 Figure 2
presents a graphical representation of the Butterworth and Gaussian filters.
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2.4. Edge Image Enhancement

Edge images E(x, y) resulting from spatial or frequency domain edge detection filters contain a
range of pixel intensities that require scaling. The scaling function given by Equation (13) converts
edge image pixel intensities E(x, y) to linearly scaled edge image pixel intensities Esc(x, y) such that
0 ≤ Isc(x, y) ≤ 1.

Esc(x, y) = [E(x, y) −min(E)]
[

1
max(E) −min(E)

]
. (13)

The scaled edge image Esc(x, y) requires contrast adjustment to improve edge clarity. Equation (14)
transforms the scaled edge image Esc(x, y) into the enhanced edge image Ee(x, y), where µEsc and σEsc

are the mean and standard deviation of the scaled edge image pixel intensities, respectively.

Ee(x, y) = [Esc(x, y) −min(Esc)]

[
2σEsc

max(Esc) −min(Esc)

]
+ µEsc . (14)

2.5. Segmentation

Segmentation was the final step in the proposed image analysis algorithm. This process converts
the edge image to the binary image, in which pixels belonging to a crack take an intensity value of
one, and the remaining pixels take an intensity value of zero. Selection of an appropriate threshold
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intensity—above which a pixel is classified as a crack and below which it is not—is critical. If the
threshold intensity is too high, cracks go undetected. If it is too low, the image becomes noisy, and it
is difficult to differentiate cracks from noise. This work considered two threshold operations for
segmentation: pixel threshold and area threshold.

The pixel threshold operation follows Equation (15), where B1(x, y) is the first-level binary image,
and T1 is the pixel threshold value.

B1(x, y) =
{

0, Ee(x, y) < T1

1, Ee(x, y) ≥ T1
. (15)

T1 can be selected using Otsu’s method [47] or other intuitive/adaptive approaches [31]. In this
study, T1 was selected based on the statistical properties of pixel intensities in the enhanced edge
image Ee(x, y). Equation (16) defines T1, where µEe and σEe are the mean and standard deviation of
the enhanced edge image pixel intensities.

T1 = µEe + 3σEe . (16)

Similarly, the area threshold operation follows Equation (17), where B2(x, y) is the second-level
binary image and T2 is the area threshold value.

B2(x, y) =
{

0, B1(x, y) < T2

1, B1(x, y) ≥ T2
. (17)

Equation (18) defines T2 according to the area of each connected component Acc, where σAcc is the
standard deviation of the areas of connected components in B1.

T2 = σAcc . (18)

The area of connected components Acc is determined according to eight-neighbor connectivity,
which considers pixel connectivity in the vertical, horizontal, or diagonal directions, such that pixel (x, y)
is connected to all pixels (x± 1, y± 1). Acc could alternatively be defined according to four-neighbor
connectivity, which is a stricter definition that only considers connectivity in the vertical and horizontal
directions, such that pixel (x, y) is connected to pixels (x± 1, y) and (x, y± 1). For the purposes of this
research, the more relaxed eight-neighbor definition of connectivity was adopted.

The second-level binary image B2 is the final product of the proposed crack detection algorithm.

3. Experimental Program

In order to test the crack detection algorithm discussed above, the researchers gathered 50 images
of sound concrete and 50 images of cracked concrete from several previously tested concrete panels
at the Systems, Materials, and Structural Health Laboratory (SMASH Lab) at Utah State University.
Images were taken with a 12 MP digital camera with focal length of 35 mm. The distance between
the lens and the surface was approximately 0.3 m given the ability of the UAS to hold its position.
The surface illumination, as verified by a Digi-Sense data logging light meter with NIST traceable
calibration, was 1500–5000 lx. The image resolution was 2592 × 4608 px, and the approximate field
size was 1.0 × 1.2 m. RGB images were saved in JPEG format. Image processing was performed
in MATLAB on a 64-bit operating system with 32 GB memory and 3.40 GHz processor. Figure 3
shows representative images of defected and sound concrete. Images were processed in six iterations,
corresponding to the four spatial domain edge detectors and two frequency domain edge detectors.
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Figure 3. Representative images of (a) cracked concrete and (b) sound concrete.

Following image processing, an inspector reviewed the second-level binary images resulting from
each of the six iterations in random order and classified each image as cracked or sound. The inspector
reviewed only the second-level binary images; they did not review the original images or images from
intermediate steps in the crack detection algorithm. The same inspector reviewed all of the images.
The team then compared the results of each inspection to the ground truth, i.e., the known classification
of each image as defected or sound based on physical inspection of the concrete surface aided by a
crack microscope. The team then recorded the number of true positives (TPs), true negatives (TNs),
false positives (FPs), and false negatives (FNs) for each iteration of the crack detection algorithm. A TP
was a defected image in which the inspector accurately identified the defect. A TN was a sound image
that the inspector accurately identified as sound. An FP was a sound image within which the inspector
inaccurately identified a defect. An FN was a defected image that the inspector inaccurately identified
as sound. A hit required the inspector to identify at least half of the actual crack length in a defected
image. FP occurred when the inspector identified a crack in the noise or artifact of the second-level
binary image. The performances of each approach of crack detection were evaluated in terms of
accuracy, precision, processing time, and missed crack width (MCW). Accuracy, Ac., and precision, Pr.,
were calculated according to the following equations:

Ac. =
TP + TN

TP + FP + TN + FN
; (19)

Pr =
TP

TP + FP
(20)

To obtain the processing time, each method of crack detection was run ten times on the same
desktop and the same dataset, and the mean of the processing times was reported as each method’s
processing time. In order to find MCW, the missed cracks by each crack detection method were
identified and then measured using a crack microscope with 0.02 mm resolution. The algorithms were
also compared in terms of the pixel intensity range in the enhanced edge images and the noise-to-signal
ratio (N/S). A wider range of pixel intensities suggested a sharper contrast between defects and sound
regions. N/S described the level of noise or artifact in the image and was defined as the ratio of lit
pixels (ones) to the total number of pixels in the second-level binary image B2. N/S was only computed
for the sound dataset because any lit pixels were known to be noise and not defects. A lower N/S was
greatly preferred because defects became more difficult to resolve when the image was noisy.

4. Results

Table 1 summarizes the results of the six iterations of the proposed crack detection algorithm.
The TP rate (TPR), TN rate (TNR), FP rate (FPR), and FN rate (FNR) in the table are the percentages of
TP, TN, FP, and FN reports. Note that the reported metrics in this paper were inclusive to the defined
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parameters in experimental and analytical procedures, and the authors were not suggesting that one
could get similar results in practice with less-controlled situations.

Table 1. Performance of different edge detectors in the proposed crack detection algorithm.

Domain Edge Detector TPR1

(%)
TNR2

(%)
FPR3

(%)
FNR4

(%)
Ac.5

(%)
Pr.6

(%)
MCW7

(mm)
Time

(s)

Spatial Roberts 64 90 10 36 77 86 0.4 1.67
Spatial Prewitt 82 82 18 18 82 82 0.2 1.4
Spatial Sobel 86 84 16 14 85 84 0.2 1.4
Spatial Laplacian of Gaussian (LoG) 98 86 14 2 92 88 0.1 1.18

Frequency Butterworth 80 86 14 20 83 85 0.2 1.81
Frequency Gaussian 80 88 12 20 84 87 0.2 1.92

1 Ture Positive Rate, 2 Ture Negative Rate, 3 False Positive Rate, 4 False Negative Rate, 5 Accuracy, 6 Precision,
and 7 Missed Crack Width.

In order to gain perspective about the numbers in this table, the accuracy of visual inspections
should be determined. Washer et al. investigated the quality of element-level bridge inspection data.
A required accuracy was arbitrary in visual inspections because the achieved accuracy was tied to the
inspection process itself and was unaffected by the requirement [48]. Different inspectors responded
very differently when inspecting the same structure or defect. The coefficients of variation of a rated
bridge deck by different inspectors in visual inspections were between 57% and 96%. Detection of
concrete deck cracks can be considered a “typical” decision in bridge inspections, and considering a
normal distribution for all the calls, it is acceptable to have 67.5% of correct calls, i.e., ± one standard
deviation, [23,26,48]. This meant each of the edge detectors, except for Roberts, had surpassed the
acceptable accuracy of the visual inspections. A bridge inspector reviewed the images in this study
and was able to label all of the images correctly into sound and defected images (100% accuracy).
Unlike the edge detectors, the inspector did not localize the pixels associated with cracks in the images,
since it was very time-consuming, to provide a pixel-segmented ground truth [28]. This gave the edge
detectors an advantage over human inspectors.

4.1. Spatial Domain, Roberts Filter

Crack detection in the spatial domain using the Roberts filter resulted in the lowest number of
TPs (32), but it also resulted in the lowest FP (5). Thus, while the Roberts filter was the least accurate
(77%), its precision (86%) was among the highest. The minimum detectable crack width was 0.4 mm
and was the largest of the six edge detectors evaluated. The processing time (1.67 s per image) was
near the median of the six methods evaluated. Figure 4 shows representative enhanced edge, first-level
binary, and second-level binary images from spatial domain edge detection of an image from the
defected set (Figure 3a) using the Roberts filter.
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4.2. Spatial Domain, Prewitt Filter

Crack detection in the spatial domain using the Prewitt filter resulted in the second lowest number
of TP (41) and the highest FP (9). The Prewitt filter was the second least accurate and the least precise of
the six methods evaluated. The minimum detectable crack width was 0.2 mm, which was comparable
to four of the six methods. The processing time (1.40 s per image) was among the shortest. Figure 5
shows representative enhanced edge, first-level binary, and second-level binary images from spatial
domain edge detection of an image from the defected set using the Prewitt filter.
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4.3. Spatial Domain, Sobel Filter

Crack detection in the spatial domain using the Sobel filter resulted in the second highest number
of TPs (43) and the second highest FP (8). Thus, while the Sobel filter was among the most accurate
(85%), it was also among the least precise (84%). The minimum detectable crack width was 0.2 mm,
and the processing time (1.4 s per image) was among the shortest. Figure 6 shows representative
enhanced edge, first-level binary, and second-level binary images from spatial domain edge detection
of an image from the defected set using the Sobel filter.
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4.4. Spatial Domain, Laplacian of Gaussian (LoG) Filter

Crack detection in the spatial domain using the LoG filter resulted in the highest number of
TPs (49), with only one miss in 50 defected images. The FP (7) was near the median for the six methods
evaluated. Nevertheless, the LoG filter was the most accurate (92%) and the most precise (88%).
Furthermore, the LoG method had the narrowest minimum detectable crack width (0.1 mm) and the
shortest processing time (1.18 s per image). Figure 7 shows representative enhanced edge, first-level
binary, and second-level binary images from spatial domain edge detection of an image from the
defected set using the LoG filter.
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4.5. Frequency Domain, Butterworth Filter

Crack detection in the frequency domain using the Butterworth filter resulted in the median
number of TPs (40) and the median FP (7). The accuracy (83%) and precision (85%) were also near
the median of the six methods evaluated. The minimum detectable crack width was again 0.2 mm,
and the processing time (1.81 s per image) was the second longest of the six methods. Figure 8
shows representative enhanced edge, first-level binary, and second-level binary images from frequency
domain edge detection of an image from the defected set using the Butterworth filter.
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4.6. Frequency Domain, Gaussian Filter

Crack detection in the frequency domain using the Gaussian filter resulted in the median number
of TPs (40) and the second lowest FP (12%). The accuracy (84%) was also near the median value,
but the precision (87%) was the second highest. The minimum detectable crack width was again
0.2 mm. The processing time (1.92 s per image) was the longest of the six methods evaluated. Figure 9
shows representative enhanced edge, first-level binary, and second-level binary images from frequency
domain edge detection of an image from the defected set using the Gaussian filter.
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4.7. Comparison

Table 2 presents a comparison of the range of pixel intensities in the enhanced edge image Ee,
the pixel thresholds T1 and T2 used for construction of the first- and second-level binary images B1 and
B2, and the noise-to-signal ratio N/S observed in sound dataset using the six edge detection methods.
Figure 10 presents a direct comparison of superimposed second-level binary images to the original
image from analysis of the image in Figure 3a, a member of the defected dataset. Similarly, Figure 11
shows a direct comparison of the second-level binary images from analysis of the image in Figure 3b,
a member of the sound dataset (only LoG and Gaussian filter results were illustrated for brevity).

Table 2. The average range and threshold value for each method in defected and sound datasets.

Edge Detector
Defected Dataset Sound Dataset

J1 J2 T1 T2 J1 J2 T1 T2 Average N/S (%)

Roberts 0.204 0.251 0.70 25 0.21 0.25 0.64 21 0.41
Prewitt 0.232 0.290 0.66 76 0.23 0.29 0.59 53 0.32
Sobel 0.230 0.291 0.67 75 0.23 0.29 0.59 53 0.33
LoG 0.534 0.590 0.71 58 0.62 0.69 0.63 32 0.90

Butterworth 0.581 0.631 0.89 10 0.57 0.64 0.93 6 1.74
Gaussian 0.594 0.640 0.89 8 0.58 0.64 0.93 5 1.76
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Edge detection in the spatial domain using the LoG filter was the fastest of the six crack detection
methods evaluated. Even though the difference between computational times was not very significant
for one image (0.74 s between LoG and Gaussian), and considering it could take more than 1000 images
to cover all areas of an infrastructure, using LoG would be roughly 10 min faster over all images than
Gaussian, which was definitely significant. For example, current inspection procedures may only take
10 min of total overall inspection time for a routine inspection [9,49]. The effect of this time difference
on an automated or semi-automated inspection is yet unknown, as these are not yet possible and
could have very different processes; however, it could result in less on-site time or changes to the
inspection procedure.

Frequency domain methods were expected to be the fastest because the element-wise product
(Equation (9)) required far fewer floating-point operations than the iterative convolution operation
(Equation (2)). However, the computational intensity of the Fourier and inverse Fourier transformations
used to move between the spatial and frequency domains greatly increased processing time.
The frequency domain methods took an average of 1.87 s per image, while the spatial domain methods
took an average of 1.41 s per image. The LoG filter was expected to be computationally efficient
compared to the other methods despite its comparatively large size (13 × 13). The computational
efficiency of this method resulted from the fact that LoG used only one kernel, as opposed to x and y
component kernels in the other spatial domain methods. This reduced the number of convolution
operations (Equation (2)) from two to one, which obviated the use of Equation (3). Computational
efficiencies of the other spatial domain methods did not follow the expected trend. It was expected
that processing time would increase with kernel size, and that the 3 × 3 Prewitt and Sobel filters
would require longer computational times than the 2× 2 Roberts filter. In fact, the opposite was true.
Processing time for the Roberts filter was 20% longer than for the Prewitt or Sobel. The reader will
recall the output image from Equation (2) is of dimension (M−m + 1) × (N− n + 1) for image size
M×N and kernel size m× n. Thus, a smaller kernel produced a larger edge image. This explained, at
least in part, the increased computational time for the smaller Roberts filter. The LoG filter was also
both the most accurate and the most precise of the six methods tested. The LoG method resulted in 98%
TPs with only one miss among the fifty images in the defected dataset. The next most accurate method
recorded seven misses. The remaining methods all recorded ten or more misses. Thus, the accuracy of
LoG (92%) was significantly higher than the other five methods (77%–85%). The precision of LoG (88%),
which also considered FP, was much closer to that of the other five methods (82%–87%). The LoG
method recorded seven false positives in the 50 images in the sound dataset. The Roberts filter, with
18 misses, was by far the least accurate (77%). However, with only five false positives, Roberts was
among the most precise (86%). Prewitt was the least precise with nine misses, nine false positives,
and 82% precision.

The LoG filter resolved the finest cracks with an MCW of 0.1 mm. Most of the other methods
were only able to resolve cracks 0.2 mm or wider. The Roberts filter could only detect cracks 0.4 mm
or wider. Considering the image size used in this study, one pixel was equivalent to 0.2 mm. Thus,
the LoG filter was useful in detecting cracks that were about one pixel wide, while Roberts could only
resolve cracks that were two pixels wide.

The contrast adjustment ranges, segmentation thresholds T1 and T2, and noise-to-signal ratios
N/S listed in Table 1 gave some context to the performance metrics discussed above. The contrast
adjustment ranges, J1 and J2, represented the range of pixel intensities in the enhanced edge image Ee.
A wider range of contrast values (J2–J1) corresponded to more intensified edges within the image. Thus,
cracks should be more easily detected when the contrast adjustment range was large. The Roberts
filter, which performed poorly according to the performance metrics discussed above, exhibited the
smallest range. The LoG filter, which arguably exhibited the best performance, had one of the widest
contrast adjustment ranges. Furthermore, the contrast adjustment range for the LoG filter was quite
different between the defected and sound datasets. This resulted from a large number of pixels with
high intensities in the defected image.
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The noise-to-signal ratio N/S was evaluated only for the sound dataset for the simple reason
that the noise in sound images was more well-defined. In the perfectly ideal case, no pixels should
be lit in the second-level binary image from the sound dataset. Thus, any lit pixels were noise by
default. In the defected dataset, distinction between signal and noise was ill-defined. In general, spatial
domain methods exhibited lower N/S than frequency domain methods. The lowest N/S ratios were
observed for the Prewitt and Sobel filters, with N/S ratios of 0.32 and 0.33, respectively. The Roberts
filter exhibited only slightly more noise (N/S = 0.41). In comparison, the LoG filter produced a fairly
noisy edge image (N/S = 0.90).

Increased noise in the frequency domain manifested as an increase in the standard deviation σEe of
the pixel intensities of the enhanced edge image Ee. Following Equation (18), this caused an increase in
the pixel threshold T1. While pixel thresholds were higher in the frequency domain, the area thresholds
were lower. This resulted from reduced continuity of cracks in the frequency domain.

It was expected that the LoG method, which was the most successful in terms of accuracy, precision,
MCW, and processing time, would also exhibit the least noise. Instead, the noise-to-signal ratio in the
LoG images was among the highest observed. This can be explained in part by the images shown
in Figures 10 and 11. The presence of cracks in even the noisiest of images in Figure 10e and f was
clear. Similarly, even in the sound images with the highest N/S (Figure 11e,f), it was easy to see
that no cracks were present. Despite the large number of lit pixels, no pattern of connectivity was
apparent, thus, the inspector could reasonably conclude that he or she was observing noise and not a
defect. These images represented only a single data point for each method from defected and sound
datasets. However, they suggested that the level of noise in the binary image was not the only factor
affecting the inspector’s ability to detect cracks. Continuity of cracks in the binary image was also
important, especially considering that the inspector needed to identify at least half of the crack in order
to register a hit.

The value of area threshold T2 gave some idea of the continuity of cracks in the defected images.
T2 was defined in Equation (18) as the standard deviation σAcc of the areas of connected components
Acc. When the continuity of cracks in the binary image was poor (i.e., the cracks were discontinuous),
σAcc was small. Conversely, when the cracks in the binary image were highly continuous, σAcc

increased. Thus, higher values of T2 implied a higher degree of continuity of cracks in the binary
image. Additionally, when the cracks were highly continuous in binary images from the defected
dataset, the value of T2 would be much higher for the defected dataset than for the sound dataset.
Such was the case for the Prewitt, Sobel, and LoG filters. The same was also true, but to a lesser degree,
for the Butterworth and Gaussian filters. The values of T2 for the sound and defected datasets using
the Roberts filter were similar. This suggested poor continuity of cracks in the binary images, which
was confirmed in Figure 10a. Considering that the Roberts filter was among the worst methods tested
here, this result was not at all surprising. The cracks in the rest of the binary images from the defected
dataset (Figure 10b–f) were visibly more continuous.

The results presented here have some significant implications for future work in the realm
of automated detection without human inspectors. For all of the evaluated methods, the pixel
segmentation threshold T1 was higher for the defected dataset than for the sound dataset. The same
was true for the area segmentation threshold T2. For the LoG method, the contrast adjustment ranges
were also much different for the defected dataset than for the sound dataset. Future research can
consider these differences as indicators of the likelihood that a particular processed image includes
a defect.

5. Conclusions

The literature contains few investigations comparing different edge detection algorithms
for accuracy, none of which are on UAS captured images. This study investigated a generic
image-processing algorithm designed to objectively compare different edge detection algorithms
on detection of defects in concrete. The algorithm involved edge detection, edge image enhancement,
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and segmentation. Edge detection was completed in the spatial domain using Roberts, Prewitt, Sobel,
and LoG filters, and in the frequency domain using Butterworth and Gaussian filters. Fifty images of
defected concrete and 50 of sound concrete were analyzed by the proposed algorithm in six iterations
(making use of the six aforementioned edge detection strategies). An inspector reviewed the resulting
binary images from each iteration to determine if the detector found a crack. The inspection results
were compared to the ground truth, and the six edge detection methods were compared based on
accuracy, precision, minimum detectable crack width, and processing time per image. Edge detection
in the spatial domain using the LoG filter yielded the highest accuracy (92%) and precision (88%),
the finest minimum detectable crack width, and the fastest processing time (1.18 s per image). All but
one of the remaining methods (edge detection in the spatial domain using the Roberts filter) yielded
greater than 80% accuracy, and they were able to detect cracks as fine as 0.2 mm. While crack detection
in the spatial domain using the Roberts filter yielded the lowest accuracy (77%), it also yielded the
fewest false positives (10%), and its precision (86%) was among the highest. In general, the processing
time was longer for crack detection in the frequency domain (1.8–1.9 s per image) than in the spatial
domain (1.2–1.7 s per image). Additionally, the second-level binary images (the final product of the
image processing algorithm) were much noisier in the frequency domain. According to these results,
crack detection in the spatial domain using the LoG filter yields the best and fastest results for detecting
defects in concrete structures. Therefore, the proposed crack detection algorithm using LoG filter is
recommended for real-time crack detection of concrete structures using UASs.
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